抗自由基中药对小鼠脑片及PC12细胞脑缺血损伤模型的保护作用及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑卒中是导致全球人类致死致残的主要病因之一,缺血性脑卒中是卒中的最常见类型,占80%-85%。脑缺血再灌注损伤是缺血性脑卒中损伤的主要原因,而自由基的过度形成是造成脑缺血再灌注损伤的重要因素。过量自由基的产生主要是由于在脑缺血时氧化应激反应中的关键酶如环氧合酶、脂氧合酶、NADPH氧化酶等的激活使氧化-抗氧化系统失衡。因此抗自由基药物或抑制氧化应激反应中的关键酶如环氧合酶等以减轻脑缺血再灌注损伤成为近年来研究重点。抗自由基药物依达拉奉现已作为抗脑缺血药物在日本与中国上市,若能筛选到同时具有抑制氧化应激反应中的关键酶如环氧合酶、NADPH氧化酶、一氧化氮合酶、基质金属蛋白酶等作用又有抗自由基作用的多靶点作用的药物,有望成为一种更有效的抗脑缺血药物,而抗自由基中药,更可能具有多靶点作用机制,是我们筛选的主要目标。
     本课题在细胞和脑片水平上建立高效、稳定的抗脑缺血药物筛选模型,首先通过评价环氧合酶抑制剂在这些模型中的作用,完善药物筛选模型;然后选择一些文献报道有神经保护作用的抗自由基中药,并在我们建立的模型中筛选出对脑缺血再灌注损伤保护作用较强的中药,进行下一步的深入研究,考察其主要作用机制,是否具有多靶点作用机制,分析其在临床的应用前景。本论文主要研究内容为:
     1.在细胞、脑片模型上评价环氧合酶抑制剂塞来昔布、依托考昔及吲哚美辛对脑缺血再灌注损伤的保护作用。
     2.在细胞、脑片模型上筛选抗自由基中药,如:人参皂苷Rgl、丹皮酚、槲皮素、黄芪甲苷、白黎芦醇、绿原酸、黄芩昔、穿心莲内酯、羟基红花黄色素A和黄连解毒汤对脑缺血再灌注损伤的保护作用。
     3.在上述药物中选择一个在细胞、脑片模型中对损伤保护作用较明显的中药有效成分,探讨其对脑缺血再灌注损伤保护作用的机制,分析其临床应用前景。
     第一部分OGD/RP诱导的小鼠离体脑片及PC12细胞损伤模型的建立与完善
     目的在离体水平上,建立与完善缺氧缺糖再灌注(OGD/RP)诱导的脑片及PC12细胞损伤模型,并在这两种模型上考察COX抑制剂对损伤的保护作用及机制。
     方法以小鼠离体脑片建立OGD/RP模型,TTC染色检测小鼠离体脑片的活性;同时以大鼠肾上腺嗜铬细胞瘤细胞株(PC12细胞)OGD/RP损伤模型模拟脑缺血损伤,采用光镜观察细胞形态学变化,MTT法检测细胞存活率,乳酸脱氢酶(LDH)法检测细胞死亡率,免疫细胞化学方法检测环氧合酶-2(COX-2)的表达。
     结果在离体小鼠脑片上,COX-2选择性抑制剂塞来昔布(Cel)及依托考昔(Eto)能减少OGD/RP引起的损伤面积,增加吸光度;而COX非选择性抑制剂吲哚美辛(Ind)未见显著性差异。在PC12细胞OGD/RP模型上,Cel、Eto及Ind均能增加OGD/RP损伤后PC12细胞存活率。其中,Eto在10-160μmol/L能显著性增加OGD/RP诱导后PC12细胞的存活率,并降低LDH释放,减少PC12细胞死亡率。同时免疫组织化学检测显示Eto能抑制OGD/RP诱导的COX-2蛋白的表达。
     结论本实验建立的OGD/RP诱导的小鼠离体脑片及PC12细胞损伤模型可试用于抗脑缺血药物的筛选;COX-2选择性抑制剂对脑缺血损伤具有保护作用,其中新型一代的Eto在离体小鼠脑片及PC12细胞OGD/RP模型上均有显著性的神经保护作用,其机制可能与抑制COX-2蛋白的诱导表达有关。
     第二部分抗自由基中药对OGD/RP诱导的小鼠脑片及PC12细胞损伤的保护作用
     目的在离体水平上,筛选抗自由基中药对缺氧缺糖再灌注(OGD/RP)诱导的脑片及PC12细胞缺氧缺糖再灌注(OGD/RP)损伤的保护作用。
     方法以小鼠离体脑片建立OGD/RP模型,TTC染色检测小鼠离体脑片的活性;同时以大鼠肾上腺嗜铬细胞瘤细胞株PC12细胞OGD/RP诱导细胞损伤模拟脑缺血损伤模型,MTT法检测细胞存活率。以这几个指标为标准,在细胞和脑片两种损伤模型上考察文献报道有神经保护作用的抗自由基中药,如:人参皂苷Rgl、丹皮酚、槲皮素、黄芪甲苷、白黎芦醇、绿原酸、黄芩苷、穿心莲内酯、羟基红花黄色素A和黄连解毒汤等对损伤保护作用的差别。
     结果在离体小鼠脑片上,黄芪甲苷(1μmol/L)、白黎芦醇(1.10μmol/L)、绿原酸(100μmol/L)、黄芩苷(10,100μmol/L)、羟基红花黄色素A (1,10,100μmol/L和FE50(1μmol/L)均能减少OGD/RP引起的损伤面积,增加吸光度;而人参皂苷Rgl、丹皮酚、槲皮素、穿心莲内酯和FE30未见显著性差异。在PC12细胞OGD/RP模型上,人参皂苷Rgl (1μmol/L)、白黎芦醇(10μmol/L)、黄芩苷(0.1,1,10μmol/L)、穿心莲内酯(1μmol/L)、羟基红花黄色素A (0.01,0.1,1,10μmol/L).FE30(1,10μmol/L)和FE50(1,10μmol/L)均能显著性增加OGD/RP诱导后PC12细胞的存活率,减少PC12细胞死亡率;黄芪甲苷、丹皮酚、槲皮素、绿原酸未见显著性差异。
     结论黄芩苷和羟基红花黄色素A对两种模型的OGD/RP损伤的保护作用均较强,因此我们考虑可进一步在PC12细胞上进行试验考察其作用机制。
     第三部分羟基红花黄色素A对PC12细胞缺氧缺糖再灌注损伤的保护作用及机制研究
     目的探讨羟基红花黄色素A(HSYA)对缺氧缺糖再灌注(OGD/RP)诱导肾上腺嗜铬细胞瘤细胞(PC12细胞)损伤的保护作用及对基质金属蛋白酶-9(MMP-9)表达的影响。
     方法以PC12细胞OGD/RP损伤模拟脑缺血再灌注损伤,MTT法检测PC12细胞的存活率,乳酸脱氢酶(LDH)检测PC12细胞死亡率,Hoechst33342检测PC12细胞凋亡,细胞免疫化学法和免疫印迹法检测PC12细胞经OGD/RP诱导后COX-2表达,细胞免疫化学法检测MMP-9表达。
     结果OGD/RP诱导PC12细胞损伤,与正常对照组相比,OGD4h-R2h组细胞存活率为(75.5士3.7)%,明显降低(P<0.01)。MTT、LDH和Hoechst33342染色结果显示1μmol/L HSYA预处理能增加OGD/RP诱导后PC12细胞存活率(90.8土7.6)%,降低细胞LDH释放率(109.5士7.0)%,同时减少PC12细胞凋亡率(19.7土7.5)%,与模型组(OGD4h-R2h)相比,均具有显著性差异(P<0.01)。COX-2和MMP-9经OGD/RP处理后均能产生诱导表达,而HSYA能抑制MMP-9表达而不抑制COX-2表达。
     结论HSYA在OGD/RP时预先给药对OGD/RP诱导的PC12细胞损伤具有明显保护作用,能减少细胞凋亡,其机制可能是通过抑制MMP-9的诱导表达有关。HSYA作为活血化瘀药预防给药可能减少中风的发生减轻神经损伤。
Stroke is one of the leading causes of mortality and morbidity. Ischaemic stroke accounts for approximately80-85%of all cases and it is characterised by the disruption of cerebral blood flow and lack of oxygen to the affected area. Ischemia/reperfusion injury (IRI) is crucial in the pathology of ischaemic stroke. Oxidative stress has emerged as a key deleterious factor in brain ischemia and reperfusion. Reactive oxygen species are implicated in a number of disease processes. They mediate damage to cell structures, including lipids, membranes, proteins, and DNA. Blood-brain barrier (BBB) leakage and brain edema are critical parts of stroke pathophysiology. Oxidative stress closely relates with the active of matrix metallo proteinase (MMPs), which will damage brain microvascular endothelial cells and their tight junctions to cause BBB dysfunction such as edema, hemorrhage and inflammation.
     Therefore, these findings suggest that antioxidants or inhibition of the pathway of cytoplasmic oxidases, such as cyclooxygenase, may be a possible therapeutic strategy of cerebral ischemia. Anti-ischemia drugs, such as Edaravone, have already been marketed in Japan and China. If we can screen out a drug which not only have the effect of antioxidant but also the inhibition effect of the cytoplasmic oxidases, such as cyclooxygenase, NADPH, NOS, MMPs, those drug may be more effective. We aim at screening out the antioxidant from Traditional Chinese Medicine which may be effective on one or more target pathways of ischemia/reperfusion injury.
     This study aims at establishing the model of brain ischemia in mouse brain slices and PC12cells. These models will be used to investigate the following questions on oxygen-glucose deprivation/reperfusion induced injury and their possible mechanism.
     1. To investigate the protective effects of selective COX-2inhibitors on oxygen-glucose deprivation/reperfusion induced injury and possible mechanism in mouse brain slices and PC12cells.
     2. To investigate the protective effects of antioxidantsts such as Ginsenoside Rgl, Paeonol, Quercetin, Astragaloside, Andrographolide, resveratrol, chlorogenicacid, Baicalin and Huanglian-Jie-Du-Tang on oxygen-glucose deprivation/reperfusion induced injury in mouse brain slices and PC12cells.
     3. To investigate the neuroprotective effects of hydroxysafflor yellow A (HSYA) on oxygen-glucose deprivation/reperfusion induced injury, and and possible mechanism in PC12cells.
     Part1Establishment and improvement of mouse brain slices and injury model of PC12induced by oxygen-glucose deprivation and reperfusion
     Objective To establish the model of brain ischemia in mouse brain slices and PC12cells. To investigate the protective effects of selective COX inhibitors on oxygen-glucose deprivation/reperfusion induced injury and possible mechanism in mouse brain slices and PC12cells.
     Methods In mouse brain slices, the activity after OGD and reperfusion was assessed by the formation of formazn, a red product of2,3,5-trihenylterzolium chloride (TTC). In PC12cells, the cell viability and damage after OGD and reperfusion were assessed by MTT reduction and LDH. The expression of COX-2protein was assessed by immunocytochemisry.
     Results In mouse brain slices, selective COX-2inhibitors (Cel and Eto) significantly attenuated OGD injury while non-selective COX inhibitor Ind had no influence. In PC12cells, Cel and Eto protected the cells from OGD-induced injury at10-160μmol/L. Ind also protected PC12cells at1-10μmol/L. The latest selective COX-2inhibitor Eto increased cell viability and attenuated LDH release obviously in OGD-induced PC12cells. Expression of COX-2protein on OGD PC12cells was also inhibited by the treatment of Eto.
     Conclusion The model of oxygen-glucose deprivation/reperfusion induced injury in mouse brain slices and PC12can be used to screen out anti-ischemia drug effectively. Selective COX-2inhibitors, especially the latest selective COX-2inhibitor Eto, have concentration-dependent protective effect on OGD injury in vitro. The possible mechanism may be mediated by the inhibition of COX-2protein expression.
     Part2Protective effect of free radical scavenger from Traditional Chinese Medicine on oxygen-glucose deprivation induced injury in mouse brain slices and PC12cells
     Objective To investigate the protective effects of antioxidants from traditional chinese medicine on oxygen-glucose deprivation induced injury in mouse brain slices and PC12cells.
     Methods In mouse brain slices, the activity after OGD was assessed by the formation of formazn, a red product of2,3,5-trihenylterzolium chloride (TTC). In PC12cells, the cell viability and damage after OGD were assessed by MTT reduction.
     Results In mouse brain slices, antioxidants (Astragaloside, resveratrol, chlorogenic acid, Baicalin and safflor yellow A) significantly attenuated OGD injury whereas antioxidants (Ginsenoside Rgl, Paeonol, Quercetin and Andrographolide) had no influence. In PC12cells, Ginsenoside Rgl and Andrographolide protected the cells from OGD-induced cell injury at1μmol/L. Baicalin and safflor yellow A protected PC12cells at0.1-10μmol/L. Resveratrol also protected PC12cells at10μmol/L. Antioxidants (Astragaloside, Paeonol, quercetin and chlorogenic acid) had no influence.
     Conclusion Antioxidants (Baicalin and hydroxy safflor yellow A) significantly attenuated OGD induced injury both in mouse brain slices and PC12cells.
     Part3Protective effect of hydroxy safflor yellow A on oxygen-glucose deprivation and reperfusion induced injury and its mechanism
     Objective To investigate the neuroprotective effects of hydroxyl safflor yellow A (HSYA) on oxygen-glucose deprivation and reperfusion induced injury, and its effect on the expression of cyclooxygenase and metrix metalloproteinase-9(MMP-9) in PC12cells.
     Methods The PC12cells were exposed to oxygen-glucose deprivation (OGD), and reperfusioned for different times. The PC12cell viability and lactate dehydrogenase (LDH) release were seperately detected by MTT assays and LDH detecting kits. The apoptotic cells were double stained by propidumiodid (PI) and Hoechst33342. The expression of COX-2was detected by immunocytochemistry and western blot. The expression of MMP-9was detected by immunocytochemistry.
     Results Compared to the control group, in OGD4h-R2h group, cell viability significantly decreased to (75.5±3.7)%(P<0.01). HSYA increased cell viability (90.8±7.6)%and reduced releasing of LDH to (109.5±7.0)%(P<0.01) at the concentration of10μmol/L.The result of PI and Hoechst33342showed that HSYA also markedly inhibited the apoptosis of PC12cell induced by OGD/RP, which decreased to (19.7±7.5)%in HSYA1μmol/L group (P<0.01). Meanwhile, the expression of active MMP-9induced by OGD/RP decreased after the treatment of HSYA, similar to positive control, while the expression of active COX-2induced by OGD/RP was not affected.
     Conclusion It is proved that HSYA protects the injury and inhibits the apoptosis induced by OGD/RP in PC12cells, and the mechanism may be related to the inhibition of active MMP-9expression.
引文
[1]Farooqui, A. A., Ong, W.Y., Horrocks, L.A., et al. Inhibitors of brain phospholipase A2 activity:their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev,2006,58(3):591-620.
    [2]Akaneya, Y., Tsumoto, T.. Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex. Neurosci,2006,26(40):10209-10221.
    [3]Institoris A, Farkas E, Berczi S, et al. Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol,2007,574(1):29-38.
    [4]Ellis, E.F., Wright, K.F., Wei, E.P., et al. Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. Neurochem, 1981,37(4):892-896.
    [5]Davies, N.M., Good, R.L., Roupe, K.A., et al. Cyclooxygenase-3:axiom, dogma, anomaly, enigma or splice error?--Not as easy as 1,2,3. Pharm Pharm Sci,2004,7(2):217-226.
    [6]Andreasson, K.I., Savonenko, A., Vidensky, S., et al. Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. Neurosci,2001,21(20):8198-8209.
    [7]Tomimoto, H., Shibata, M., Ihara, M.. A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol (Berl),2002,104(6):601-607.
    [8]McCullough, L., Wu, L., Haughey, N., et al. Neuroprotective function of the PGE2 and EP2 receptor in cerebral ischemia. Neurosci,2004,24(1):257-268.
    [9]Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases:structural, cellular, and molecular biology. Annu Rev Biochem,2000,69:145-182.
    [10]Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes:the biology of prostaglandin synthesis and inhibition. Pharmacol Rev,2004,56(3):387-437.
    [11]Nogawa S, Zhang F, Ross ME, et al. Cyclooxygenase-2 gene expression in neurons contributes to ischemic brain damage. Neurosci,1997,17(8):2746-2755.
    [12]Tian J, Kim SF, Hester L, et al. S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci USA,2008,105(30):10537-10540.
    [13]Konsman JP, Vigues S, Mackerlova L, et al. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity:relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. Comp Neurol,2004, 472(1):113-129.
    [14]Institoris A, Farkas E, Berczi S, et al. Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol,2007,574(1):29-38.
    [15]Chu K, Jeong SW, Jung KH, et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. Cereb Blood Flow Metab,2004,24(8):926-933.
    [16]Candelario JE, Gonzalez FA, Garcia CM, et al. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. Neurochem,2007, 100(4):1108-1120.
    [17]Cernak, I., O'Connor, C., Vink, R.. Inhibition of cyclooxygenase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp Brain Res,2002,147(2):193-199.
    [18]Dash, P.K., Mach, S.A., Moore, A.N.. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. Neurotrauma,2000,17(1):69-81.
    [19]Gobbo, O.L., O'Mara, S.M.. Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience,2004,125(2):317-327.
    [1]Claria, J., Romano, M.. Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways impact on inflammation and cancer. Curr Pharm Des,2005, 11(26):3431-3447.
    [2]Farooqui, A.A., Horrocks, L.A., Farooqui, T.. Deacylation and reacylation of neural membrane glycerophospholipids. Mol Neurosci,2000,14(3):123-135.
    [3]Lee, H., Villacreses, N.E., Rapoport, S.I., et al. In vivo imaging detects a transient increase in brain arachidonic acid metabolism:a potential marker of neuroinflammation. Neurochem,2004,91(4):936-945.
    [4]Zeldin, D.C.. Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem,2001, 276(39):36059-36062.
    [5]Bazan, N.G., Colangelo, V., Lukiw, W.J.. Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat,2002,68-69:197-210.
    [6]Farooqui, A.A., Ong, W.Y., Horrocks, L.A.. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev,2006,58(3):591-620.
    [7]Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases:structural, cellular, and molecular biology. Annu Rev Biochem,2000,69:145-182.
    [8]Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes:the biology of prostaglandin synthesis and inhibition. Pharmacol Rev,2004,56(3):387-437.
    [9]N,ogawa S, Zhang F, Ross ME, et al. Cyclooxygenase-2 gene expression in neurons contributes to ischemic brain damage. Neurosci,1997,17(8):2746-2755.
    [10]Tian J, Kim SF, Hester L, et al. S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity. Proc Natl Acad Sci USA,2008,105(30):10537-10540.
    [11]Konsman JP, Vigues S, Mackerlova L, et al. Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity:relationship to patterns of inducible cyclooxygenase expression by peripheral inflammatory stimuli. Comp Neurol,2004, 472(1):113-129.
    [12]Ge, Q.F., Wei, E.Q., Zhang, W.P., et al. Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons. Neurochem,2006, 97(4):992-1004.
    [13]Sastry, P.S., Rao, K.S.. Apoptosis and the nervous system. Neurochem,2000,74(1):1-20.
    [14]Roberts, L.J., Fessel, J.P., Davies, S.S.. The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation. Brain Pathol,2005, 15(2):143-148.
    [15]Wang, T., Pei, Z., Zhang, W., et al. MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. Faseb J,2005,19(9):1134-1136.
    [16]Manev, H., Uz, T., Qu, T.. Early upregulation of hippocampal 5-lipoxygenase following systemic administration of kainate to rats. Restor Neurol Neurosci,1998,12(2-3):81-85.
    [17]Pepicelli, O., Fedele, E., Berardi, M., et al. Cyclo-oxygenase-1 and -2 differently contribute to prostaglandin E2 synthesis and lipid peroxidation after in vivo activation of N-methyl-D-aspartate receptors in rat hippocampus. Neurochem,2005,93(6):1561-1567.
    [18]Takadera, T., Yumoto, H., Tozuka, Y, et al. Prostaglandin E(2) induces caspase-dependent apoptosis in rat cortical cells. Neurosci Lett,2002,317(2):61-64.
    [19]Kunz, T., Marklund, N., Hillered, L., et al. Cyclooxygenase-2, prostaglandin synthases and prostaglandin H2 metabolism in traumatic brain injury in the rat. Neurotrauma,2002, 19(9):1051-1064.
    [20]Schwab, J.M., Seid, K., Schluesener, H.J.. Traumatic brain injury induces prolonged accumulation of cyclooxygenase-1 expressing microglia/brain macrophages in rats. Neurotrauma,2001,18(9):881-890.
    [21]Schwab, J.M., Beschorner, R., Meyermann, R., et al. Persistent accumulation of cyclooxygenase-1-expressing microglial cells and macrophages and transient upregulation by endothelium in human brain injury. Neurosurg,2002,96(5):892-899.
    [22]Adachi, K., Yimin, Y, Satake, K., et al. Localization of cyclooxygenase-2 induced following traumatic spinal cord injury. Neurosci Res,2005,51(1):73-80.
    [23]Nogawa, S., Zhang, F., Ross, M.E., et al. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. Neurosci,1997,17(8):2746-2755.
    [24]Yokota, C., Kaji, T., Kuge, Y, et al. Temporal and topographic profiles of cyclooxygenase-2 expression during 24 h of focal brain ishemia in rats. Neurosci Lett,2004, 357(3):219-222.
    [25]Tomimoto, H., Shibata, M., Ihara, M., et al. A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol (Berl),2002,104(6):601-607.
    [26]Buccellati, C., Folco, G.C., Sala, A., et al. Inhibition of prostanoid synthesis protects against neuronal damage induced by focal ischemia in rat brain. Neurosci Lett,1998, 257(3):123-126.
    [27]Miyamoto, O., Tamae, K., Kasai, H., et al. Suppression of hyperemia and DNA oxidation by indomethacin in cerebral ischemia. Eur J Pharmacol,2003,459(2-3):179-186.
    [28]Candelario-Jalil, E., Alvarez, D., Gonzalez-Falcon, A., et al. Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Pharmacol,2002,453(2-3):189-195.
    [29]Candelario-Jalil, E., Alvarez, D., Merino, N., et al. Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res,2003,47(2):245-253.
    [30]Park, E.M., Cho, B.P., Volpe, B.T., et al. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression. Neuroscience,2005, 132(3):625-631.
    [31]Nakagomi, T., Sasaki, T., Kirino, T., et al. Effect of cyclooxygenase and lipoxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. Stroke,1989,20(7):925-929.
    [32]Sugimoto, K., Iadecola, C. Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia. Brain Res,2003,960(1-2):273-276.
    [33]Sasaki, T., Kitagawa, K., Yamagata, K., et al. Amelioration of hippocampal neuronal damage after transient forebrain ischemia in cyclooxygenase-2-deficient mice. Cereb Blood Flow Metab,2004,24(1):107-113.
    [34]Candelario-Jalil, E., Alvarez, D., Castaneda, J.M., et al. The highly selective cyclooxygenase-2 inhibitor DFU is neuroprotective when given several hours after transient cerebral ischemia in gerbils. Brain Res,2002,927(2):212-215.
    [35]FitzGerald, G.A.. COX-2 and beyond:Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov,2003,2(11):879-890.
    [36]Manabe, Y., Anrather, J., Kawano, T., et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol,2004,55(5):668-675.
    [37]Kawano, T., Anrather, J., Zhou, P., et al. Prostaglandin E2 EP1 receptors:downstream effectors of COX-2 neurotoxicity. Nat Med,2006,12(2):225-229.
    [38]Cernak, I., O'Connor, C., Vink, R.. Inhibition of cyclooxygenase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp Brain Res,2002,147(2):193-199.
    [39]Dash, P.K., Mach, S.A., Moore, A.N.. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. Neurotrauma,2000,17(1):69-81.
    [40]Gobbo, O.L., O'Mara, S.M.. Post-treatment, but not pre-treatment, with the selective cyclooxygenase-2 inhibitor celecoxib markedly enhances functional recovery from kainic acid-induced neurodegeneration. Neuroscience,2004,125(2):317-327.
    [1]Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data. Lancet,2006, 367(9524):1747-1757.
    [2]Doeppner TR, Hermann DM. Free radical scavengers and spintraps-therapeutic implications for ischemic stroke. Best Practice & Research Clinical Anaesthesiology,2010, 24(10):511-520.
    [3]王志平,孙红斌.氧自由基与缺血性卒中.西南军医,2010,12(3):534-536.
    [4]Zhang S, Liu Y, Zhao Z, et al. Effects of green tea polyphenols on caveolin-1 of microvessel fragments in rats with cerebral ischemia. Neuro 1 Res,2010,32(9):963-970.
    [5]高平章,吴洪,黄俊来.黄芩中黄酮类成分在组织损伤中抗氧化作用的研究进展.海峡药学,2009,21(6):1-4.
    [6]任非,袭淑英,智丽敏,等.黄芪治疗缺血性脑损伤的有效性.中国临床康复,2006, 10(3):139-151.
    [7]赖真,姚灿坤,程少冰,等.黄芪对脑缺血再灌注后神经细胞凋亡的影响及机制研究.中国中医急症,2008,11(17):1565-1566.
    [8]阮耀,黄川锋,岳兴如.黄芪预处理对大鼠脑缺血再灌注损伤的保护作用.时珍国医国药,2009,20(1):103-104.
    [9]刘畅,闽连秋,季占胜.丹参对局灶性脑缺血大鼠氧化应激反应的保护效应.中国临床康复,2006,10(3):37-39.
    [10]Kuang P, Tao Y, Tian Y. Effect of radix Salviae miltiorrhizae on nitric oxide in cerebral ischemic reperfusion injury. Tradit Chin Med,1996,16(3):224-227.
    [11]Rong ZT, Gong XJ, Sun HB, et al. Protective effects of oleanolic acid on cerebral ischemic damage invivo and H2O2-induced injury in vitro. Pharm Biol,2010,8(5):202-206.
    [12]Shin JA, Lee H, Lim YK, et al. Therapeutic effects of resveratrol during acute periods following exper-imental ischemic stroke. Neuro immunol,2011,227(1-2):93-100.
    [13]马宏跃,李伟霞,尚尔鑫,等.基于抗氧化活性的不同制法当归-川芎药对配伍比例研究.中国临床药理学与治疗学,2010,15(6):631-635.
    [14]樊兴娟,姜正林,国华,等.人参总皂苷对大鼠脑缺血再灌注的神经保护研究.交通医学,2006,20(6):662-663.
    [15]江山,姜正林,曾因明.九种人参皂苷单体抗脑缺血损伤作用研究.中药药理与临床,2007,23(2):19-20.
    [16]潘洪平,莫祥兰,杨嘉珍,等.葛根素对脑缺血损伤的影响.中国药师,2009,12(6):703-706.
    [17]Hao XM, Zhou P, Zhang JB. A effect and mechanism of panaxoside Rgl on neovascularization in myocardial infarction rats. Chin J Integr Med,2010,16:162-166.
    [18]Zhu D, Wu L, Li CR, et al. Ginsenoside Rgl protects rat cardiomyocyte from hypoxia /reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. Cell Biochem,2009,108:117-124.
    [19]Zhong SZ, Ge QH, Qu R, et al. Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by D-galactose in ICR mice. Neurol Sci,2009,277:58.
    [20]Zhang GQ, Hao XM, Zhou PA. Effect of paeonol on L-type calcium channel in rat ventricular myocytes. Methods Find Exp Clin Pharmacol,2003,25:281.
    [21]Ye JM, Deng T, Zhang JB. Influence of paeonol on expression of COX-2 and p27 in HT-29 cells. World J Gastroenterol,2009,15(35):4410-4414.
    [22]万春鹏,郑啸,陈海峰,等.东方肉穗草黄酮类化学成分研究.中国中药杂志,2009,34(2):172-174.
    [23]刘敏,肖颖,左爱仁,等.槲皮素、根皮素、水飞蓟宾清除自由基和抑制脂质过氧化活性研究.中成药,2012,30(4):182-184.
    [24]程超,陆军,郑元林,等.槲皮素对衰老小鼠学习记忆行为的影响.中国老年学杂志,2004,24(11):1057-1059.
    [25]Pu F, Mishima K, Irie K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. Pharmacol Sci,2007,104(4):329-334.
    [26]HU J Y, HAN J, CHU Z G, et al. Astragaloside Ⅳ attenuates hypoxia-induced cardiomyocyte damage in rats by upregulating superoxide dismutase-1 levels. Clin Exp Pharmacol Physiol,2009,36(4):351-357.
    [27]关凤英,李红,杨世杰.黄芪甲苷诱导NO生成并激活PKC对大鼠心肌缺血再灌注损伤的保护作用.吉林大学学报(医学版),2010,36(2):340-344.
    [28]承燕,吕磊,江时森.黄芪甲苷的抗氧化性对缺氧缺糖H9c2细胞的保护作用探讨.东南大学学报(医学版),2012,22(1):223-228.
    [29]Fremont L. Biological effects of resveratrol. Life Sci,2000,66(8):663-666.
    [30]刘永刚,王晓东,张小兵.白黎芦醇对脑缺血/再灌注损伤炎症反应的影响.中国中药杂志,2007,23(17):445-447.
    [31]Pintea A, Rugin D, Prlog R, et al. Chlorogenic acid reduces oxidativestress in rpe cells. Bull Univ Agric Sci Veter Med Cluj-Napoca Veter Med,2010,66(8):132-138.
    [32]Liu D, Liu W, Zhu D, et al. Nitrogen effects on total flavonoids, chlorogenic acid, and antioxidant activity of the medicinal plant Chrysanthemum morifolium. Plant Nutr Soil Sci, 2010,173(2):268-274.
    [33]胡秀梅.黄芩苷对大鼠脑缺血再灌注损伤的保护作用.山西医科大学学报,2010,41(2):100-102.
    [34]李园园,杨晖,廖桂凤,等.黄芩苷抗脑缺血小鼠学习记忆功能损伤的保护作用.昆明医学院学报,2011,32(5):13-15.
    [35]周乾坤,余嗣明,刘平,等.黄芩苷对脑出血大鼠脑内氨基酸递质含量的影响.中国中医药信息杂志,2009,16(4):35-37.
    [36]郑敏,尹时华,吴基良.穿心莲内酯对大鼠脑缺血/再灌注损伤的影响.医药导报,2004,23:70-71.
    [37]WooA Y, Waye MM, Tsui SK, et al. Andrographolide up regulates cellula-r reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. Pharmacol Exp Ther,2008,32(5):222-235.
    [38]Chang HT, Han HX, Tu PF, et al. Chemical components and pharmacological effects of Safflower, a kind of traditional Chinese medicine. Guo Wai Yi Yao Zhi Wu Yao Fen Ce, 1999,14:201-203.
    [39]Ye SY, Gao WY. Hydroxy safflower yellow aprotects neuron against hypoxia injury and supp resses inflammatory responses following focal ischemia eperfusion in rats. Arch Pharm Res,2008,31(8):1010-1015.
    [40]彭扬中,崔海峰,冯淑怡,等.黄连解毒汤对神经细胞保护作用活性成分的筛选.中国实验方剂学杂志,2012,18:203-207.
    [41]张琦,叶夷露,颜吟雪,等.黄连解毒汤对小鼠脑缺血慢性神经损伤的保护作用.浙江大学学报(医学版),2009,38(1):75-78.
    [42]宋珏,路通,谢林,等.黄连解毒汤抗氧化作用的血清药理学研究.中国实验方剂学杂志,2010,16:118-122.
    [1]Li Z, Zhang HJ, Liu HP, et al. Clinical significance of serum MMP-9 and NSE in patients with acute cerebral infarction. Journal of Da lian Medical University2008,30(1):69-72.
    [2]Yamaguchi M, Jadhav V, Obenaus A, et al. Matrix metalloproteinase inhibition attenuates brain edema in an in vivo model of surgically-induced brain injury. Neurosurgery,2007,61 (5):1067-1076.
    [3]Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke,1998, 29(10):2189-2195.
    [4]Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke,2003,34 (1):40-46.
    [5]Rosell A, Cuadrado E, Ortega-Aznar A, et al. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke,2008, 39(4):1121-1126.
    [6]Gu Z, Cui J, Brown S, et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. Neurosci,2005,25(27):6401-6408.
    [7]Fujimoto M, Takagi Y, Aoki T, et al. Tissue inhibitor of metalloproteinases protect blood-brain barrier disruption in focal cerebral ischemia. Cereb Blood Flow Metab,2008, 28(10):1674-1685.
    [8]Wang RJ, Yang B. Survey of study on the chemical constituents and quality control of flos Carthami. Chinese Journal of Experimental Traditional Medical Formulae,2007,13(5):65-69.
    [9]Zhu H, Wang Z, Ma C, et al. Neuroprotective effects of hydroxysafflor yellow A:in vivo and in vitro studies. Planta Med,2003,69(5):429-433.
    [10]Zhang YB, Dong WW. Development of neuronal ischemic model by oxygen and glucose deprivation in vitro. Journal of Chongqing Medical University,2001,26(2):116-118.
    [11]Jin M, Gao ZC, Wang JF. Research on the inhibitory effects of hydroxysafflor yellow A on the rabbit platelet activation induced by platelet activating factor. Journal of Beijing University of TCM,2004,27(5):32-35.
    [12]Xi SY, Zhang Q, Xie H, et al. Effects of hydroxysafflor yellow A on blood vessel and mRNA expression with VEGF and bFGF of transplantation tumor with gastric adenocarcinoma cell line BGC-823 in nude mice. China Journal Of Chinese Materia Medica, 2009,34(5):605-610.
    [13]Tian J, Li G, Liu Z, et al. Hydroxysafflor yellow A inhibits rat brain mitochondrial permeability transition pores by a free radical scavenging action. Pharmacology,2008, 82(2):121-126.
    [14]Ye SY, Gao WY. Hydroxysafflor yellow A protects neuron against hypoxia injury and suppresses inflammatory responses following focal ischemia reperfusion in rats. Arch Pharm Res,2008,31(8):1010-1015.
    [15]Ji DB, Zhang LY, Li CL, et al. Effect of Hydroxysafflor yellow A on human umbilical vein endothelial cells under hypoxia. Vascul Pharmacol,2009,50(3-4):137-145.
    [1]Lopez AD, Mather CD, Ezzati M, et al. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data. Lancet,2006,67(24):1747-1757.
    [2]Nanetti L, Raffaelli F, Vignini A, et al. Oxidative stress in ischaemic stroke. Eur J Clin Invest,2011,41:1318-1322.
    [3]Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal,2011,14:1505-1517.
    [4]Jung JE, Kim GS, Chen H, et al. Reperfusion and neurovascular dysfunction in stroke: From basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol,2010, 41:172-179.
    [5]Ramos-Fernandez M, Bellolio MF, Stead LG. Matrix metalloproteinase-9 as a marker for acute ischemic stroke:A systematic review. Stroke Cerebrovasc Dis,2011,20:47-54.
    [6]Tsai WC. Treatment options for hypertension in high-risk patients. Vase Health Risk Manag,2011,7:137-141.
    [7]Widimsky J. Variability in blood pressure and arterial hypertension. Vnitr Lek,2011, 57:320-324.
    [8]Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage:Secondary brain injury. Stroke,2011,42:1781-1786.
    [9]Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation. Nat Med, 2011,17:1391-1401.
    [10]Doeppner TR, Hermann DM. Free radical scavengers and spin traps-therapeutic implications for ischemic stroke. Best Practice & Research linical Anaesthesiology,2010, 24(10):511-520.
    [11]Michel O, Gary F, Fabio DL, et al. Postconditioning and protection from reperfusion injury:where do we stand? CardiovascularResearch,2010,87(5):406-423.
    [12]Zhao ZQ. Postconditioning in reperfusion injury:a status report. Cardiovasc Drugs Ther, 2010,24(3):265-279.
    [13]王志平,孙红斌.氧自由基与缺血性卒中.西南军医,2010,12(3):534-536.
    [14]Teather, L.A., Packard, M.G., Bazan, N.G.. Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Nat Med,2010,24(10):511-520.
    [15]Akaneya, Y., Tsumoto, T.. Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex. Neurosci,2006,26(40):209-221.
    [16]Sheikh AS, Kaneez FS, Taimur S, et al. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res,2007,182(1):1-10.
    [17]Venkata PN, Anchal G, Suresh L, et al. Molecular mechanisms of apoptosis in cerebral ischemia:multiple neuroprotective opportunities. Mol Neurobiol,2008,37(1):7-38.
    [18]Joo EJ, Gab SK, Hai C, et al. Reperfusion and neurovascular dysfunction in stroke:from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol,2010, 41(2):172-179.
    [19]Haorah J, Knipe B, Leibhart J, et al. Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. Leukoc Biol,2005,78:1223-1232.
    [20]Krizbai IA, Bauer H, Bresgen N, et al. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell Mol Neurobiol,2005,25:129-139.
    [21]Schreibelt G, Kooij G, Reijerkerk A, et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase and PKB signaling. FASEB J,2007, 21:3666-3676.
    [22]Lischper M, Beuck S, Thanabalasundaram G, et al. Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Res, 2010,1326:114-127.
    [23]Haorah J, Ramirez SH, Schall K, et al. Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. Neurochem,2007, 101:566-576.
    [24]Mattila OS, Strbian D, Saksi J, et al. Cerebral mast cells mediate blood-brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke,2011,42:3600-3605.
    [25]Liu W, Sood R, Chen Q, et al. Normo baric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. Neurochem,2008,107:1196-1205.
    [26]Liu W, Chen Q, Liu J, et al. Normobaric hyperoxia protects the blood brain barrier through inhibiting Nox2 containing NADPH oxidase in ischemic stroke. Med Gas Res,2011, 1:22-25.
    [27]Noh SJ, Lee SH, Shin KY, et al. SP-8203 reduces oxidative stress via SOD activity and behavioral deficit in cerebral ischemia. Pharmacol Biochem Behav,2011,98:150-154.
    [28]Lukic-Panin V, Deguchi K, Yamashita T, et al. Free radical scavenger edaravone administration protects against tissue plasminogen activator induced oxidative stress and blood brain barrier damage. Curr Neurovasc Res,2010,7:319-329.
    [29]Tseng YT, Hsu YY, Shih YT, et al. Paeonol attenuates microglia-mediated inflammation and oxidative stressinduced neurotoxicity in rat primary microglia and cortical neurons. Shock,2012,37:312-318
    [30]Heeba GH, El-Hanafy AA. Nebivolol regulates eNOS and iNOS expressions and alleviates oxidative stress in cerebral ischemia/reperfusion injury in rats. Life Sci,2012, 90:388-395.
    [31]Raza SS, Khan MM, Ashafaq M, et al. Silymarin protects neurons from oxidative stress associated damages in focal cerebral ischemia:a behavioral, biochemical and immunohistological study in Wistar rats. Neurol Sci,2011,309:45-54.
    [32]Kamada H, Yu F, Nito C, et al. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats:Relation to blood-brain barrier dysfunction. Stroke,2007,38:1044-1049.
    [33]Maier CM, Hsieh L, Crandall T, et al. A new approach for the investigation of reperfusion-related brain injury. Biochem Soc Trans,2006,34:1366-1369.
    [34]Kondo T, Reaume AG, Huang TT, et al. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. Neurosci,1997,17:4180-4189.
    [35]De Silva TM, Brait VH, Drummond GR, et al. Nox2 oxidase activity accounts for the oxidative stress and vasomotor dysfunction in mouse cerebral arteries following ischemic stroke. PLoS One,2011,6:283-293.
    [36]Claria, J., Romano, M., Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways. Impact on inflammation and cancer. Curr Pharm Des,2005, 11(26):3431-3447.
    [37]Zeldin, D.C.. Epoxygenase pathways of arachidonic acid metabolism. Biol Chem,2001, 276(39):36059-36062.
    [38]Ge, Q.F., Wei, E.Q., Zhang, W.P., et al. Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons. Neurochem,2006, 97(4):992-1004.
    [39]Maccarrone, M., Melino, G, Finazzi-Agro, A.. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ,2001,8(8):776-784.
    [40]Kurzel, F., Hagel, C., Zapf, S., et al. Cyclo-oxygenase inhibitors and thromboxane synthase inhibitors differentially regulate migration arrest, growth inhibition and apoptosis in human glioma cells. Acta Neurochir (Wien),2002,144(1):71-87.
    [41]Lunn, M.R., Root, D.E., Martino, A.M., et al. Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem Biol,2004, 11(11):1489-1493.
    [42]Gebremedhin, D., Yamaura, K., Zhang, C., et al. Metabotropic glutamate receptor activation enhances the activities of two types of Ca+ -activated k+ channels in rat hippocampal astrocytes. Neurosci,2003,23(5):1678-1687.
    [43]FitzGerald, G.A.. COX-2 and beyond:Approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov,2003,2(11):879-890.
    [44]Manabe, Y, Anrather, J., Kawano, T., et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann Neurol,2004,55(5):668-675.
    [45]Kawano, T., Anrather, J., Zhou, P., et al. Prostaglandin E2 EP1 receptors:downstream effectors of COX-2 neurotoxicity. Nat Med,2006,12(2):225-229.
    [46]Buccellati, C, Folco, G.C., Sala, A., et al. Inhibition of prostanoid synthesis protects against neuronal damage induced by focal ischemia in rat brain. Neurosci Lett,1998, 257(3):123-126.
    [47]Miyamoto, O., Tamae, K., Kasai, H., et al. Suppression of hyperemia and DNA oxidation by indomethacin in cerebral ischemia. Eur J Pharmacol,2003,459(2-3):179-186.
    [48]Candelario-Jalil, E., Alvarez, D., Gonzalez-Falcon, A., et al. Neuroprotective efficacy of nimesulide against hippocampal neuronal damage following transient forebrain ischemia. Eur J Pharmacol,2002,453(2-3):189-195.
    [49]Candelario-Jalil, E., Alvarez, D., Merino, N., et al. Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res,2003,47(2):245-253.
    [50]Park, E.M., Cho, B.P., Volpe, B.T., et al. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression. Neuroscience,2005, 132(3):625-631.
    [51]Nakagomi, T., Sasaki, T., Kirino, T., et al. Effect of cyclooxygenase and lipoxygenase inhibitors on delayed neuronal death in the gerbil hippocampus. Stroke,1989,20(7):925-929.
    [52]Sugimoto, K., Iadecola, C. Delayed effect of administration of COX-2 inhibitor in mice with acute cerebral ischemia. Brain Res,2003,960(1-2):273-276.
    [53]Nogawa, S., Zhang, F., Ross, M.E., et al. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. Neurosci,1997,17(8):2746-2755.
    [54]Sasaki, T., Kitagawa, K., Yamagata, K., et al. Amelioration of hippocampal neuronal damage after transient forebrain ischemia in cyclooxygenase-2-deficient mice. Cereb Blood Flow Metab,2004,24(1):107-113.
    [55]Candelario-Jalil, E., Alvarez, D., Castaneda, J.M., et al. The highly selective cyclooxygenase-2 inhibitor DFU is neuroprotective when given several hours after transient cerebral ischemia in gerbils. Brain Res,2002,927(2):212-215.
    [56]Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. Neuropathol Exp Neurol,2004,63(9):901-910.
    [57]Sastry, P.S., Rao, K.S.. Apoptosis and the nervous system. Neurochem,2000,74(1):1-20.
    [58]Roberts, L.J., Fessel, J.P., Davies, S.S.. The biochemistry of the isoprostane, neuroprostane, and isofuran Pathways of lipid peroxidation. Brain Pathol,2005, 15(2):143-148.
    [59]Bazan, N.G., Colangelo, V., Lukiw, W.J.. Prostaglandins and other lipid mediators in Alzheimer's disease. Prostaglandins Other Lipid Mediat,2002,68(9):197-210.
    [60]Zhang S, Liu Y, Zhao Z, et al. Effects of green teapolyphenols on caveolin-1 of microvessel fragmentsin rats with cerebral ischemia. Neurol Res,2010,32(9):963-970.
    [61]高平章,吴洪,黄俊来.黄芩中黄酮类成分在组织损伤中抗氧化作用的研究进展.海峡药学,2009,21(6):1-4.
    [62]刘畅,闽连秋,季占胜.丹参对局灶性脑缺血大鼠氧化应激反应的保护效应.中国临床康复,2006,10(3):37-39.
    [63]Kuang P, Tao Y, Tian Y. Effect of radix Salviae miltiorrhizae on nitric oxide in cerebral ischemic reperfusion injury. Tradit Chin Med,1996,16(3):224-227.
    [64]Rong ZT, Gong XJ, Sun HB, et al. Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H2O2-induced injury in vitro. Pharm Biol,2010,18(8):331-337.
    [65]Shin JA, Lee H, Lim YK, et al. Therapeutic effects of resveratrol during acute periods following exper-imental ischemic stroke. Neuroimmunol,2011,227(2):93-100.
    [66]马宏跃,李伟霞,尚尔鑫,等.基于抗氧化活性的不同制法当归-川芎药对配伍比例研究.中国临床药理学与治疗学,2010,15(6):631-635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700