东北和江淮地区NBE的多站观测与对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双极性窄脉冲事件(Narrow Bipolar Events, NB Es)指一类独特的云内放电事件。由于其极强的HF/VHF辐射、较强而且持续时间极短的VLF/LF双极性脉冲辐射、相对孤立性以及较弱的光辐射等明显区别于常规闪电的特征而引起学术界的极大关注。本论文利用中国科大雷电物理研究组自行研制的基于GPS时间同步技术的闪电多站VLF/LF定位系统,并特别增加了有助于NBE识别的闪电VHF辐射接收装置,对处于较高纬度的东北大兴安岭地区和中低纬度的江淮地区雷暴环境中发生的NBE活动的现象学特征以及其与雷暴对流活动的关系进行了系统性的对比观测研究。主要得到了如下结论:
     (1)报道了较高纬度东北地区和中纬度江淮地区NBE活动产生的双极性脉冲波形特征。结果表明,不同地域环境中NBE的VLF/LF放电波形特征基本相同。东北地区正极性NBE的脉冲持续时间,初始峰宽度,初始峰半宽的平均值分别为27.2μs、7.8μs4.6μs。江淮地区正(负)极性NBE的脉冲初始峰宽度平均值为8.3p.s(7.6μs),初始峰上升时间平均值为3.1μs(2.9μs),初始峰半宽为4.4μs(4.0μs)。这一结果丰富了学术界对不同区域NBE波形特征的知识。
     (2)较高纬度的东北地区与中纬度江淮地区NBE活动特征差异明显。东北地区雷暴中NBE活动较弱,2009和2010年两年实验观测中仅记录到493例NBE而且全部为正极性(对应上部正电荷与下部负电荷的电荷配置),约占记录闪电事件的0.034%。江淮地区2012年夏季8次对流过程中总共记录到21257例NBE,占可定位闪电事件的1.45%。江淮地区各次雷暴中都有正负极性NBE发生,两者比例约为9:1。东北地区雷暴中正极性NBE集中在7-12km,平均高度为7.9km,江淮地区对流系统中正极性NBE集中发生在7-16km,负极性NBE集中发生在15-18km。江淮等中低纬度地区雷暴中发生的正极性NBE的平均高度以及垂直范围扩展都要略大于东北等较高纬度地区中的结果。
     (3)利用地基气象雷达数据以及TRMM卫星PR雷达数据,分析了伴随NBE活动的雷暴降水结构的气象学特征。结果表明,较高纬度的东北地区雷暴对流活动较弱,30dBZ雷达回波最大高度主要集中在9-12km,有普通闪电发生的对流核中约有74%的对流发展强度处在这一水平。与之相比,江淮地区的统计结果表明,仅有正极性NBE发生的对流核中40dBZ,35dBZ以及30dBZ雷达回波最大高度分别约为9-11km,11-12km和15km左右,有负极性NBE发生的对流核中,对流的发展强度稍强,40dBZ,35dBZ以及30dBZ雷达回波最大高度分别约为14km,16km,和17km左右,18dBZ最大高度(对流雨顶高度)约为18km。但是,不同地区中NBE的发生高度基本被限定在雷暴云顶的范围之下,尤其负极性NBE的发生高度与对流降水区雨顶的发展高度相关性比较明显。结合不同区域中正负极性NBE发生情况的不同以及NBE发生高度的差异,本文认为,不同地区雷暴气象学环境的差异是造成NBE表现特征不同的主要原因。这也从一定程度表明NBE的发生,尤其是负极性NBE的发生,对雷暴对流强度的指示作用。
     (4)雷暴中NBE的发生区域具有一定的选择性,主要聚集发生在具有较强的闪电活动、较低云顶温度、以及较高雷达反射率所对应的雷暴对流核附近,并且主要发生在强雷达回波(例如35dBZ以上)所包围区域的外围。不同地区雷暴发生过程中NBE活动与闪电活动的时间对应关系的统计分析表明,不同时段内发生的NBE活动与普通闪电活动之间有一定的相关性,但是两者之间的定量对应关系不明显,线性相关度的离散程度较大。
     (5)利用江淮地区6站闪电观测系统的时序波形和定位数据,分析了NBE与普通闪电事件在较小时空尺度下的相关性。统计结果表明,多数NBE基本以孤立状态或者发生在普通闪电之前的形式出现,两类NBE总共占到了全部NBE数量的83.6%。发生在普通闪电之前的NBE与普通闪电的时间间隔一般小于184.7ms,(数据中值为64.7ms),空间距离间隔平均值为3.1km(数据中值为1.5km)。
     论文最后对东北地区和江淮地区的NBE活动特征以及其他中低纬度地区NBE发生特征的报道进行了对比和总结。
Narrow Bipolar Event (NBE) is a kind of distinct intracloud discharge. It had attracted a great deal of attention due to their unusual electromagnetic signatures, such as, extremely strong RF radiation, large amplitude and isolated short-duration very low frequency and low frequency (VLF/LF) bipolar electric field pulses, and weak optical radiation. In this dissertation, by using the GPS based VLF/LF multi-station field measuring networks and VHF receivers operated at Greater Khingen Range (51°N) in northeast China and Jianghuai area (32°N), comparative studies of the phenomenon and meterology context of NBE activity at different latitudes was made. The main conclusions are summarized as follows:
     (1) The waveform characteristics of VLF/LF bipolar electric field pulses of NBEs were reported. There is no distinction between the VLF/LF waveform characteristics of NBEs occurred at different latitude regions. At Greater Khingen Range, the total pulse duration, initial width and full width at half maximum of the narrow VLF/LF bipolar pulse was27.2μs,7.8us, and4.6μs, respectively. At Jianghuai Area, the positive (nagative) narrow bipolar pulse was characterized with the initial width, rise time, and full width at half maximum of8.3μs (7.6μs),3.1μs (2.9μs),4.4μs (4.0μs), respectively. These results expand the understanding of waveform characteristics of NBEs at different latitude regions.
     (2) The NBE occurrence appears somewhat different at different geographical location and in different thunderstorms. During the2-year observation periods, only493positive NBEs (negative charge moving up) were recorded at Greater Khingan Range, which accounted for0.034%of all the lightning events, and no negative NBEs were detected. While at Jianghuai Area, a total of21,257NBEs were recorded during8storms, which accounted for1.45%of all the located lightning events. And both positive and negative NBEs were detected in all the thunderstorms, a mean ratio of positives to negatives of9:1was found. NBEs activity in Jianghuai Area is much more virgorous than that in Greater Khingan Range. At Greater Khingan Range, NBEs clustered at altitudes ranging from5km to12km, with a median height of7.9km. While at Jianghuai Area, positive NBEs ranged at7-16km, and negative NBEs clustered at15-18km. The height of positive NBEs occurred at Greater Khingan Range is a littile lower than that in Jianghuai Area and other lower latitude regions.
     (3) The meterology context of NBEs with the thunderstorm convection and precipitation at different latitudes were analyzed based on the ground-based radar data or satellite-based TRMM PR data. The thunderstorms at Greater Khingan Range had a typical maximum height of30dBZ radar reflectivity (H30dBZ-max) of9-12km (74%of all the317convective cells with lightning having the H30dBZ-max in the range from9km to12km), which showed a relatively weak convection compared to that in lower latitude regions. However, in Jianghuai Area, the maximum height of40dBZ (H40dBZ-max),35dBZ (H35dBZ-max),30dBZ (H30dBZ-max) of convective cells with only positive NBEs was9-11km,11-12km and15km, respectively. And the H40dBZ-max, H35dBZ-max, H30dBZ-max and H18dBZ-max of convective cells with both positive and negative NBEs was14km,16km,17km, and18km, which were little higher than those in convective cells with only positive NBEs. Nevertheless, the height of NBEs at different latitude regions is limited under the top of the thundercloud, especially for those negative NBEs, whose occurrence heights were quite equivalent to the height of rain top (H18dBZ-max). In combination with the differences of NBE height and occurrence of NBEs with different polarities, we suggested that the meterology context of the thunderstorm convection in different latitude regions could be the main reason for the differences of NBEs occurrence. From a certain extent, this also shows that the occurrence of the NBEs, especially the occurrence of negative NBEs, could serve as a proxy of the strongest convection in thunderstorms.
     (4) NBEs selectively occurred during active period of storm and clustered at the surrounding area of some particular convective cores, which related to strong lightning activity, low cloud top temperature, and high radar reflectivity. Statistical analysis on the temporal context of NBEs with normal lightning activity showed that there is qualitative correlation between NBE and normal lightning activity, but there is a large scatter distribution between them. However, no precise quantitative relationship could be established.
     (5) The short temporal-spatial context of NBEs with normal lightning was examined by using the multi-station observation and location system in Jianghuai Area. Statistical results showed that the most of NBEs (83.6%) occurred in isolation or ahead of the normal lightning events. The temporal interval between NBE and the following lightning events is less than184.7ms (median value of64.7ms), with the spatial gap of3.1km (median value of1.5km).
     In the final part of the dissertation, we summarized NBEs activity observed at different latitudes, such as at Greater Khingan Range, Jianghuai Area, as well as in other lower latitude regions. And a comparison was made between these similarities and differences.
引文
Ahmad, N. A., Fernando M, Baharudin Z A, et al.,2010. Characteristics of narrow bipolar pulses observed in Malaysia. J Atmos Sol-Terr Phys, doi:10.1016/j.jastp.2010.02.006.
    Baum, C. E.,2008. Measurement of closure position between downward and upward leaders:return-stroke initiation position, in Proceedings of XXIX General Assembly of the International Union of Radio Science, edited by D. Erricolo, URSI, Chicago, USA.
    Betz, H.-D., T. C. Marshall, M. Stolzenburg, K. Schmidt, W. P. Oettinger, E. Defer, J. Konarski, P. Laroche, and F. Dombai,2008. Detection of in-cloud lightning with VLF/LF and VHF networks for studies of the initial discharge phase, Geophys. Res. Lett.,35, L23802, doi:10.1029/2008GL035820.
    Christian, H. J., R. J. Blakeslee, D. J. Bocippio, W. L. Boeck, D. E. Buechler, K. T. Driscoll, S. J. Goodman, J. M. Hall, W. J. Koshak, D. A. Mach, and M. F. Stewart, 1999. Global frequency and distribution of lightning as observed by the Optical Transient Detector OTD. In 11th International Conference on Atmospheric Electricity, June 7-11, Guntersville, Alabama, pp.726-729.
    Cummer, S. A,Inan U. S.,1997. Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics. Geophys. Res. Lett..24:1731-1734.
    Cummins, K. L., Murphy, M. J., Bardo, E. A., Hiscox, W. L., Pyle, R., and Pifer, A. E., 1998. Combined TOA/MDF technology upgrade of U. S. National Lightning Detection Network, J. Geophys. Res.,103,9035-9044.
    Cummins, K. L. and Murphy, M. J.,2009. An overview of lightning location systems: History, techniques, and data uses, with an in-depth look at the U. S. NLDN, IEEE Trans. Electromagnetic Compatibility,51,499-518.
    Dwyer, J. R., and D. M. Smith,2005. A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations, Geophys. Res. Lett.,32, L22804, doi:10.1029/2005GL023848.
    Franz R C, Nemzek R J, Winckler J R,1990. Television image of a large upward electrical discharge above a thunderstorm system. Science,249:48251.
    Fierro, A. O., X.-M. Shao, et al.,2010. Evolution of eyewall convective events as indicated by intra-cloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina, Mon Weather Rev, doi: 10.1175/2010MWR3532.1.
    Fu Yunfei, Zhang Aimin,Liu Yong, Zheng Yuanyuan, Hu Yunfang, Feng Sha,Cao Aiqin,2008. Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM Precipitation Radar. Acta Meteorologica Sinica,66 (5):730-746
    Goodman, S. J.,1991. Sensor fusion technique for predicting thunderstorm evolution using lightning and radar networks. In 25th International Conference on Radar Meteorology, Paris-France, pp.97-102.
    Gurevich, A. V, K. P. Zybin, and R. A. Roussel-Dupre',1999. Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers, Phys Lett, A, 254,79-87.
    Gurevich, A. V., Y. V. Medvedev, and K. P. Zybin,2004. New type discharge generated in thunderclouds by joint action of runaway breakdown and extensive atmospheric shower, Phys. Lett. A,329,348-361.
    Gurevich, A.V., Zybin, K.P.,2004 High energy cosmic ray particles and the most powerful discharges in thunderstorm atmosphere. Physics Letters A,329,341-347.
    Gurevich A.V., G.G. Mitko, V.P. Antonova et al.,2009. An intracloud discharge caused by extensive atmospheric shower, Physics Letters A,373,3550-3553.
    Gurevich, A.V., Zybin, K.P.,2005. Runaway breakdown and the mysteries of lightning. Physics Today May,37-43.
    Hamlin T., T. E. Light, X. M. Shao, K. B. Eack, and J. D. Harlin,2007. Estimating lightning channel characteristics of positive narrow bipolar events using intrachannel current reflection signatures, J. Geophys. Res.,112, D14108, doi:10.1029/2007 JD008471.
    Han F and Cummer S A.,2010. Midlatitude daytime D region ionosphere variations measured from radio atmospherics. J Geophys Res,115, A10314, doi:10.1029/2010JA015715.
    Han F and Cummer S A.,2010. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J Geophys Res,115, A09323, doi:10.1029/2010JA015437.
    Holden, D. N., Munson, C. P., and Devenport, J. C.,1995. Satellite observations of transionospheric pulse pairs, Geophys. Res. Lett.,22,889-892.
    Holden, D. N., D. A. Smith, X. M. Shao, R. S. Massey, C. T. Rhodes, J. R. Lopez, 1996. Ground-based investigations into the sources of TIPP events, Eos, Trans., Amer. Geophys. Union,77, F89.
    Holler H, Betz H D, Schmidt K, et al,2009. Lightning characteristics observed by a VLF/LF lightning detection network (LINET) in Brazil, Australia, Africa and Germany. Atmos Chem Phys,9:7795-7824, doi:10.5194/acp-9-7795-2009.
    Jacobson, A. R.,2003a. Relationship of intracloud-lightning radiofrequency power to lightning-storm height, as observed by the FORTE satellite, J. Geophys. Res.,108, 4204, doi:1029/2002JD002956.
    Jacobson, A. R.,2003b. How do the strongest radio pulses from thunderstorms relate to lightning flashes? J. Geophys. Res.,108,4778, doi:4710.1029/2003JD003936.
    Jacobson, A. R. and Light, T. E. L.,2003. Bimodal radiofrequency pulse distribution of intracloud-lightning signals recorded by the FORTE satellite, J. Geophys. Res., 108,4266, doi:4210.1029/2002JD002613.
    Jacobson, A. R. and Shao, X.-M.,2001. Using geomagnetic birefringence to locate sources of impulsive, terrestrial VHF signals detected by satellites on orbit, Radio Sci.,36,671-680.
    Jacobson, A. R. and Shao, X.-M.,2002a. On-orbit direction finding of lightning radio frequency emissions recorded by the FORTE satellite,37,4, doi:10.1029/2001RS002510.
    Jacobson, A. R. and Shao, X.-M.,2002b. FORTE satellite observations of very narrow radiofrequency pulses associated with the initiation of negative cloud-to-ground lightning strokes, J. Geophys. Res.,107,4661, doi:4610.1029/2001JD001542.
    Jacobson, A. R., Knox, S. O., Franz, R., and Enemark, D. C.,1999. FORTE observations of lightning radio-frequency signatures:Capabilities and basic results, Radio Sci.,34,337-354.
    Jacobson, A. R., Cummins, K. L., Carter, M., Klingner, P., Roussel-Dupr'e, D., and Knox, S. O.,2000. FORTE radio-frequency observations of lightning strokes detected by the National Lightning Detection Network, J. Geophys. Res.,105, 15653-15662.
    Jacobson A R and Heavner M J.,2005. Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection. Mon Weather Rev,133: 1144-1154.
    Jacobson A R, Boeck W and Jeffery C.,2007. Comparison of Narrow Bipolar Events with ordinary lightning as proxies for the microwave-radiometry ice-scattering signature. Mon Weather Rev,135:1354-1363.
    Jacobson, A. R., and T. E. L. Light,2012. Revisiting "Narrow Bipolar Event" intracloud lightning using the FORTE satellite, Ann. Geophys.,30,389-404, doi:10.5194/angeo-30-389-2012.
    Kummerow, C.,W. Barnes, T. Kozu, J. Shiue, and J. Simpson,1998. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol. 15,809-817.
    Lapp J L and Saylor J R.,2007. Correlation between lightning types. Geophys Res Lett,34, L11804, doi:10.1029/2007GL029476.
    Le Vine, D. M.,1980. Sources of the strongest rf radiation from lightning, J. Geophys. Res.,85,4091-4095.
    Light, T. E., Suszcynsky, D. M., and Jacobson, A. R.,2001. Coincident Radio Frequency and Optical Emissions from Lightning, Observed with the FORTE Satellite, J. Geophys. Res.,106,28223-28231.
    Light, T. E. L. and Jacobson, A. R.,2002. Characteristics of impulsive VHF lightning observed by the FORTE satellite, J. Geophys. Res.,107,4756, doi:1029/2001/JD001585.
    Liu H, Dong W, Wu T, et al.,2012. Observation of compact intracloud discharges using VHF broadband interferometers. J Geophys Res,117, D01203, doi:10.1029/2011JD016185.
    Lu Weitao, Zhang Yijun, Li Jun, Zheng Dong, Dong Wansheng, Chen Shaodong, Wang Fei,2008. Optical Observations on Propagation Characteristics of Leaders in Cloud-to-Ground Lightning Flashes. ACTA METEOROLOGICA SINICA,22(1), 66-77.
    Massey, R. S. and Holden, D. N.,1995. Phenomenology of transionospheric pulse pairs, Radio Sci.,30,1645-1659.
    Massey, R. S., Holden, D. N., and Shao, X.-M.,1998a. Phenomenology of trans-ionospheric pulse pairs:Further observations, Radio Sci.,33,1755-1761.
    Massey, R. S., Knox, S. O., Franz, R. C., Holden, D. N., and Rhodes, C. T.,1998b Measurements of transionospheric radio propagation parameters using the FORTE satellite, Radio Sci.,33,1739-1753.
    Medelius, P. J., E. M. Thomson, and J. S. Pierce,1991. E and DE/DT waveshapes for narrow bipolar pulses in intracloud lightning, Proc. of the 1991 International Aerospace and Ground Conference on Lightning and Static Electricity,12-1 to 12-10, Cocoa Beach, Fla.
    Nag A, Rakov V A, Tsalikis D, et al.,2010. On phenomenology of compact intracloud lightning discharges. J Geophys Res,115, D14115, doi:10.1029/2009JD012957.
    Nag, A., and V. A. Rakov.,2010. Compact intracloud lightning discharges:1. Mechanism of electromagnetic radiation and modeling. J Geophys Res,115, D20102, doi:10.1029/2010JD014235.
    Nag, A., and V. A. Rakov,2010. Compact intracloud lightning discharges:2. Estimation of electrical parameters, J. Geophys. Res.,115, D20103, doi:10.1029/2010JD014237.
    Nesbitt, S., R. Zhang, and R. Orville,2000. Seasonal and global NOx production estimated from the Optical Transient Detector (OTD). Tellus 52B,1206-1215.
    Nesbitt, S. W., E. J. Zipser, and D. J. Cecil,2000. A census of precipitation features in the tropics using TRMM:Radar, ice scattering, and lightning observations, J. Clim., 13,4087-4106.
    Orville, R. E. and G. R. Huffines,1999. Lightning ground flash measurements over the contigous United States. Mon. Weather Rev.127.
    Pasko V P.,2003. Electric jets [J]. Nature,423:9272929
    Petersen, W. and S. Rutledge,1998. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res.103,14025-14040.
    Petersen, W. A., H. J. Christian, and S. A. Rutledge,2005. TRMM observations of the global relationship between ice water content and lightning, Geophys. Res. Lett.,32, L14819,doi:10.1029/2005GL023236.
    Priedhorsky, W. C., J. Bloch, D. Holden, D. Roussel-Dupre, B. Smith, R. Dingler, R. Warner, G. Huffman, R. Miller, B. Dill, and R. Fleeter.,1993. The ALEXIS small satellite project:initial flight results, Proc. SPIE, EUV, X-Ray and Gamma-Ray Instrumentation for Astronomy IV,114-127.
    Price, C., J. Penner, and M. Prather,1997. NOx from lightning,1. Global distribution based on lightning physics. J. Geophys. Res.102(D5),5929-5941.
    Price, C.,2008. Thunderstorm, Lightning and Climate Change,29th, International Conference on Lightning Protection,23rd-26th, June,2008-Uppsala, Sweden.
    Rakov V and Uman M,2003. Lightning:physics and effects. Cambridge, U.K.; New York:Cambridge University Press.
    Rakov V A and Rachidi F.,2009. Overview of Recent Progress in Lightning Research and Lightning Protection. IEEE Trans Electromagn Compat,51(3):428-442.
    Richard, P., A. Delannoy, G. Labaune, and P. Laroche,1986. Results of spatial and temporal characterization of the VHF-UHF radiation of lightning, J. Geophys. Res., Vol.91 (D1),1248-1260.
    Richard, P.,1991. Operational Applications of the SAFIR System. International Aerospace and Ground Conference on Lightning and Static Electricity, KSC Florida, April 16-19.
    Rison W, Thomas R J, Krehbiel P R, et al.,1999. A GPS-based three-dimensional lightning mapping system:Initial observations in central New Mexico. Geophys Res Lett,26(23):3573-3576.
    Rodger, C. J.,1999. Red sprites, upward lightning, and VLF perturbations, Rev. Geophys.,37,317-336.
    Roussel-Dupre, R. and A. V. Gurevich,1996. On runaway breakdown and upward propagating discharges, J. Geophys. Res.,101,2297-2311.
    Roussel-Dupre, R. A., Gurevich, A. V., Tunnell, T., and Milikh, G. M.,1994. Kinetic theory of runaway air breakdown, Phys. Rev. E,49,2257-2271.
    Roussel-Dupre, D., J. Bloch, C. Little, R. Dingier, B. Dunne, S. Fletcher, M. Kennison, K. Ramsey, R. King, J. Theiler, J. Sutton, and J. Wren.,1997. ALEXIS, the little satellite that could-4 years later,11th Annual AIAA/USU Conference on Small Satellites, IV-3, Utah State University, Logan, Utah.
    Shao, X. M., D. A. Smith, C. T. Rhodes, D. N. Holden, R. S. Massey, J. Lopez, M. Brook, P. R. Krehbiel, M. Stanley, R. Thomas.,1996. Observations of largeamplitude bipolar electric field change pulses:possible sources for TIPP events, Eos, Trans., Amer. Geophys. Union,77, F87.
    Shao, X.-M. and Jacobson, A. R.,2001. Polarization observations of broadband VHF signals by the FORTE satellite, Radio Sci.,36,1573-1589.
    Shao, X.-M., and Jacobson, A. R.,2002. Polarization observations of lightning-produced VHF emissions by the FORTE satellite, J. Geophys. Res.,107, 4430, doi:10.1029/2001JD001018.
    Shao, X, M,, and P. R. Krehbiel,1996. The spatial and temporal development of intracloud lightning, J. Geophys. Res., Vol.101, No. D21, pp.26641-26668.
    Shao X M, Stanley M, Regan A, et al.,2006. Total lightning observations with the new and improved Los Alamos Sferic Array (LASA). J Atmos Ocean Technol,23: 1273-1288.
    Sharma S R, Fernando M, Vernon Cooray.,2008. Narrow positive bipolar radiation from lightning observed in Sri Lanka. J Atmos Sol-Terr Phys,70:1251-1260, dio:10.1016/j.jastp.2008.03.002.
    Smith, D. A.,1995. A multiple-channel sub-band transient detection system, M.S. Thesis, Dept. of Elec. Eng., Univ. of Colo., Boulder, Colo..
    Smith, D. A. and D. N. Holden,1996. Ground-based observations of subionospheric pulse pairs, Radio Sci.,31,553-571.
    Smith, D. A., Shao, X. M., Holden, D. N., Rhodes, C. T., Brook, M., Krehbiel, P. R., Stanley, M., Rison,W., and Thomas, R. J.,1999a. A distinct class of isolated intracloud lightning discharges and their associated radio emissions, J. Geophys. Res.,104,4189-4212.
    Smith, D. A., R. S. Massey, K. C. Wiens, K. B. Eack, X. M. Shao, D. N. Holden, and P. E. Argo,1999b. Observations and inferred physical characteristics of compact intracloud discharges, in Proceedings of the 11th International Conference on Atmospheric Electricity, edited by H. Christian, NASA Conf. Publ.,209261,6-9.
    Smith, D. A., Eack, K. B., Harlin, J., Heavner, M. J., Jacobson, A. R., Massey, R. S., Shao, X. M., and Wiens, K. C.,2002. The Los Alamos Sferic Array:A research tool for lightning investigations,107, D13, doi:10.1029/2001JD000502.
    Smith D A, Heavner M J, Jacobson A R, et al.,2004. A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records. Radio Sci,39, RS1010, doi:10.1029/2002RS002790.
    Stanley, M. A., X.-M. Shao, D. M. Smith, L. I. Lopez, M. B. Pongratz, J. D. Harlin, M. Stock, and A. Regan,2006. A link between terrestrial gamma-ray flashes and intracloud lightning discharges, Geophys. Res. Lett.,33, L06803, doi:10.1029/2005GL025537.
    Suszcynsky D M and Heavner M J.,2003. Narrow Bipolar Events as indicators of thunderstorm convective strength. Geophys Res Lett.,30 (17),1879, doi:10.1029/2003GL017834.
    Suszcynsky, D. M., Kirkland, M. W., Jacobson, A. R., Franz, R. C., Knox, S. O., Guillen, J. L. L., and Green, J. L.,2000. FORTE observations of simultaneous VHF and optical emissions from lightning:Basic Phenomenology, J. Geophys. Res.,105, 2191-2201.
    Suszcynsky D M, Davis S, Jacobson A, et al.,2001. VHF Global Lightning and Severe Storm Monitoring from Space:Storm-level Characterization of VHF Lightning Emissions. EOS Trans. AGU 2001 Fall Meeting Prog, And Abstr 82, No. 47,F143.
    Suszcynsky, D. M., A. R. Jacobson, J. Linford, T. E. Light, and A. Musfeldt,2005. VHF lightning detection and storm tracking from GPS orbit, in Annual Mtg., p. Abstract P2.5, Amer. Meterol. Soc.
    Tessendorf, S.A., S.A. Rutledge, K.C.. Wiens,2007 Radar and lightning observations of normal and inverted polarity multicellular storms from STEPS Mon. Wea. Rev., 135,pp.3682-3706
    Thomas R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin,2004. Accuracy of the Lightning Mapping Array, J. Geophys. Res., Vol.109, D14207.
    Uman, M. A.,1984. Electric and magnetic field measurements, in Lightning,47-113, Dover Publications, Inc., New York.
    Ushio, T., S. J. Heckman, D. J. Boccippio, H. J. Christian, and Z. I. Kawasaki,2001. A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data, J. Geophys. Res.,106,24,089-24,095.
    Wang, Y., G. Zhang, X. Qie, D. Wang, T. Zhang, Y. Zhao, Y. Li, and T. Zhang,2012. Characteristics of compact intracloud discharges observed in a severe thunderstorm in northern part of China, J. Atmos. Sol. Terr. Phys.,84-85,7-14.
    Watson, S. S. and Marshall, T. C.,2007. Current propagation model for a narrow bipolar pulse, Geophys. Res. Lett.,34, L04816, doi:10.1029/2006GL027426.
    Wescott, E. M., D. D. Sentman, D. Osborn, D. L. Hampton, and M. Heavner,1995. Preliminary results from the Sprites94 aircraft campaign:Blue Jets. Geophys. Res. Lett.,22,1209-1212.
    Wiens K C, Hamlin T, Harlin J, et al.,2008. Relationships among Narrow Bipolar Events, "total" lightning, and radar-inferred convective strength in Great Plains thunderstorms. J Geophys Res,113, D05201, doi:10.1029/2007JD009400.
    Willett, J. C., Bailey, J. C., and Krider, E. P.,1989. A class of unusual lightning electric field waveforms with very strong highfrequency radiation, J. Geophys. Res., 94,16255-16267.
    Williams, E. R.,1985. Large-scale charge separation in thunderclouds, J. Geophys. Res.,90,6013-6025.
    Wu T, Dong W, Zhang Y, et al.,2011. Comparison of positive and negative compact intracloud discharges. J Geophys Res,116, D03111, doi:10.1029/2010JD015233.
    Wu T, Dong W, Zhang Y, et al.,2012. Discharge height of lightning narrow bipolar events. J Geophys Res, doi:10.1029/2011JD017054.
    Zhu B, Zhou H, Ma M, et al.,2010. Observations of narrow bipolar events in East China. J Atmos Sol-Terr Phys,72:271-278.
    Zhu B, Zhou H, Ma M, F. Lv, S. Tao,2010. Estimation of channel characteristics of narrow bipolar events based on the transmission-line model. J Geophys Res,115, D19105, doi:10.1029/2009JD012021.
    董万胜,2000,闪电宽带干涉仪系统及其观测研究.兰州:博士学位论文.
    董万胜,刘欣生,张义军,2001,一次人工触发闪电的宽带干涉仪观测.科学通报(5):427-432.
    董万胜,刘欣生,张义军,等,2002.利用闪电宽带干涉仪系统对地闪先导-回击过程的观测研究.中国科学D辑:地球科学,32(1):81--88
    刘恒毅,董万胜,王涛,邱实,2009.闪电电场变化波形时域特征分析及放电类型识别,气象,35(3),49-59
    刘恒毅,2012,闪电云内放电过程的宽带干涉仪观测研究,博士学位论文.
    郄秀书,张义军,张其林,2005.闪电放电特征和雷暴电荷结构研究.气象学报,63(5):646-658
    郄秀书,吕达仁,陈洪滨,等,2008.大气探测高技术及应用研究进展,大气科学,32(4):867-881.
    郄秀书,吕达仁,卞建春,杨静,2009.中高层大气瞬态发光事件(TLEs)及可能的影响,地球科学进展,24(3),1001-8166(2009)03-0286-11.
    王东方,宣越健,刘继明,等.,2011.大兴安岭林区地闪放电特征的观测与分析[J].大气科学,35(1):147-156.
    王彦辉,张广庶,郄秀书,等.,2008.雷暴中的特殊放电现象—双极性窄脉冲(NBE)观测研究,第七届中国国际防雷论坛论文摘编.
    吴亭,董万胜,刘恒毅.,2011.双极性窄脉冲电场波形特征[J].高原气象,30(3):823-830.
    吴亭,2011,雷暴中的特殊放电现象---袖珍云闪(CID)的特征分析,硕士学位论文.
    张广庶,赵玉祥,郄秀书,等,2008.利用无线电窄带干涉仪定位系统对地闪全过程的观测与研究.中国科学D辑:地球科学,38:1167-1180
    张广庶,王彦辉,郄秀书,等.,2010.基于时差法三位定位系统对闪电放电过程的观测研究.中国科学,地球科学,40(4),523-534, DOI:1674-7240, CN: 11-5842/P.
    张义军,孟青,马明,董万胜,吕伟涛,2006.闪电探测技术发展和资料应用,应用气象学报,17(5),611-620
    祝宝友,陶善昌,刘亦风,2002.合肥地区地闪特征.高原气象,21(3):296-302.
    祝宝友,陶善昌,谭涌波,2006.雷暴云顶之上的大气放电研究进展.高原气象,25(3):549-555
    祝宝友,陶善昌,谭涌波.2007.伴随超强VHF辐射的闪电双极性窄脉冲初步观测.气象学报,665:124--130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700