生物质糖化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将生物质转化生成糖类中间体是生物质资源转化过程中重要研究内容。本研究选用藻类生物质(小球藻)、木质纤维素类生物质(玉米秸秆)和草本纤维生物质(龙须草)三种较为典型的生物质原料为研究对象,针对不同原料在组成和结构上的差异,采用不同技术手段将其降解生成可发酵糖,并对生成的可发酵糖在发酵生产生物乙醇方面的应用进行了评价。
     研究了小球藻生物质在无机酸HCl、H2SO4以及Lewis酸MgCl2中水解生产可发酵糖的工艺。结果表明,HCl催化水解小球藻生产可发酵糖的能力大于H2SO4和MgCl2。在此基础上,研究了小球藻在HCl/MgCl2协同催化剂中的水解特性,研究发现,当2%HCl与2.5%MgCl2协同催化小球藻时,生成的可发酵糖产率高于单独以2%HCl和2.5%MgCl2作催化剂时可发酵糖产率的总和。对生成的可发酵糖进行微生物发酵实验,乙醇产率为0.47 g/g。
     采用新型绿色溶剂离子液体[EMIM]Cl为催化剂,对小球藻进行催化水解。研究了溶解温度、溶解时间、催化剂HCl的用量、水解温度和水解时间等因素对小球藻在[EMIM]Cl中水解生成可发酵糖的影响。得出当溶解温度为105℃、溶解时间为3h、催化剂HCl的用量为小球藻质量的7 Wt%、水解温度为105℃、水解时间为3h时,小球藻在[EMIM]Cl中生成的可发酵糖产率最大,为88.02%。采用离子排阻色谱技术对水解液中[EMIM]Cl和糖类物质进行分离回收,离子液体可重复利用,糖类物质的回收率为92%。对分离回收的可发酵糖进行微生物发酵实验,乙醇产率为0.496 g/g。
     采用响应曲面法对玉米秸秆的蒸汽爆破条件进行优化,得到当汽爆压力为2.4 MPa、保压时间为8.5 min、物料含水率为60%时,汽爆处理后的秸秆中纤维素含量为46.97%,半纤维素含量为5.24%,酶解率为81.51%。对优化条件下得到的汽爆秸秆进行酶解和工艺放大研究,在150 L反应体系中,采用补料方式以24%总底物浓度对汽爆秸秆酶解72 h时,总糖浓度可达100.7g/L,酶解率为70.2%。选用高温酿酒酵母在40℃条件下对汽爆秸秆的酶解液清液和带渣酶解液进行乙醇发酵,72 h后酶解液清液的乙醇产率为0.49g/g;带渣酶解液为0.37 g/g。
     选用某生物制浆公司提供的不同工艺段龙须草物料为原料,对其进行结构、组分及酶解研究。结果表明,龙须草物料中的木质素结构逐步变形、破坏,含量逐渐减小,而酶解产率却逐渐增大。与木质素没有被降解的原料相比,木质素降解掉71.55%的样品,酶解率可以提高9.58倍。然而,由于纤维素的晶体结构并未被破坏,物料的最终酶解产率低于40%。向纤维素酶中加入少量木聚糖酶,可以同时提高酶解速率和酶解产率。
In recent years, utilization of biomass materials as potential biofuel feedstocks to convert carbohydrates to sugars has attracted significant attention. In this thesis, Chlorella biomass, corn stover and Chinese alpine rush were selected as biomass materials to produce fermentable sugars by the technology of acid/salt, ionic liquid, steam explosion as well as enzymatic hydrolysis. The performance of fermentable sugars in the hydrolysate was evalutated by conversing to ethanol.
     A novel chemical hydrolysis technology was developed to obtain high-yielding fermentable sugars from Chlorella biomass. Using a mixed catalyst of HCl and MgCl2, the highest sugar concentration was close to 12%, and the highest sugar recovery was about 83%, more than the sum of sugar recovery with HCl or MgCl2 as the catalyst, respectively. The results suggested a synergic effect of HCl and MgCl2 during the chemical hydrolysis of Chlorella biomass. Fermentation experiments demonstrated that glucose in the Chlorella biomass hydrolysates was conversed into bioethanol by Sccharomyces cerevisiae with the yield of 0.47 g/g, which is 92% of the theoretical yield. This chemical hydrolysis technology indicated the potential to provide a novel route for biomass to fermentable sugars.
     Chlorella biomass was then hydrolyzed in the presence of [EMIM]Cl. The effects of dissolution temperature and dissolution time, HCl loading, hydrolysis temperature and hydrolysis time on the formation of fermentable sugars from Chlorella biomass were investigated. After 3 h's dissolution in [EMIM]Cl and then 3 h's hydrolysis in 7 wt% HCl at 105℃,75% of Chlorella biomass could be dissolved, with 48% of total sugar released from Chlorella biomass, a second hydrolysis of the hydrolysates in the presence of 8% H2SO4 would enhance the final sugar yield to nearly 90%. [EMIM]Cl and sugars in the hydrolysate was recovered by using ion-exclusion chromatography, with the recovery of 94% of glucose and 87% of xylose and arabinose. Fermentation experiments demonstrated that the approach used could not introduce much inhibitor that interfered with bioethanol production.
     Corn stover was treated under different steam explosion pressure (1.5 MPa-2.5 MPa), pressure-retention time (3 min-10 min) and water content (0%-60%), on the base of cellulose content, hemicelluloses content, and enzymatic yield of the treated corn stover, the optimization condition was obtained by using the software of Design Expert, with the steam explosion pressure of 2.4 MPa,8.5 min and 60% of water content. Using the steam explosion treated corn stover obtained at the above condition, enzymatic hydrolysis experiment was carried out in order to get high concentration of fermentable sugar for ethanol production, and the system was gradually increased from 0.5 L,4 Lto 150 L. In 150 L enzymatic hydrolysis system,12%,6%, and 6% of feedstock were introduced at 0 h,24 h and 48 h, with the total sugar concentration increased all the time, while for enzymatic hydrolysis yield and compositions in solid residue, the phenomenon of decrease and increase was observed alternatively. At the end of enzymatic hydrolysis,100.7 g/L of total sugar with the yield of 70.2% was obtained.
     Different samples of Chinese alpine rush material with different lignin content from a biopulping process was selected as biomass materials to produce fermentable sugars. The enzymatic hydrolysis experiments showed that lignin content in the biomass materials would significantly affect the biomass saccharification. Compared to the sample without lignin degradation, the enzymatic hydrolysis yield of the sample with 71.55% lignin degradation would enhance about 9.58 fold. The addition of xylanse would further enhace the efficiency of enzymatic hydrolysis. However, due to almost intact crystalline structure of cellulose in the test samples, the overall enzymatic hydrolysis yield was less than 40%, which implicated that disrupting the crystalline structure of cellulose in the biomass material was an important key to further enhance the enzymatic hydrolysis of biomass.
引文
1. Field, C. B.; Campbell, J. E.; Lobell, D. B., Biomass energy:the scale of the potential resource. Trends in Ecology & Evolution 2008,23 (2),65-72.
    2.吴占松;赵满成,生物质能利用技术.化学工业出版社2010.
    3. Wyman, C. E., Ethanol from lignocellulosic biomass:technology, economics, and opportunities. Bioresource Technology 1994,50 (1),3-15.
    4.陈洪章;李佐虎,纤维素原料微生物与生物量全利用.生物技术通报2002,(2),25-30.
    5.赵军;王述洋,我国生物质能资源与利用.太阳能学报2008,29(1),91-95.
    6. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M.; Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 2005,96 (6),673-686.
    7. Saha, B. C., Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 2003,30 (5),279-291.
    8. Sun, Y.; Cheng, J., Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology 2002,83 (1),1-11.
    9. Vega, J.; Clausen, E.; Gaddy, J., Biofilm reactors for ethanol production. Enzyme andMicrobial Technology 1988,10 (7),390-402.
    10. Garrote, G.; Dominguez, H.; Parajo, J., Hydrothermal processing of ligno-cellulosic materials. European Journal of Wood and Wood Products 1999,57 (3),191-202.
    11. Saha, B. C.; Iten, L. B.; Cotta, M. A.; Wu, Y. V, Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnology Progress 2005,21 (3),816-822.
    12. Nagle, N.; Ibsen, K.; Jennings, E., A process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass. Applied Biochemistry and Biotechnology 1999,79 (1),595-607.
    13. Jacobsen, S. E.; Wyman, C. E., Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Applied Biochemistry and Biotechnology 2000,84 (1),81-96.
    14.湛含辉;黄丽霖,木质纤维原料预处理与水解技术的研究进展.酿酒科技2010,190(4),83-86.
    15.吕学斌,木质纤维素转化为生物乙醇过程中关键问题的研究.天津大学博士学位论文2008.
    16. Kamm, B.; Gruber, P. R.; Kamm, M.;欧阳平凯;马延和等译,生物炼制-工业过程与产品.化学工业出版社2007.
    17. Zugenmaier, P., Cellulose. Crystalline Cellulose and Cellulose Derivatives: Characterization and Structures. Springer Series in Wood Science 2008,101-174.
    18. Dadi, A. P.; Varanasi, S.; Schall, C. A., Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering 2006,95 (5),904-910.
    19. Yu, Z.; Zhang, H., Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass and Bioenergy 2003,24 (3),257-262.
    20. Varga, E.; Schmidt, A. S.; Reczey, K.; Thomsen, A. B., Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility. Applied Biochemistry and Biotechnology 2003,104 (1),37-50.
    21. Kurakake, M.; Kisaka, W.; Ouchi, K.; Komaki, T., Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass. Applied Biochemistry and Biotechnology 2001,90 (3),251-259.
    22. Haynes, W., Cellulose, the Chemical that Grows. Doubleday Press(New York) 1953.
    23. Gunnarsson, S.; Marstorp, H.; Dahlin, A. S.; Witter, E., Influence of non-cellulose structural carbohydrate composition on plant material decomposition in soil. Biology and Fertility of Soils 2008,45 (1),27-36.
    24. Kuyper, M.; Hartog, M. M. P.; Toirkens, M. J.; Almering, M. J. H.; Winkler, A. A.; Dijken, J. P.; Pronk, J. T., Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research 2005,5 (4-5),399-409.
    25. Parajo, J. C.; Dominguez, H.; Dominguez, J. M., Biotechnological production of xylitol. Part 3:Operation in culture media made from lignocellulose hydrolysates. Bioresource Technology 1998,66 (1),25-40.
    26. Parajo, J. C.; Dominguez, H.; Dominguez, J. M., Biotechnological production of xylitol. Part 2:Operation in culture media made with commercial sugars. Bioresource Technology 1998,65 (3),203-212.
    27. Energy, U. S. D. o. E. E. E. a. R., Biomass Program-Sustainable Fuels, Chemicals, Materials, and Power 2008.
    28. Werpy, T.; Petersen, G., Top value added chemicals from biomass:Volume Ⅰ. Results of screening for potential candidates from sugars and synthesis gas. PNNL-14808, Pacific Northwest National Laboratory (PNNL), Richland, WA(US) 2004.
    29计红果;庞浩;张容丽;廖兵,木质纤维素的预处理及其酶解.化学通报2008,5,329-334.
    30.曲音波 等编著,木质纤维素降解酶与生物炼制.化学工业出版社2011.
    31.朱跃钊;卢定强;万红贵;贾红华,木质纤维素预处理技术研究进展.生物加工过程2004,2(11),11-16.
    32. Hendriks, A.; Zeeman, G., Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 2009,100 (1),10-18.
    33. Han, Y. W.; Catalano, E. A.; Ciegler, A., Chemical and physical properties of sugarcane bagasse irradiated with γ rays. Journal of Agricultural and Food Chemistry 1983,31 (1),34-38.
    34. Yang, C.; Shen, Z.; Yu, G.; Wang, J., Effect and aftereffect of γ radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresource Technology 2008,99(14),6240-6245.
    35. Mamar, S.; Hadjadj, A., Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 1990,35(1-3),451-455.
    36. Chosdu, R.; Hilmy, N., Radiation and chemical pretreatment of cellulosic waste. Radiation Physics and Chemistry 1993,42 (4-6),695-698.
    37. Bak, J. S.; Ko, J. K.; Han, Y. H.; Lee, B. C.; Choi, I. G.; Kim, K. H., Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology 2009,100 (3),1285-1290.
    38. Xin, L. Z.; Kumakura, M., Effect of radiation pretreatment on enzymatic hydrolysis of rice straw with low concentrations of alkali solution. Bioresource Technology 1993,43 (1),13-17.
    39.张裕卿;付二红;梁江华,超声波对木质纤维素糖化过程影响的研究.中 国生物工程杂志2007,27(9),81-84.
    40. Wang, X. L.; Fang, G. Z.; Hu, C. P., Influence of Ultrasonic Wave-activating Treatment on Structure and Oxidation Reactivity of Microcrystalline Cellulose. Chemical Journal of Chinese Universities 2007,25(3),565-567.
    41. Li, S. Y.; Liu, X. F.; Zhuang, X. P.; Guan, Y. L.; Cheng, G. X., Ultrasonic treatment of cotton pulp cellulose. Chinese Journal of Applied Chemistry 2003, 20(11),1030-1034.
    42. Ma, H.; Liu, W. W.; Chen, X.; Wu, Y.J.; Yu, Z. L., Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource Technology 2009,100 (3),1279-1284.
    43. Zhu, S.; Wu, Y.; Yu, Z.; Chen, Q.; Wu, G.; Yu, F.; Wang, C.; Jin, S., Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosystems Engineering 2006,94 (3),437-442.
    44. Zhu, S.; Wu, Y.; Yu, Z.; Liao, J.; Zhang, Y, Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry 2005,40 (9), 3082-3086.
    45. Zhu, S.; Wu, Y.; Yu, Z.; Wang, C.; Yu, F.; Jin, S.; Ding, Y.; Chi, R.; Liao, J.; Zhang, Y, Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw. Biosystems Engineering 2006,93 (3), 279-283.
    46. Hu, Z.; Wen, Z., Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal 2008,38 (3),369-378.
    47. Lau, M. W.; Dale, B. E.; Balan, V, Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnology and Bioengineering 2008,99 (3),529-539.
    48. Li, B. Z.; Balan, V.; Yuan, Y J.; Dale, B. E., Process optimization to convert forage and sweet sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. Bioresource Technology 2010,101 (4), 1285-1292.
    49. Murnen, H. K.; Balan, V.; Chundawat, S. P. S.; Bals, B.; Sousa, L. C.; Dale, B. E., Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnology progress 2007,23 (4),846-850.
    50. Sendich, E. N.; Laser, M.; Kim, S.; Alizadeh, H.; Laureano-Perez, L.; Dale, B.; Lynd, L., Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresource Technology 2008,99 (17),8429-8435.
    51. Teymouri, F.; Laureano-Perez, L.; Alizadeh, H.; Dale, B. E., Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technology 2005,96 (18),2014-2018.
    52. Bals, B.; Dale, B.; Balan, V, Enzymatic hydrolysis of distiller's dry grain and solubles (DDGS) using ammonia fiber expansion pretreatment. Energy & fuels 2006,20 (6),2732-2736.
    53. Lau, M. W.; Dale, B. E., Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proceedings of the National Academy of Sciences 2009,106 (5),1368-1373.
    54. Gao, D.; Chundawat, S. P. S.; Krishnan, C.; Balan, V.; Dale, B. E., Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresource Technology 2010,101 (8),2770-2781.
    55. Farone, W. A.; Cuzens, J. E., Strong acid hydrolysis of cellulosic and hemicellulosic materials. Google Patents:1997.
    56. Farone, W. A.; Cuzens, J. E., Method of producing sugars using strong acid hydrolysis of cellulosic and hemicellulosic materials. Google Patents:1996.
    57. Clausen, E. C.; Gaddy, J. L., Concentrated sulfuric acid process for converting lignocellulosic materials to sugars. Google Patents:1993.
    58. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z., Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews 2002,102 (10),3667-3692.
    59. Huddleston, J. G.; Rogers, R. D., Room temperature ionic liquids as novel media for'clean'liquid-liquid extraction. Chemical Communication 1998, (16),1765-1766.
    60. Roberts, N. J.; Lye, G. J., Application of Room-temperature ionic liquids in biocatalysis:Opportunities and challenges. In Ionic Liquids, American Chemical Society 2002,818,347-359.
    61. Chen, S. L.; Chua, G. L.; Ji, S. J.; Loh, T. P., Ionic Liquid:A green solvent for organic transformations Ⅰ.2007,950,161-176..
    62. Chen, S. L.; Chua, G. L.; Ji, S. J.; Loh, T. P., Ionic Liquid:A green solvent for organic transformations Ⅱ.2007,950,177-193.
    63. Graenacher, C., Cellulose solution. Google Patents:1934.
    64. Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D., Dissolution of cellose with ionic liquids. Journal of the American Chemical Society 2002, 124 (18),4974-4975.
    65. Rogers, R. D.; Voth, G. A., Ionic liquids. Accounts of Chemical Research 2007, 40(11),1077-1078.
    66. Rogers, R. D.; Seddon, K. R.; Meeting, A. C. S., Ionic liquids as green solvents:progress and prospects. American Chemical Society Washington, DC: 2003
    67. Turner, M. B.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D., Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolecules 2004,5(4),1379-1384
    68. Moulthrop, J. S.; Swatloski, R. P.; Moyna, G.; Rogers, R. D., High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chemical Communications 2005, (12),1557-1559.
    69. Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G., Dissolution of cellulose with ionic liquids and its application:a mini-review. Green Chemistry 2006,8 (4),325-327.
    70. Fort, D. A.; Remsing, R. C.; Swatloski, R. P.; Moyna, P.; Moyna, G.; Rogers, R. D., Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chemistry 2006,9 (1),63-69.
    71. Remsing, R. C.; Swatloski, R. P.; Rogers, R. D.; Moyna, G., Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride:A 13C and 35/37Cl NMR relaxation study on model systems. Chemical Communications 2006, (12),1271-1273.
    72. Turner, M. B.; Spear, S. K.; Holbrey, J. D.; Daly, D. T.; Rogers, R. D., Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules 2005,6 (5),2497-2502..
    73. Gutowski, K. E.; Grant, A.; Willauer, H. D.; Huddleston, J. G.; Swatloski, R. P.; Holbrey, J. D.; Rogers, R. D., Controlling the aqueous miscibility of ionic liquids:Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. Journal of the American Chemical Society 2003,125 (22),6632-6633.
    74. Turner, M. B.; Spear, S. K.; Huddleston, J. G.; Holbrey, J. D.; Rogers, R. D., Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei. Green Chemistry 2003,5 (4),443-447.
    75. Smiglak, M.; Metlen, A.; Rogers, R. D., The second evolution of ionic liquids: From solvents and separations to advanced materials energetic examples from the ionic liquid cookbook. Accounts of Chemical Research 2007,40 (11), 1182-1192.
    76. Swatloski, R. P.; Rogers, R. D.; Holbrey, J. D., Dissolution and processing of cellulose using ionic liquids. Google Patents:2004.
    77. Sun, N.; Rahman, M.; Qin, Y.; Maxim, M. L.; Rodriguez, H.; Rogers, R. D., Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry 2009,11 (5),646-655.
    78. Aksela, R.; Myllymaki, V., Dissolution method for lignocellulosic materials. Patent WO2005017001 2005.
    79. Zhang, H.; Wu, J.; Zhang, J.; He, J., 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid:a new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005,38 (20),8272-8277.
    80. Wu, J.; Zhang, J.; Zhang, H.; He, J.; Ren, Q.; Guo, M., Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 2004,5 (2), 266-268.
    81. Liu, L.; Chen, H., Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chinese Science Bulletin 2006,51 (20),2432-2436.
    82.李秋瑾;殷友利;苏荣欣;齐崴;何志敏,离子液体[BMIM]Cl预处理对微晶纤维素酶解的影响.化学学报2009,67(1),88-92.
    83. Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M.; Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 2005,96 (6),673-686.
    84. Saddler, J.; Brownell, H.; Clermont, L.; Levitin, N., Enzymatic hydrolysis of cellulose and various pretreated wood fractions. Biotechnology and Bioengineering 1982,24 (6),1389-1402.
    85. Erari, T.; Niku-Paavola, M. L., Enzymatic hydrolysis of cellulose:is the current theory of the mechanisms at hydrolysis valid. Critical Reviews in Biotechnology.1987,5 (1),67-87.
    86. Philippidis, G. P.; Smith, T. K.; Wyman, C. E., Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnology and Bioengineering 1993, 41(9),846-853.
    87. Lee, Y. H.; Fan, L., Kinetic studies of enzymatic hydrolysis of insoluble cellulose:analysis of the initial rates. Biotechnology and Bioengineering 1982, 24 (11),2383-2406.
    88. Wright, J.D., Ethanol from biomass by enzymatic hydrolysis. Chemical Engineering Progress 1988.84(8),62-74.
    89. Sternberg, D.; Vuayakumar, P.; Reese, E.,β-Glucosidase:Microbial production and effect on enzymatic hydrolysis of cellulose. Canadian Journal of Microbiology 1977,23 (2),139-147.
    90. Mandels, M.; Hontz, L.; Nystrom, J., Enzymatic hydrolysis of waste cellulose. Biotechnology and Bioengineering 1974,16 (11),1471-1493.
    91. Fan, L.; Lee, Y.; Beardmore, D., Mechanism of the enzymatic hydrolysis of cellulose:Effect of major structural features of cellulose on enzymatic hydrolysis. Biotechnology and Bioengineering 1980,23,177-199.
    92. Zhang, Y.; Lynd, L., Toward an aggregated understanding of enzymatic hydrolysis of cellulose:Noncomplexed cellulase systems. Biotechnol Bioeng 2004,88,797-824.
    93. Lin, Y.; Tanaka, S., Ethanol fermentation from biomass resources:Current state and prospects. Applied Microbiology and Biotechnology 2006,69 (6), 627-642.
    94. Grous, W. R.; Converse, A. O.; Grethlein, H. E., Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology 1986,8 (5),274-280.
    95. Ballesteros, I.; Oliva, J.; Negro, M.; Manzanares, P.; Ballesteros, M., Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochemistry 2002,38 (2),187-192.
    96. Mielenz, J. R., Ethanol production from biomass:technology and commercialization status. Current Opinion in Microbiology 2001,4 (3), 324-329.
    97. Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W.J.; Hallett, J. P.; Leak, D.J.; Liotta, C. L., The path forward for biofuels and biomaterials. Science 2006,311 (5760), 484-489.
    98. Soderstrom, J.; Pilcher, L.; Galbe, M.; Zacchi, G., Combined use of H2SO4 and SO2 impregnation for steam pretreatment of spruce in ethanol production. Applied Biochemistry and Biotechnology 2003,105 (1),127-140.
    99. Ackerson, M.; Ziobro, M.; Gaddy, J. L., Two-stage acid hydrolysis of biomass. Symposium on Biotechnology in Energy Production and Conservation, Gatlinburg, TN, USA 1981,11:103-112.
    100. Immergut, E.; R nby, B., Heterogeneous acid hydrolysis of native cellulose fibers. Industrial & Engineering Chemistry 1956,48 (7),1183-1189..
    101. Lee, Y.; Iyer, P.; Torget, R., Dilute-acid hydrolysis of lignocellulosic biomass. In Recent Progress in Bioconversion of Lignocellulosics, Springer Berlin/ Heidelberg:1999; Vol.65, pp 93-115.
    102. Lu, X.; Zhang, Y.; Angelidaki, I., Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol: Focusing on pretreatment at high solids content. Bioresource Technology 2009, 100(12),3048-3053.
    103. Xiang, Q.; Lee, Y. Y.; Pettersson, P. O.; Torget, R. W., Heterogeneous aspects of acid hydrolysis of alpha-cellulose. Applied Biochemisty and Biotechnology 2003,105-105,505-514.
    104. Torget, R. W.; Kim, J. S.; Lee, Y, Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates.1. Cellulose hydrolysis. Industrial & Engineering Chemistry Research 2000,39 (8), 2817-2825.
    105. Mok, W. S.; Antal Jr, M. J.; Varhegyi, G., Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose. Industrial & Engineering Chemistry Research 1992,31 (1),94-100.
    106. Karimi, K.; Kheradmandinia, S.; Taherzadeh, M. J., Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy 2006,30 (3), 247-253.
    107. Saeman, J. F., Kinetics of wood saccharification-Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial & Engineering Chemistry 1945,37 (1),43-52.
    ;108. Nguyen,Q.A.;Tucker, M.P.;Keller, F.A.;Beaty,D.A.;Connors,K.M.; Eddy,F.P.,Dilute acid hydrolysis of softwoods.Applied Biochemistry and Biotechnology 1999,77(1),133-142.
    109. Roberto,I.C.:Mussatto,S.I.;Rodrigues,R.C.L.B.,Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products 2003,17(3),171-176.
    110. Maloney,M.T.;Chapman,T.W.;Baker, A.J.,Dilute acid hydrolysis of paper birch:Kinetics studies of xylan and acetyl-group hydrolysis.Biotechnology and Bioengineering 1985,27(3),355-361.
    111. Lee,Y.;Iyer, P.;Torget,R.,Dilute-Acid Hydrolysis of Lignocellulosic Biomass.In Recent Progress in Bioconversion of Lignocellulosics,Tsao,G.; Brainard,A.;Bungay,H.;Cao,N.;Cen,P.;Chen,Z.;Du,J.;Foody,B.;Gong, C.;Hall,P.;Ho,N.;Irwin,D.;Iyer, P.;Jeffries,T.;Ladisch,C.;Ladisch,M.; Lee,Y.;Mosier, N.;Muhlemann,H.;Sedlak,M.;Shi,N.;Tolan,J.;Torget,R.; Wilson,D.;Xia,L.,Eds.Springer Berlin/Heidelberg:1999;Vol.65,pp 93-115.
    112. Larsson,S.;Palmqvist,E.;Hahn-Hagerdal,B.;Tengborg,C.;Stenberg,K.; Zacchi,G.;Nilvebrant,N.O.,The generation of fermentation inhibitors during dilute acid hydrolysis of softwood.Enzyme and Micrrobial Technology 1999, 24(3-4),151-159.
    113. Fraser, K.J.;Poulsen,K.;Haber, E.,Specific cleavage between variable and constant domains of rabbit antibody light chains by dilute acid hydrolysis. Biochemistry 1972,11(26),4974-4977.
    114. Cuzens,J.C.;Miller, J.R.,Acid hydrolysis of bagasse for ethanol production. Renewable Energy 1997,10(2-3),285-290.
    115. Kim,S.B.;Lee,Y.,Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment.Bioresource Technology 2002,83(2),165-171.
    116. Nguyen,Q. A.;Tucker, M.P.,Dilute acid/metal salt hydrolysis of lignocellulosics.Google Patents:2002.
    117. 颜涌捷;任铮伟,纤维素连续催化水解研究.太阳能学报1999,20(1),55-58.
    118. Kootstra,A.M.J.;Beeftink,H.H.;Scott,E.L.;Sanders,J.P. M.,Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal 2009,46 (2),126-131.
    119. Mosier, N.; Hendrickson, R.; Ho, N.; Sedlak, M.; Ladisch, M. R., Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technology 2005,96 (18),1986-1993.
    120. Kim, Y.; Hendrickson, R.; Mosier, N. S.; Ladisch, M. R., Liquid hot water pretreatment of cellulosic biomass. Methods in Molecular Biology:Biofuels 2009,581,93-102.
    121. Liu, C.; Wyman, C. E., Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresource Technology 2005,96 (18),1978-1985.
    122. Zeng, M.; Mosier, N. S.; Huang, C. P.; Sherman, D. M.; Ladisch, M. R., Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnology and Bioengineering 2007,97 (2),265-278.
    123. Rogalinski, T.; Ingram, T.; Brunner, G., Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. The Journal of Supercritical Fluids 2008,47 (1),54-63.
    124. Amarasekara, A. S.; Ebede, C. C., Zinc chloride mediated degradation of cellulose at 200℃ and identification of the products. Bioresource Technology 2009,100(21),5301-5304.
    125. Cao, N.; Xu, Q.; Chen, L., Acid hydrolysis of cellulose in zinc chloride solution. Applied Biochemistry and Biotechnology 1995,51-52 (1),21-28.
    126. Cao, N.; Xu, Q.; Chen, L., Xylan hydrolysis in zinc chloride solution. Applied Biochemistry and Biotechnology 1995,51-52 (1),97-104.
    127. Cao, N.J.; Xu, Q.; Chen, C. S.; Gong, C.; Chen, L., Cellulose hydrolysis using zinc chloride as a solvent and catalyst. Applied Biochemistry and Biotechnology 1994,45-46 (1),521-530.
    128. Kawamoto, H.; Yamamoto, D.; Saka, S., Influence of neutral inorganic chlorides on primary and secondary char formation from cellulose. Journal of Wood Science 2008,54 (3),242-246.
    129. Liu, L.; Sun, J.; Li, M.; Wang, S.; Pei, H.; Zhang, J., Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresource Technology 2009,100 (23),5853-5858.
    130. Carrillo, F.; Lis, M.; Colom, X.; Lopez-Mesas, M.; Valldeperas, J., Effect of alkali pretreatment on cellulase hydrolysis of wheat straw:Kinetic study. Process Biochemistry 2005,40 (10),3360-3364.
    131. DeBaun, R. M.; Nord, F., The resistance of cork to decay by wood-destroying molds. Archives of Biochemistry and Biophysics 1951,33 (2),314-319.
    132.鲁杰;石淑兰;邢效功;杨汝男,NaOH预处理对植物纤维素酶解特性的影响.纤维素科学与技术2004,12(1),1-6.
    133. Kim, S.; Holtzapple, M. T., Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology 2005,96 (18),1994-2006.
    134. Kim, S.; Holtzapple, M. T., Delignification kinetics of corn stover in lime pretreatment. Bioresource Technology 2006,97 (5),778-785.
    135. Kaar, W. E.; Holtzapple, M. T., Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy 2000,18 (3), 189-199.
    136. Saha, B. C.; Cotta, M. A., Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass and Bioenergy 2008,32 (10), 971-977.
    137. Kim, T. H.; Lee, Y. Y, Pretreatment of corn stover by soaking in aqueous ammonia. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. Davison, B. H.; Evans, B. R.; Finkelstein, M.; McMillan, J. D., Eds. Humana Press:2005; pp 1119-1131.
    138. Kim, T. H.; Lee, Y, Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Applied Biochemistry and Biotechnology 2007,137(1),81-92.
    139. Isci, A.; Himmelsbach, J. N.; Pometto, A. L.; Raman, D. R.; Anex, R. P., Aqueous ammonia soaking of switchgrass followed by simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology 2008,144 (1),69-77.
    140. Varga, E.; Szengyel, Z.; Reczey, K., Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Applied Biochemistry and Biotechnology 2002,98 (1),73-87.
    141. Puri, V. P., Ozone pretreatment to increase digestibility of lignocellulose. Biotechnology Letters 1983,5 (11),773-776.
    142. Neely, W., Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnology and Bioengineering 1984,26 (1),59-65.
    143. Martin, C.; Klinke, H. B.; Thomsen, A. B., Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme and Microbial Technology 2007,40 (3),426-432.
    144. Kadla, J. F.; Chang, H. M.; Jameel, H., The Reactions of Lignins with High Temperature Hydrogen Peroxide Part 2. The Oxidation of Kraft Lignin. Holzforschung 1999,53 (3),277-284.
    145. Nonni, A.; Dence, C., The Reactions of Alkaline Hydrogen Peroxide with Lignin Model Dimers Part 3:1,2-Diaryl-1,3-Propanediols. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 1988, 42(1),37-46.
    146. Garcia-Cubero, M. T.; Gonzalez-Benito, G.; Indacoechea, I.; Coca, M.; Bolado, S., Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology 2009,100 (4),1608-1613.
    147. Bjerre, A. B.; Olesen, A. B.; Fernqvist, T.; Ploger, A.; Schmidt, A. S., Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering 1996,49 (5),568-577.
    148. Klinke, H. B.; Ahring, B. K.; Schmidt, A. S.; Thomsen, A. B., Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresource Technology 2002,82 (1),15-26.
    149. Schmidt, A. S.; Thomsen, A. B., Optimization of wet oxidation pretreatment of wheat straw. Bioresource Technology 1998,64 (2),139-151.
    150. Pan, X.; Gilkes, N.; Kadla, J.; Pye, K.; Saka, S.; Gregg, D.; Ehara, K.; Xie, D.; Lam, D.; Saddler, J., Bioconversion of hybrid poplar to ethanol and coproducts using an organosolv fractionation process:Optimization of process yields. Biotechnology and Bioengineering 2006,94 (5),851-861.
    151. Pan, X.; Xie, D.; Richard, W. Y.; Lam, D.; Saddler, J. N., Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process:Fractionation and process optimization. Industrial & Engineering Chemistry Research 2007,46 (8),2609-2617.
    152. Pan, X.; Xie, D.; Gilkes, N.; Gregg, D. J.; Saddler, J. N., Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Applied Biochemistry and Biotechnology 2005,124 (1),1069-1079.
    153. Sanchez, C., Lignocellulosic residues:biodegradation and bioconversion by fungi. Biotechnology Advances 2009,27 (2),185-194.
    154. Guillen, F.; Martinez, M. J.; Gutierrez, A., Biodegradation of lignocellu-losics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology 2005,8,195-204.
    155. Jin, L.; Schultz, T. P.; Nicholas, D. D., Structural characterization of brown-rotted lignin. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood 1990,44 (2),133-138.
    156. Kumar, P.; Barrett, D. M.; Delwiche, M. J.; Stroeve, P., Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research 2009,48 (8), 3713-3729.
    157. Fan, L.; Gharpuray, M.; Lee, Y, Cellulose hydrolysis. Biotechnology monographs. Volume 3.1987.
    158. Giles, R. L.; Galloway, E. R.; Elliott, G. D.; Parrow, M. W., Two-stage fungal biopulping for improved enzymatic hydrolysis of wood. Bioresource Technology 2011,102 (17),8011-8016.
    159. Vargas-Garcia, M.; Suarez-Estrella, F.; Lopez, M.; Moreno, J., In vitro Studies on lignocellulose degradation by microbial strains isolated from composting processes. International Biodeterioration & Biodegradation 2007,59 (4), 322-328.
    160. Zahedifar, M.; Castro, F.; (?)rskov, E., Effect of hydrolytic lignin on formation of protein-lignin complexes and protein degradation by rumen microbes. Animal Feed Science and Technology 2002,95 (1-2),83-92.
    161. Crawford, D. L.; Crawford, R. L., Microbial degradation of lignocellulose:the lignin component. Applied and Environmental Microbiology 1976,31 (5),714.
    162. Singh, P.; Suman, A.; Tiwari, P.; Arya, N.; Gaur, A.; Shrivastava, A., Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology 2008,24 (5), 667-673.
    163. Schell, D. J.; Farmer, J.; Newman, M.; McMILLAN, J. D., Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor. Applied Biochemistry and Biotechnology 2003,105 (1),69-85.
    164. Nguyen, Q. A.; Tucker, M. P.; Keller, F. A.; Eddy, F. P., Two-stage dilute-acid pretreatment of softwoods. Applied Biochemistry and Biotechnology 2000,84 (1),561-576.
    165. Saha, B. C.; Bothast, R. J., Pretreatment and enzymatic saccharification of corn fiber. Applied Biochemistry and Biotechnology 1999,76 (2),65-11.
    166. Nguyen, Q.; Tucker, M.; Boynton, B.; Keller, F.; Schell, D., Dilute acid pretreatment of softwoods. Applied Biochemistry and Biotechnology 1998,70 (1),77-87.
    167. Wang, X.; Liu, X.; Wang, G., Two-stage Hydrolysis of Invasive Algal Feedstock for Ethanol FermentationF. Journal of Integrative Plant Biology 2011,53 (3),246-252.
    168. Thu, N. M.; Choi, S. P.; Lee, J.; Lee, J. A. E. H. W. A.; Sim, S. J. U. N., Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Journal of Microbiology and Biotechnology 2009,19 (2), 161-166.
    169. Kim, N. J.; Li, H.; Jung, K.; Chang, H. N.; Lee, P. C., Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology 2011,102 (16),7466-7469.
    170. Israilides, C.; Grant, G.; Han, Y, Sugar level, fermentability, and acceptability of straw treated with different acids. Applied and Environmental Microbiology 1978,36 (1),43-46.
    171.何北海;林鹿;孙润仓;孙勇,木质纤维素化学水解产生可发酵糖研究.化学进展2007,19(7),1141-1146.
    172. Peter, Z., Conformation and packing of various crystalline cellulose fibers. Progress in Polymer Science 2001,26 (9),1341-1417.
    173. Domvoglou, D.; Ibbett, R.; Wortmann, F.; Taylor, J., Controlled thermo-catalytic modification of regenerated cellulosic fibres using magnesium chloride Lewis acid. Cellulose 2009,16 (6),1075-1087.
    174. Chen, W. H.; Pen, B. L.; Yu, C. T.; Hwang, W. S., Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technology 2011, 102 (3),2916-2924.
    175. Abatzoglou, N.; Chornet, E.; Belkacemi, K.; Overend, R. P., Phenomenological kinetics of complex systems:the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chemical Engineering Science 1992,47 (5),1109-1122.
    176. Chum, H.; Johnson, D.; Black, S.; Overend, R., Pretreatment-Catalyst effects and the combined severity parameter. Applied Biochemistry and Biotechnology 1990,24-25(1),1-14.
    177. Kabel, M. A.; Bos, G.; Zeevalking,J.; Voragen, A. G.J.; Schols, H. A., Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology 2007,98 (10), 2034-2042.
    178. Bai, F.; Anderson, W.; Moo-Young, M., Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances 2008,26 (1), 89-105.
    179. Yuan, C. Y.; Dai, S.; Wei, Y.; Chen-Yang, Y W., Preparation of Functional Silica Aerogels Using Ionic Liquids as Solvents.2002,818,106-113.
    180. Yuan, D.; Rao, K.; Relue, P.; Varanasi, S., Fermentation of biomass sugars to ethanol using native industrial yeast strains. Bioresource Technology 2011,102 (3),3246-3253.
    181. Bezerra, R. M. F.; Dias, A. A., Enzymatic kinetic of cellulose hydrolysis. Applied Biochemistry and Biotechnology 2005,126 (1),49-59
    182. Lee, Y H.; Fan, L., Kinetic studies of enzymatic hydrolysis of insoluble cellulose:(Ⅱ). Analysis of extended hydrolysis times. Biotechnology and Bioengineering 1983,25 (4),939-966.
    183. Fan, L.; Lee, Y., Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Derivation of a mechanistic kinetic model. Biotechnology and Bioengineering 1983,25(11),2707-2733.
    184. Gregg, D. J.; Saddler, J. N., Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering 1996,51 (4),375-383.
    185.杨革生,邵慧丽,胡学超,辐照对竹纤维素聚合度及结晶结构的影响.功能高分子学报2007,19-20(2),143-147.
    186. Park, S.; Baker, J.; Himmel, M.; Parilla, P.; Johnson, D., Cellulose crystallinity index:measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 2010,3 (1),1-10.
    187. Cao, Y.; Tan, H., Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme and Microbial Technology 2005,36 (2-3),314-317.
    188. Zhao, H.; Kwak, J. H.; Conrad Zhang, Z.; Brown, H. M.; Arey, B. W.; Holladay, J. E., Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers 2007,68(2):235-241.
    189. Kaushik, A. and M. Singh, Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydrate Research 2011, (346):76-85.
    190. Ohgren, K.; Bura, R.; Saddler, J.; Zacchi, G., Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology 2007,95(13):2503-2510.
    191. Berlin, A.; Maximenko, V.; Gilkes, N.; Saddler, J., Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnology and Bioengineering 2007,97(2):287-296.
    192. Wilkins, M. R.; Widmer, W. W.; Grohmann, K.; Cameron, R. G., Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresource Technology 2007,95(8):1596-1601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700