钢轨的损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国重载与高速铁路的快速发展,轮轨由于滚动接触疲劳与磨损引起的失效损伤变得越来越严重,已成为影响铁路运输安全的重要因素。列车速度的提高,促使接触疲劳裂纹更易萌生和扩展。而铁路运量和轴重的增加,钢轨磨损日益严重。所以减轻钢轨损伤的已成为迫切需要研究的重要课题。
     本文通过对现场钢轨的损伤分析和JD-1轮轨模拟试验研究,来研究钢轨的损伤行为和材料选用方式。论文讨论了轮轨滚动接触过程中疲劳和磨损的相互作用关系,分析了钢轨损伤的机理;目的在于为高速和重载铁路钢轨材料的选择提供了理论依据。本文取得的主要结果和结论如下:
     1、通过对广深铁路现场钢轨的测试分析可知,U75V钢轨具有较高的强度与硬度,但U75V钢轨裂纹扩展消耗能量小,它的裂纹扩展速率要大于U71Mn钢轨裂纹扩展速率,所以U71Mn钢轨抗疲劳裂纹扩展性能优于U75V钢轨,更适合高速铁路铺设使用。
     2、JD-1轮轨模拟试验表明,车速越高导致钢轨磨损越轻微,塑性流动减弱。但是车速越高,疲劳裂纹扩展越严重。轴重越大钢轨磨损越严重,塑性流动越强,且出现了较深的沟槽。但随着轴重的增加,磨损表面的微裂纹更容易被较大的磨损量所磨去,疲劳损伤轻微。曲率半径越小,钢轨的磨损量越大,塑性流动增越强,且表面容易出现掉快。
     3、模拟实验发现硬度越小的材料,磨损表面的加工硬化程度越强,塑性变形层就越厚。随着材料硬度的增加,疲劳裂纹随之扩展加剧。因为高速钢轨损伤主要以疲劳为主,而U71Mn热轧钢轨有较好的抗疲劳性能,所以U71Mn更适合于高速铁路铺设使用。因为重载钢轨损伤主要以磨损为主,而U75V淬火钢轨有较好的抗磨损性能,所以U75V更适合于重载铁路铺设使用。
The railway transportation in China has been developed rapidly during the first decade of the 21st century. With the increase of train speed and axle load, wheel-rail is bearing ever heavier tribological load and its rolling contact fatigue (RCF) and wear become more and more serious. Various damages of wheel-rail have occurred in some railway lines in China.
     Laboratory research has been carried out to study the occurrence of wear and rolling contact fatigue damage of rail material using JD-1 wheel/rail simulation facility. The interrelationship between fatigue and wearing during the rolling contact of wheel/rail is discussed and the damage mechanism of the rail is analyzed to provide theoretical basis for the selection of rail materials used in high-speed and heavy-load railway. The main achievements and conclusions are as follows:
     1. The analysis of testing for the rails on Guangzhou-Shenzhen Railway shows that U75V rail has higher intensity and hardness, but the energy consumption of its crack propagation is low. The rate of crack propagation for U75V rail is higher than that of U71Mn rail. Therefore, the performance of antifatigue crack propagation of U71Mn rail is better than that of U75V rail and U71Mn rail is more applicable to the high-speed railway.
     2. Laboratory research results indicate that with speed increasing, the wear volume of rail is reduced, as well as many oblique cracks initiate and contact fatigue becomes severer.With axle load increasing, the plastic deformation becomes severer, increasing of wear volume and fatigue failure become slight due to removing of micro-cracks partly. The wear volume of rail roller increases rapidly and fatigue failure become severer with the curve radius decreasing. Furthermore, the rail rollers appear the obvious plastic flow.
     3. For the rail material with a higher hardness, the wear volume is less and plastic deformation layer is thinner after the rolling test. However, its crack propagation is more significant and the fatigue damage is severer with better wear resistance. Meanwhile, for the rail material with a lower hardness, the wear volume is larger and the plastic deformation layer is thicker. In addition, high wear rate reduces the rolling contact fatigue damage by constantly removing surface cracks. The analysis shows that U75V quenched rail with better wear resistance is suitable for heavy haul railway and U71Mn hot rolled rail with better fatigue resistance is more suitable for the high-speed railway.
引文
[1]何华武.快速发展的中国高速铁路[J].学术动态.2006,(4):1-16.
    [2]沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断.1998,18(1):1-7.
    [3]李世珷.世界高速铁路技术发展的动向[J].郑铁科技通讯.2006.22(2):15-16.
    [4]金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题[J].工程力学.2004,21(5):901-104.
    [5]李向国.高速铁路技术.北京:中国铁道出版社.2005,26(1):85-87.
    [6]V150列车在创记录中证明了AGV技术[J].Railway Gazette International.2007,10-12.
    [7]李世斌.世界高速铁路技术发展的动向[J].郑铁科技通讯.2006.32(2):38-42.
    [8]陈明韬.钢轨滚动磨损模拟试验与计算分析.西南交通大学硕士学位论文.2008.
    [9]胡家杰.弯矩作用下钢轨疲劳试验研究.西南交通大学硕士学位论文.2008.
    [10]范俊杰.现代铁路轨道(第二版).北京:中国铁道出版社.2004.
    [11]赵雪芹.钢轨接触疲劳裂纹形成机理研究.西南交通大学硕士学位论文,2007.
    [12]高铁列国志[J].新经济导刊.2010.26(1):85-87.
    [13]申碧涛.我国高速列车展望[J].科技资讯.2006.31(2):170-171.
    [14]王彦丽.京津城际轨道交通工程的哲学问题研究[J].西安交通大学学报.2009.25(1):25-28
    [15]卢观健,杨克.钢轨伤损的形态特征及其失效机理[J].铁道学报.1996,Vo1.18(3):120-124.
    [16]刘启跃,张波,周仲荣.铁路钢轨损伤机理研究[J]. 中国机械工程,2002,13(18):1596-1599.
    [17]G. Donzella, M. Faccoli, Ghidini, Mazz_u, R.Roberti. The competitive role of wear and RCF in a rail steel[J]. Engineering Fracture Mechanics.72 (2005) 287-308.
    [18]金学松,刘启跃.轮轨摩擦学.北京:中国铁道出版社.2004.
    [19]H.D. Grohmann, Klaus Hempelmann, Arnold GroB-Thebing. A new type of RCF, experimental investigations and theoretical modeling[J]. Wear.253 (2002) 67-74.
    [20]Jonas W, Ringsberg. Rolling contact fatigue analysis of rails inculding numerical simulations of the rail manufacturing process and repeated wheelrail contact loads. International Journal of Fatigue.25 (2003):547-558.
    [21]王彩芸.钢轨滚动接触磨损行为研究.西南交通大学博士学位论文,2009.
    [22]A. Oila, S.J. Bull. Assessment of the factors influencing micropitting in rolling/sliding contacts[J]. Wear.258 (2005):1510-1524.
    [23]金学松,张继业,温泽峰,李芾.轮轨滚动接触疲劳现象分析[J].机械强度.2002,24(2):250-257.
    [24]史密斯.钢轨滚动接触疲劳的进一步研究[J].中国铁道科学.2002,23(3):6-10.
    [25]彭亮.钢轨踏面斜裂纹模拟再现实验研究.西南交通大学博士学位论文,2009.
    [26]郭俊.轮轨滚动接触疲劳损伤机理研究.西南交通大学博士学位论文,2006.
    [27]Cannon D F, Pradier H. Rail rolling contact fatigue research by the European Rail Research Institute[J].Wear.191 (1996):1-13.
    [28]熊嘉阳.钢轨斜裂纹形成机理研究.西南交通大学博士学位论文,2006.
    [29]李向国.高速铁路技术.北京:中国铁道出版社,2005.
    [30]张慧生等.我国钢轨生产现状,需求及对策[J].钢铁.1994,29(10);72-76.
    [31]苏世怀等.我国开发高强度在线热处理钢轨探讨[J].钢铁.1994,28(4):73—79.
    [32]单麟天.国外钢轨热处理现状[S].钢铁钒钛.1996,17(3):10-18.
    [33]邓建辉等.国内外热处理钢轨性能分析[J].钢铁钒钛.1997,18(1):27-32.
    [34]Fleck NA, Kang KJ, Asbhy MF. The cyclic properties of engineering materials[J]. Acta Metall Mater.42(1984):365-381.
    [35]DavidD. Davis. ataL. Track Steels; Past,Prestentand future[J].RaiLway Track Structures.11(1998) 417-419.
    [36]周清跃等.不同碳含量对欠速淬火钢轨的性能的影响[J].金属学报.1992,28(2):13-14.
    [37]张银花等,CrNb低合金热轧轨组炽和性能研究[J].铁道学报.2002,24(3):27-31.
    [38]周清跃,张银花,陈朝阳,周镇国.国内外钢轨钢研究及进展[J].中国铁道科学.2002,32(1):34-16.
    [39]周清跃.须研发生产不同性能的钢轨[J].中国冶金报.2004,28(5):13-14.
    [40]汪守朴.金相分析基础.北京:机械工业出版社,1986.
    [41]张银花CrNb微合金轨钢的研究.铁道部科学研究院,2001.
    [42]周清跃等.钢轨的性能分析[J].中国铁道科学.1997,18(1):53-61.
    [43]崔圣爱,祝兵,黄志堂.基于多体系统动力学和有限元法的车桥耦合振动精细化仿真研究[J].计算机应用研究.2009.26(12):4581-4584.
    [44]金学松,温泽峰,张卫华等.世界铁路发展状况及其关键力学问题[J].工程力学.2004,34(8):190-194.
    [45]Jiang Y,Sehitoglu H. A model for rolling contact failure[J]. Wear.224(1999):38-49.
    [46]Johnson KL. Contact mechanics and the wear of metals[J]. Wear.190(1995):162-170.
    [47]王磊.材料的力学性能.沈阳:东北大学出版社,2005.
    [48]周清跃.法国、德国高速铁路钢轨的生产和使用技术[J].中国铁路.2001,32(4):49-51
    [49]V. Gupta, G. T. Hahn, P. C. Bastias, C. A. Rubin. Thermal-mechanical modeling of the rolling-plus-sliding with frictional heating of a locomotive wheel[J]. ASME Journal of Engineering for Industry.1995,117(8):418-422.
    [50]周清跃等.秦沈客运专线钢轨的基本要求及国产化[J].中国铁路.2000,62(10):30-32.
    [51]吴强.日本高速铁路考察报告[J].综合运输.2006.3(2):85-90.
    [52]杨希.稀土重轨钢热轧过程中再结晶行为及组织转变规律的研究.铸造技术.2010.26(4):58-60.
    [53]秋山芳弘.世界高速铁路的现状与前景[J].国外机车车辆工艺.2004.11(6):1-5.
    [54]Jonas W, Ringsberg. Shear mode growth of short surface-breaking RCF cracks[J]. Wear.258 (2005) 955-963.
    [55]吕学斌,李灵.高速铁路运输对钢轨的要求和执行标准的发展[J].武钢技术.2005.2005.43(4):32-34.
    [56]邹稳根.铁道接触车辆轮轨的摩擦磨损与节能降耗.内燃机车.2009,26(12):45-48.
    [57]周清跃,张银花,陈朝阳.钢轨生产和使用技术的新进展[J].铁道科学技术新进展—铁道科学研究院55周年论文集.757-758.
    [58]卢观健,杨克,袁龙英.淬火钢轨的伤损与失效分析[J].中国铁道科学院.1994,15(3),36-51.
    [59]Clayton P and Su X. Surface initiated fatigue of pearlitic and baintic steels under wear lubricated rolling/sliding contact[J].Wear.200(1996):63-73.
    [60]王文健,陈明韬,郭俊,刘启跃.高速铁路钢轨打磨技术及应用.西南交通大学学报,2007,42(5):574-577.
    [61]缪闯波.钢轨打磨对轮轨作用的影响[J].铁道标准设计.2002,22(7):31-32.
    [62]王文建.轮轨滚动接触疲劳与磨损耦合关系及预防措施研究.西南交通大学硕士学位论文,2008.
    [63]李自彬.车轮钢滚动磨损特性研究.西南交通大学硕士学位论文,2010.
    [64]赵鑫吴.基于有限元法的轮轨摩擦热响应分析.西南交通大学硕士学位论文,2005.
    [65]金学松,张雪珊,张剑,孙丽萍,王生武.轮轨关系研究中的力学问题[J].机械强度.2005.27(4):408-418.
    [66]K. Knothe,S. Liebelt. Determination of temperature for sliding contact with applications for wheel-rail systems[J].Wear.189(1995):91-99.
    [67]襄有福,金元生,温诗铸.轮轨接触温升的有限元分析[J].中国铁道科学.1996,17(4):48-58.
    [68]王步康,董光能,谢友柏.滑动接触中摩擦发热的数值分析[J].中国机械工程,2002,13(21):1880-1883.
    [69]J.W.Ringsberg, M.Loo-Morrey, B.L.Josefson, A. Kapoor, J.H. Beynon. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International journal of fatigue.22(2000):205-215.
    [70]王文健,刘启跃,周仲荣.车轮钢滚动剥离摩擦磨损特性研究[J].摩擦学学报.2005,25(5):475-479.
    [71]F.J.Franklin, G.J.Weeda, A.Kapoor, E.J.M. Hiensch. Rolling contact fatigue and wear behavior of the infrastar two-material rail[J]. Wear,258(2005):1048-1054.
    [72]D.Benuzzi, E.Bormeti, GDonzella. Stress intensity factor range and propagation mode of surface cracks under rolling-sliding contact[J].Theoretical and Applied Fracture Mechanics.40(2003):55-74.
    [73]丁韦,黄辰奎,高文会等.铁路车轮与钢轨的强度及硬度匹配[J].材料工程.2003,21(6):37-38.
    [74]马腾,朱桂兰.热处理钢轨的轨/轮匹配关系[J].研究物理测试.1999,33(5):1-3.
    [75]李加驹,杨开庭,应惠敏,董泽发.车轮和钢轨硬度匹配的研究[J].中国铁道科学,1984,5(1):49-59.
    [76]Komarovsky I,Zharov I. Influence of Hardness on Wear Resistance of Wheel and Rail Steels for Different Loading Condition [J].Journal of Friction and Wear.22 (2001):134-139.
    [77]周清跃,刘丰收,朱梅,安涛.轮轨关系中的硬度匹配研究[J].中国铁道科学,2006,27(5):35-41.
    [78]世界高速铁路的发展概述[J].铁道勘测与设计.2006,24(1):54.
    [79]周长江.高速铁路发展概况及展望[J].甘肃科技纵横.2005,34(3):105-106;
    [80]张伟.轮轨滚动接触疲劳试验研究.西南交通大学硕士学位论文,2005.
    [81]赵雪芹,王文健,郭俊,刘启跃.广深线U75V与U71Mn钢轨斜裂纹形成特性分析[J].润滑与密封.2007,32(3):35-37.
    [82]钟雯,赵雪芹,王文健,等.U75V与U71Mn钢轨疲劳裂纹扩展特性研究[J].中国机械工程.2008,19(14):1740-1743.
    [83]赵雪芹,钟雯,王文健,刘启跃.高速重载线路钢轨损伤特性分析[J].润滑与密封.2007,32(10):100-102.
    [84]Q.Y. Liu, X.S. Jin, Z.R. Zhou. An investigation of friction characteristic of steels under rolling-sliding condition [J]. Wear,259 (2005):439-444.
    [85]王文健,刘启跃.U75V和U71Mn钢轨钢疲劳裂纹扩展速率研究[J].机械强度.2007,29(6):1026-1027.
    [86]马杭,刘天佐,赵文军.铁素体珠光体钢中的疲劳裂纹扩展行为[J].甘肃工业大学学报.1997,23(4):7-11.
    [87]J.W.Ringsberg,M.Loo-Morrey,B.L.Josefson,etl. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International journal of fatigue,22(2000):205-215.
    [88]D F Cannon. An International Cross Reference of Rail Defects a Report Commissioned by the UIC/WEC Rail Defect Management Project Steering Group [R]. Paris:UIC,2001.
    [89]Kalousek,Fegredo,Laufer E. The Wear Resistance and Worn Metallograph of Pearlite,Bainite and Tempered Martensite Rail Steel Microstructures of High Hardeness[J].Wear,105(1985):199-221.
    [90]侯彦芬,冯万里,刘瑞堂.护环钢50Mn18Cr4沿晶断裂分析及其对晶界损伤本质的探讨[J],哈尔滨工程大学学报.2006,27(5):752-756.
    [91]李向国.高速铁路技术.北京:中国铁道出版社,2005.
    [92]李超.金属学原理.哈尔滨:哈尔滨工业大学出版社,1996.
    [93]Jin Xuesong,Wu Pingbo,Wen Zefeng. Effects of structure elastic deformations of wheelset and track on creep forces of wheel/rail in rolling contact[J]. Wear.2002,253(1-2):247-256.
    [94]Marek Bijak-2Ochowski and Piotr Marek. Residual stress in some elasto-plastic problems of rolling contact with friction. Int. J. Mech. Sci.1997(39):15-32,.
    [95]Pham Duc Chinh. Shakedown theory for elastic-perfectly plastic bodies revisited[J]. International Journal of Mechanical Sciences.45 (2003):1011-1027.
    [96]P. C. Paris, F. Erdogan. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering,1963,85:528-534.
    [97]王广凯,李培曙.浅谈制动粘着系数的定义、影响因素及测试方法[J].铁道车辆.2004,42(9):23-25.
    [98]黄问盈.铁道轮轨黏着系数[J].铁道机车车辆.2010,30(5):17-33.
    [99]周清跃,张建峰,郭战伟,习年生,高新平.重载铁路钢轨的伤损及预防对策研究[J].中国铁道科学.2010,31(1):27-31.
    [100]Kapoor A, Fletcher D I, Franklin. The role of wear in enhancing rail life. Tribology Research and Design for Engineering Systems,2003 Elsevier B V,331-340.
    [101]Anders Ekberg, Elena Kabo, Jens C.O. Nielsen. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation[J]. International Journal of Solids and Structures.44 (2007) 7975-7987.
    [102]邱海波,裴有福,金元生.塑性变形对钢轨钢磨损影响的试验研究[J].摩擦学学报.1996,16(1):80-84.
    [103]张伟,王文健,郭俊,李克皋,刘启跃.钢轨滚动磨损性能试验研究[J].润滑与密封.200735(1):56-60.
    [104]赵雪芹,钟雯,王文健等.高速重载线路钢轨损伤特性分析[J].润滑与密封.2007,32(10):100-102.
    [105]胡家杰,钟雯,刘启跃,钢轨疲劳裂纹扩展行为研究[J].铁道工程学报.2008(9):26-29.
    [106]刘启跃,王文健,周仲荣.高速与重载铁路钢轨损伤及预防技术差异研究[J].润滑与密封.2007,32(11):11-14,68.
    [107]John E. Garnham, Claire L. Davis. The role of deformed rail microstructure on rolling contact fatigue initiation [J]. Wear.265 (2008) 1363-1372.
    [108]徐春,张弛,阳辉.金属塑性成形理论,北京:冶金工业出版社,2009.
    [109]李建明.磨损金属学.北京:冶金工业出版社,1990.
    [110]Stuart L. Grassie, Jonn A. Elkins. Tractive effort, curving and surface damage of rails. Part 1. Forced on the rails[J].Wear,258(2005):1235-1244.
    [111]孙国瑛,刘学毅,万复光.小半径曲线上的钢轨磨耗[J].西南交通大学学报.1994,29(1):65-70.
    [112]钟雯,王文健,胡家杰,刘启跃,曲率半径对钢轨滚动接触疲劳性能的影响[J],西南交通大学学报.2009,44(2):254-258.
    [113]刘学文,邹定强,邢丽贤,等.钢轨踏面斜裂纹伤损原因及对策的研究[J].中国铁道科学.2004,25(2):82-87.
    [114]Olofsson U,Telliskivi T. Wear,plastic deformation and friction of two rail steels — a full-scale test and a laboratory study. Wear.254(2003):80-93.
    [115]熊嘉阳,金学松.铁路曲线钢轨初始波磨演化分析[J].机械工程学报.2006.42(6):60-66.
    [116]翟婉明.车辆-轨道耦合动力学(第二版)[M].北京:中国铁道出版社,2002.
    [117]李晶晶,田常海,汪越胜.U71Mn和U75V钢轨钢疲劳短裂纹的扩展行为[J].钢铁研究学报.2006,18(4):37-40.
    [118]邓建辉,刘启跃,王飞龙,等.车速对钢轨接触疲劳伤损的影响及高速线路钢轨选用[J].钢铁钒钛.2006,27(3):48-54.
    [119]Bold P.E,Brown M.W. Allen R.J. Shear mode crack growth and rolling contact fatigue[J].Wear.144(1991):307-317.
    John E. Garnham, Claire L. Davis. The role of deformed rail microstructure on rolling contact fatigue initiation [J]. Wear.265 (2008):1363-1372.
    [120]Clayton P. The relationship between wear behaviors and basic material properties for pearltic steel [J]. Wear.60(1980):75-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700