无线通信系统中高选择性小型化带通滤波器的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代无线通信,尤其是卫星通信和移动通信,对通道的选择性要求比较高。对器件小型化、微型化的要求也越来越迫切。因此小型化、高选择性是当前滤波器研究的热点。本文根据现实需求,紧紧围绕“高选择性、小型化”两个课题展开,深入地研究了实现高选择性和小型化的新技术和新结构。主要内容如下:
     (1)首先研究了利用边带优化的方法综合准椭圆函数和广义Chebyshev函数滤波器,实现滤波器的阶数最小化,选择性最大化。
     (2)提出了含源-负载交叉耦合滤波器的低通等效电路模型,给出了这种结构的传输函数t (s)以及矩阵的综合方法。由含源-负载交叉耦合二端口网络的短路导纳矩阵推导了耦合矩阵M中M SL, M Si和M iL的一般表达式。最后,设计了两种结构新颖的小型化六边形微带滤波器,分别是两腔(同步调谐)和三腔(异步调谐)源-负载耦合交叉耦合滤波器。
     (3)研究了三种结构的传输线滤波器产生零点的条件,即对称与斜对称串行传输线滤波器、对称与斜对称平行耦合线滤波器以及斜对称耦合的发夹型滤波器,分析了它们产生传输零点的原因、个数和位置。设计了四种具有多传输零点的微带滤波器,提高了滤波器的选择性。
     (4)重点研究了三种DGS(倒“S”型、发夹型、“凹”型)耦合线滤波器的超宽带特性以及这三种DGS传输线滤波器的低通特性,根据它们的这些特点,设计了多个具有高选择性的小型化超宽带滤波器。
     (5)首次通过对TEM波作用下SRR双各向异性介质的解析分析,揭示了虚波数引起SRR结构谐振特性的事实,对相对于入射波六种不同摆向的SRR结构谐振响应做出了统一的物理解释。并设计了新颖的SRR多层小型化高选择性滤波器。
The characteristics of compact size, high selectivity, and low insertion loss for modern microwave filters are highly required in the modern mobile and satellite communication systems. So miniaturized and highly selective filter is currently a research hotpoint. Based on the real demand, the new technology and new structure of miniaturized and highly selective filter are analyzed thoroughly in this thesis. The dissertation is classified into five parts stated as follows.
     Firstly, novel and exact methods are presented for maximizing the band-edge selectivity of the quasi-elliptic function and general Chebyshev function filters. The technology satisfactorily resolves maximizing the BES with the least order n .
     Secondly, A general method is presented for synthesizing microwave filter with source-load cross coupling. The equivalent circuit of the low-pass prototype of a general lossless coupled resonator filter is proposed, and the corresponding transfer function t(s) is derived. The expressions of M SL, M Siand M iLin the coupling matrix M are obtained based on two-port admittance matrix [ Y N]. Then, two novel hexagonal open-loop quasi-elliptic resonator microstrip filters are designed, one symmetric and the other asymmetric, are designed.
     Thirdly,transmission zero conditions of three types of different coupled lines are analyzed, which areλ/2 serial microstrip lines using skew-symmetric and symmetric feed structure,λ/2 parallel coupled microstrip lines using skew-symmetric and symmetric feed structure, andλ/2 hairpin resonators using skew-symmetric feed structure. the number and Principles, location of transmission zeros are discussed, and then these structures are applied to the design of microstrip filters with multiple transmission zeroes.
     Fourthly, ultra wideband characteristics of three types of coupled line filters with different defected ground structure are studied, and lowpass characteristics of three types of transmission line filters with different defected ground structure are analyzed, and then these structures are applied to the design of ultra wideband filters with transmission zeroes.
     Finally, Through analysis of bianisotropic split ring resonator (SRR) metamaterials, the uniform physical explanation for SRR resonance band gaps is gained by revealing the fact that imaginary wave number does lead to the SRR resonance. The magnetic resonance of SRRs has been explained particularly and comprehensively. Meanwhile, a novel compact multilayer filter, which is based upon the small size of SRR, the skew-symmetric feed scheme and the multilayer technology, is proposed.
引文
[1]W. Caner, Synthesis of linear communication network , McGraw-Hill Book Company, 1958.
    [2]S. B. Cohn, Direct coupled resonator filters, Proc. IRE, 1957, Feb., Vol.45, No.2, pp. 187-196.
    [3]G. L. Matthaei, Microwave filters, impendence-matching networks and coupling structure, Norwood, MA: Artech, 1980.
    [4]R. Levy, Theory of direct-coupled cavity filters, IEEE Transactions on microwave theory and techniques, 1972, Apr., Vol. MTT-15, No.4, pp. 340-348.
    [5]S. O. Scanlan and J. D. Rhodes, Microwave network with constant delay, IEEE Trans. Microw. Theory Tech., 1972, Apr., Vol. MTT-20, No.4, pp. 258-265.
    [6]S. B. Cohn, Generalized design of band-pass and other filters by computer optimization, IEEE MTT-S Int. Microwave Symposium Dig., 1974,Jun.,Vol.74, No.1,pp.272-274.
    [7]H. J. Orchard, Filter design by iterated analysis, IEEE Trans. Circuit Systems, 1985,Nov.,Vol.32, No.11, pp.1089-1096.
    [8]A. E. Atia and A. E. Williams, Narrow-bandpass waveguide filters, IEEE Trans. Microw. Theory Tech., 1972, Apr., Vol. MTT-20, No.4, pp. 258-265.
    [9]R. J. Cameron, General coupling matrix synthesis methods for Chebyshev filtering functions, IEEE Trans. Microw. Theory Tech., 1999, Apr.,Vol.47, No. 4, pp.433-442
    [10]甘本袚,吴万春,现代微波滤波器的结构与设计,科学出版社,1973.
    [11]李嗣范,微波元件原理与设计,人民邮电出版社,1982.
    [12]林为干,微波网络,国防工业出版社,1978.
    [13]禹旭敏,吴须大,L波段类椭圆函数微带滤波器,空间电子技术,2002 ,No. 1,pp.45-48,
    [14]吴须大,杨军,源/负载与谐振器交叉耦合技术在星上的应用,空间电子技术, 2002,No. 4, pp. 48-52.
    [15]苏涛,多路耦合器及其相关理论和技术研究,博士学位论文,西安电子科技大学,2004.
    [16]R. Levy, Filters with single transmission zeros at real or imaginary frequencies, IEEE Trans. Microw. Theory Tech., 1976, Apr., vol. MTT-24, No.4, pp. 172–181.
    [17]R. J. Cameron, Fast generation of Chebyshev filter prototypes with asymmetrically-prescribed transmission zeros, ESA J., 1982, Jan., vol.6, No.1, pp. 83–95.
    [18]S. Amari, J. Bornemann, Maximum number of finite transmission zeros of coupled resonator filters with source/load multi-resonator coupling and a given topology, Asia-Pacific Microwave Conference, 2000, Dec., vol.3–6,pp.1175–1177.
    [19]J. R. Montejo-Garai, Synthesis of N-even order symmetric filters with N transmission zeros by means of source-load cross coupling, Electronics Letters, 2000, Feb., Vol.36, No.3, pp.232-233.
    [20]S. Amari, Direct synthesis of folded symmetric resonator filters with source-load coupling, IEEE Microwave and Wireless Component Letters, 2001, Jun., Vol.11, No.6,pp.264–266.
    [21] R. Levy, Direct synthesis of cascaded quadruplet (CQ) filters, IEEE Trans. Microw. Theory Tech.,1995, Dec.,vol.43, No.12,pp. 2940–2944.
    [22] Ching-Ku, L. and C. Chi-Yang, Design of microstrip quadruplet filters with source-load coupling, IEEE Trans. Microwave Theory Tech., 2005, Jul., Vol. MTT-53, No.7, pp.258–265.
    [23]H. C. Bell, Canonical asymmetric coupled-resonator filters, IEEE Trans. Microwave Theory Tech., 1982, Sept. Vol.30, No.9, pp.1335–1340.
    [24]J. Montejo-Garai, J. A. Ruiz-Cruz, Synthesis and Design of In-Line N-Order Filters With N Real Transmission Zeros by Means of Extracted Poles Implemented in Low-Cost Rectangular H-Plane Waveguide, IEEE Trans. Microwave Theory Tech.,2005, MAY.,Vol.53, No.5, pp.1636 -1642.
    [25]R.N. Gajaweera, L.F. Lind, Coupling matrix extraction for cascaded- triplet(CT) topology, IEEE Trans. Microwave Theory Tech., 2004,Mar., Vol.52, No.3, pp.768- 772.
    [26]J.S. Hong, J. M. Lancaster, Design of Highly Selective Microstrip Bandpass Filters with a Single Pair of Attenuation Poles at Finite Frequencies, IEEE Trans. Microwave Theory Tech., 2000, Jul., Vol. 48, No.7, pp.1098-1107.
    [27]Wolff,Microstrip Bandpass Filter using Degenerate Modes of aMicrostrip Ring Resonator, Electronics Leters, 1972,Jun., Vol.8, No.12, pp.302-303.
    [28]L. Zhu, B. C. Tan, and S. J. Quek, Miniaturized Dual-Mode Bandpass Filter Using Inductively Loaded Cross-Slotted Patch Resonator, IEEE Microwave and Wireless Component Letters, 2005, Jan., Vol.15, No.1, pp.22-24.
    [29]X.Q. Zhang, Q.D. Meng, A 24-pole high Tc superconducting filter for mobile communication applications, Superconductor science and technology, 2006, Mar.,Vol.19, No.5,pp.394–S397
    [30]S.Z. Li, J.D. Huang, Q. D. Meng, A 12-Pole Narrowband Highly Selective High-Temperature Superconducting Filter for the Application in the Third-Generation Wireless Communications, IEEE Trans. Microwave Theory Tech.,2007, Apr., Vol.55, No.4,pp.754-759.
    [31]H.W. Yao, C. Wang and A. K. Zaki, Quarter Wavelength Ceramic Combline Filters,IEEE Trans. Microwave Theory Tech.,1996,Dec., Vol.44, No.12,pp.2673-2679.
    [32] H.W. Yao, A.K. Zaki, E.A. Atia, Full Wave Modeling of Conducting Posts in Rectangular Waveguides and Its Applications to Slot Coupled Combline Filters, IEEE Trans. Microwave Theory Tech.,1995, Dec., Vol.43 ,No.12,pp.2824-2829.
    [33]吕学明,钱建中,介质块梳状线谐振腔的耦合分析及带通滤波器设计,清华大学学报(自然科学版),1997,Oct., Vol.37, No.10, pp.5-8.
    [34]T.Uusitupa and Jukka, Application of Multiconductor Transmission- line Theory to Combine Filter Design, Microwave and Optical Technology Leters, 2000, Feb., Vol.27, No.2,pp.113-118.
    [35]柳光福,刘启明,葛光楣,介质谐振腔滤波器的设计,航空电子技术,2004, Mar., Vol.35 No.1 pp.32-37.
    [36]M.Makimoto and S.Yamshita, Bandpass filters using parallel coupled stripline stepped impedance resonators, IEEE Trans. Microwave Theory Tech., 1980,Dec., Vol.28, No.12,pp.1413-1417
    [37]J.S.Hong, M.J.Lancaster, Microstrip slow-wave open-loop resonator filters, IEEE MTT-S. Digest, 1997, Jun., Vol.2, pp.713-716.
    [38]J.S.Hong and M.J.Lancaster, End-Coupled Microstrip Slow-Wave Resonator Filter, Electronics Letters, 1996, Aug.,Vol.32, No.16, pp.1494-1496.
    [39]J.S.Hong, M.J.Lancaster, Theory and experiment of novel microstrip slow-wave open-loop resonator filters, IEEE Trans. Microwave Theory Tech., 1997, ,Nov., Vol.45, No.11,pp.2358-2365.
    [40]孙捷,李英,游彬,一种新型的慢波多层微带滤波器的设计,微波学报, 2004,Mar.,Vol.20 ,No.1,pp.82-85.
    [41].J.A.Cuits, S.J.fiedziuszko, Miniature dual mode microstrip filters, IEEE MTT-S. Digest, 1991, Jul., Vol.2, pp.443-446.
    [42]J.S.Hong, M.J.Lancaster, microstrip bandpass filter using degenerate modes of nove meander loop resonator, IEEE microwave and guided wave leters, 1995,Nov.,Vol.5, No.11,pp.371-372.
    [43]J.S.Hong, S.Z.Li, Theory and experiment of dual mode microstrip trignular patch resonators and filters, IEEE Trans. Microwave Theory Tech., 2004, Apr., Vol.52, No.4,pp.1237-1243.
    [44]J.S.Hong, M.J.Lancaster,Bandpass characteristrics of new dual mode Microstrip square loop resonators, Electronics Letters, 1995, May, Vol.31, No.11,pp.891-892.
    [45]J.S.Hong, S.Z.Li, Dual-Mode Microstrip Triangular Patch Resonators and Filters, IEEE MTT-S Digest, 2003 , Jun., Vol. 3, pp.1901- 1904.
    [46]邓哲,程崇虎,朱洪波,一种多模微带方形贴片带通滤波器的设计,微波学报,2006, Dec., Vol. 22, No.6, pp.55-58.
    [47]B.B.Mandelbrot The Fractal Geometry Nature. San Francisco, Freeman, 1982.
    [48]章晓卿,尹秋艳,杨小丽,分形微带带通滤波器的研究和设计,舰船电子工程, 2006, Vo1.26, No.6, pp.140-142.
    [49]I. Kim, N. Kingsley, M. Morton, Fractal-Shaped Microstrip Coupled-Line Bandpass Filters for Suppression of Second Harmonic, IEEE Trans. Microwave Theory Tech., 2005, Sept., Vol. 53, No.9 , pp.2943- 2948.
    [50]M.F. Karim, A. B. Yu, Fractal CPW EBG filter with nonlinear distribution Asia-Pacific Microwave Conference Proceedings, 2005, Dec., Vol.3, pp.1-3.
    [51]J.I. Park, C.S. Kim, J. Kim, et al. Modeling of a photonic bandgap and its application for the low-pass filter design ,IEEE. Asia- Pacific Microwave Conference, 1999, Nov., Vol.2, pp.331-334.
    [52]D. Ahn, J. S. Park, C.S. Kim, et al. A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans.Microwave Theory Tech.,2001,Jan., Vol.49,No.1,pp.86-93.
    [53]J.S.Hong, M.J.Lancaster, D. Jedamzik, On the performance of HTS microstrip quasi-elliptic functionfilters for mobile communications application, IEEE Trans. Microwave Theory Tech.,2000, Jul, Vol. 48, No.7, pp.1240-1246.
    [54]M. A. G. Laso, T. Lopetegi, M. J. Erro, et al., Multiple-frequency- tuned photonic bandgap microstrip structures, IEEE Microwave and Guided Wave Letters, 2000,Jun., Vol.10, No.6. pp. 220-222.
    [55]L. Rigaudeau, P. Ferrand, D. Baillargeat , LTCC 3-D resonators applied to the design of very compact filters for Q-band applications," IEEE Trans. Microwave Theory Tech.,2006. Jun.,Vol. 54, No.6, pp.2620- 2627.
    [56]K.B.Yu, S.S. Yu, Tunable microwave ferrite filter for receiving-transmitting mobile communications systems, IEEE International Symposium on Electromagnetic Compatibility,1990, Aug., pp.537-541.
    [57]李宏军,传输函数在滤波器综合中的应用,现代雷达, 2006 ,May, Vol. 28,No. 5,pp.63-67.
    [58]C.T.Gabor,K.M.Sanjit,Modern filter theory and design, JohnWiley &Sons, 1973.
    [59]刘红,王小峯,微波网络及其应用,成都:电子科技大学, 1991.
    [60]R.J.Cameron,General prototype network synthesis methods for microwave filters, ESA Journal, 1982,Vol.6,pp. 193-206.
    [61]R.J.Wenzel,Understanding transmission zero movement in cross- coupled filters, IEEE MTT-S Int. Microwave. Symp. Dig.,2003,Jun., vol.3, pp.1459-1462,
    [62]S.Amari, Uwe Rosenberg, Jens Bornemann, Adaptive synthesis and design of resonator filters with source/load multi-resonator coupling. IEEE Trans. Microwave Theory Tech., 2002, Aug.,Vol.50,No. 8, pp.1969 - 1977.
    [63] C. A. Corral, C. S. Lindquist, Optimizing Elliptic Filter Selectivity, Analog Integrated Circuits and Signal Processing, 2001.Jul., Vol.28 ,No.1,pp.53–61.
    [64]H.J.Orchard, A. N.Willson, Elliptic Functions for Filter Design, IEEE Transactions on Circuits and Systems. 1997, Apr., Vol.44, No.4, pp. 273-287.
    [65]J.T.Kuo, M.J.Maa,P.H.Lu, A Microstrip Elliptic Function Filter with Compact Miniaturized Hairpin Resonators, IEEE Microwave and Guided Wave Letters, 2000.Mar., Vol.10,No.3,pp.94-95.
    [66]Jen-Tsai Kuo, Hung-Sen Cheng, Design of Quasi-Elliptic Function Filters With a Dual-Passband Response, IEEE Microwave and Wireless Components Letters.2004.Oct.,Vol.14,No.10,pp.472-474.
    [67]T. K. Chi, Z.W. M, and Y. K. Shi, Design of an elliptic-function bandpass filter using microstrip spiral resonators,IEICE Trans. Electronics,2005.Dec.,Vol.88,No.12,pp.1040-1048.
    [68]J. Huruya, R. Sato, Transmission characteristics and a design method of transmission-line low-pass filters with multiple pairs of coincident zeros and multiple pairs of coincident poles, IEEE Trans. Microwave Theory Tech., 1980, Aug., Vol. 28,No.8, pp. 865–874.
    [69]苏涛,梁昌洪,谢拥军,广义Chebyshev最优滤波器设计,电子学报, 2003, Dec.,Vol. 31 No. 12A,pp.2018-2020.
    [70]C.A.Corral,C.S.Lindquist,P.B.Aronhime, Sensitivity of the band-edge selectivity of various classical filters, Proceedings of the 40th Midwest Symposium on Circuits and Systems, 1997, Aug .,Vol.1, pp.324-327.
    [71]M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical, Functions. New York: Dover, 1970.
    [72]J.S.Hong and M.J.Lancaster, Microstrip filters for RF/microwave application, Wiley, 2001, pp. 338-339.
    [73]Z.D.Milosavljevic, Design of generalized Chebyshev filters with asymmetrically located transmission zeros, IEEE Trans. Microw. Theory Tech.,2005, Jul.,Vol.53,No.7,pp.2411-2415.
    [74]Z.D.Milosavljevic, A class of generalized Chebyshev prototype filters with asymmetrically located transmission zeros, in Proc. 6th Int.TELSIKS Conf., Nis, Serbia and Montenegro, 2003,Oct. ,Vol.1, pp. 323–326.
    [75]Y.A.Kolmakov,A.M.Savino,I.B.Vendik,Quasi-elliptic two pole micro- strip filter. 15th International Microwaves, Radar and Wireless Communications Conference, Warsaw, Poland. 2004, Jun.,Vol.1,pp.159 -161.
    [76] D. Ni, Y. Zhu and Y. Xie, Design of hexagonal filter with source-loadcoupling. Electron. Lett . 2006, Nov., Vol.42, No.23, pp.1355-1356.
    [77]朱永忠,谢拥军,倪大宁,含源-负载交叉耦合的准椭圆函数滤波器设计,电子与信息学报,2008,Mar.,Vol.30,No.3,pp.604-606.
    [78] R.J.Cameron, Advanced coupling matrix synthesis techniques for microwave filters. IEEE Trans. Microwave Theory Tech., 2003, Jan.,Vol. 51,No.1,pp.1-10.
    [79]朱永忠,倪大宁,谢拥军,一种新型广义交叉耦合滤波器的设计,电子器件2007,Feb.,Vol.30,No.1,pp.129-131.
    [80]L.H. Hsieh, K. Chang, Tunable Microstrip Bandpass Filters With Two Transmission Zeros. IEEE Trans. Microwave Theory Tech, 2003, Feb., Vol.51, No.2, pp.520-525.
    [81]C.M. Tsai, S.Y. Lee, C.C. Tsai, Performance of a Planar Filter Using a 00 Feed Structure, IEEE Trans. Microwave Theory Tech.,2002, Oct.,Vol.50,No.10,pp.2362-2367.
    [82]C. M. Tsai, S. Y. Lee, C. C. Tsai, Hairpin filters with tunable transmission zeros, IEEE MTT-S Int. Microwave Symp. Dig., 2001, Vol.3,pp.2175–2178.
    [83]A.Hennings, E.Semouchkina, A. Baker, and G. Semouchkin, Design Optimization and Implementation of Bandpass Filters With Normally Fed Microstrip Resonators Loaded by High-Permittivity Dielectric. IEEE Trans. Microwave Theory Tech., 2006, Mar., Vol.54, No.3, pp. 1253-1261.
    [84]S.Amari,G.Tadeson,J.Cihlar and U.Rosenberg, New parallelλ/2 Micro- strip Line Filters With Transmission Zeroes at Finite Freqiencies. IEEE MTT-S Int.Microwave Symp. Dig. 2003,Vol.1, pp. 543-546.
    [85]C. Quendo, E. Rius, and C. Person, Narrow bandpass filters using dual behavior resonators based on stepped-impedance stubs and different length stubs, IEEE Trans. Microwave Theory Tech., 2004. Mar.,Vol.52, No.3, pp.1034–1044.
    [86] J.S. Kuo and E. Shih, Microstrip stepped impedance bandpass filter with optimal rejection bandwidth, IEEE Trans. Microwave Theory Tech,2003, May.,Vol.51,No.5,pp.1554–1559.
    [87]Y.-Z. Zhu, Y.-J. Xie, and H. Feng, Two-Cavity Filter With Three Transmission Zeros, IEEE Microwave and Wireless Component Letters, 2008, May, Vol.18, No. 5, pp.317-319.
    [88] D.G.Swanson, A novel method for modeling coupling between several microstrip lines in MIC’s and MMIC’s, IEEE Trans. Microwave Theory Tech., 1991,Jun.,Vol.39,No.6,pp. 917-923.
    [89] C.M.Tsai, K. C. Gupta, A Generalized Model for Coupled Lines and its Applications to Two-Layer Planar Circuits, IEEE Trans. Microwave Theory Tech., 1992,Dec.,Vol.40,No.12,pp.2190-2199.
    [90] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks,and Coupling Structures. Norwood, MA: Artech House, 1980, 214-228.
    [91] C.M. Tsai, S.Y. Lee, and H.M. Lee, Transmission-line filters with capacitively loaded coupled lines, IEEE Trans. Microw. Theory Tech., 2003, May., Vol.51, No.5, pp.1517-1524.
    [92]Y.-Z. Zhu, Y.-J. Xie,New half-wavelength Microstrip Bandpass Filters Using Skew-Symmetric Feed Structure,Microwave and Optical Technology Letters, 2008, Feb., Vol. 50, No. 2, pp.440–442.
    [93]K.S. Chin, L.Y Lin, and J.T. Kuo, New formulas for synthesizing microstrip bandpass filters with relatively wide bandwidths,IEEE Microw. Wireless Compon. Lett., 2004, May, Vo1.14, No.5, pp.231-233.
    [94]J. Bandler, R. Biernacki, S. Chen and Y Huang,Design optimization of interdigital filters using aggressive space mapping and decomposition, IEEE Trans. Microwave Theory Tech., 1997, May., Vol. 45,No. 5, pp. 761-769.
    [95]C.-Y. Hung, M.-H. Weng, R.-Y.Yang, Design of the Compact Parallel Coupled Wideband Bandpass Filter With Very High Selectivity and Wide Stopband, IEEE Microwave and Wireless Components Lett., 2007, Jul.,Vol. 17, No. 7, pp.510-512.
    [96]C.-Y. Hung, M.-H.Weng, Y.-K.Su, and R.-Y. Yang, Design of Parallel Coupled-line Microstrip Wideband Bandpass Filter Using Stepped- Impedance Resonators, Microwave and Optical Technology Letters, 2007, Apr., Vol.49, No.4, pp.795-798.
    [97]D. Chang and C. Hsue, Design and implementation of filters using transfer functions in the Z domain, IEEE Trans. Microwave Theory Tech., 2001,May.,Vo1.49,No.5,pp.979-985.
    [98]D. Chang and C. Hsue, Wide-band equal-ripple filters in nonuniform transmission lines,IEEE Trans. Microwave Theory Tech., 2002, Apr.,Vo1.50, No.4, pp.1114一1119.
    [99]L. Tsai, K. Chen, and C. Hsue, Design of wide-band band-pass filters using discrete-time domain techniques, Microwave and Optical Technology letters, 2004, Nov.Vo1.43, No.5, pp.264-266.
    [100] L. Tsai, and C. Hsue, Dual-band bandpass filters using equal-length coupled-serial-shuntedlines and Z-transform technique, IEEE Trans. Microwave Theory Tech., 2004, Apr., Vo1.52, No.4, pp.llll一1117.
    [101]Y.A. Kolmakov, I.B. Vendik, Compact ultra-wideband bandpass filter with defected ground plane, Microwave Conference, 2005 European ,2005,Oct. ,Vol.1, pp. 1-4.
    [102]Y.N. Mu, Z.W. Ma, and D.M. Xu, A novel compact interdigital bandpass filter using multilayer cross-coupled folded quarter-wavelength resonators, IEEE Microwave and Wireless Components Lett., 2005, Dec., Vol. 15, No. 12, pp. 847-849.
    [103]C.Y. Hung, M.H.Weng, Yan-Kuin Su, Design of Sharp-Rejection, Compact, and Low-Cost Ultr-Wideband Bandpass Filters Using Interdigital Resonators, Microwave and Optical Technology letters, 2006, Oct., Vol. 48, No. 10,pp. 2093-2096.
    [104]P. K. Singh, S. Basu, and Y.-H. Wang, Planar Ultra-Wideband Bandpass Filter Using Edge Coupled Microstrip Lines and Stepped Impedance Open Stub, IEEE Microw. Wireless Compon. Lett., 2007, Sep.,Vol. 17, No. 9, pp.649-651.
    [105] L. Zhu, S. Sun and W. Menzel, Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,IEEE Microw. Wireless Compon. Lett., 2005,Nov.,Vo1.15, No.11, pp. 796-798,
    [106]J. Gao. L. Zhu, W. Menzel and F. Bogelsack, Short-circuited CPW multiple-mode resonator for ultra-wideband (UWB) bandpass filter, IEEE Microw Wireless Compon. Lett., 2006,Mar.,Vo1.16, No.3, pp. 104-106.
    [107]L.Zhu and H. Wang, Ultra-wideband bandpass filter on aperture-backed microstrip line, Electronics Letters, 2005, Sept., Vol. 41, No.l8, pp. 1015-1016.
    [108]H. Wang and L. Zhu, Aperture-backed microstrip line multiple-mode resonator for design of a novel UWB bandpass filter, Asia-Pacifrc Microwave Conf. Dig.,2005, Dec.,pp. 2276-2279.
    [109]H. Wang, L. Zhu and W. Menzel, Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,IEEE Microw Wireless Compon. Lett., 2005,Dec.,Vo1.15, No.l2, pp.844-846.
    [110]L. Zhu, H.H. Bu, and K. Wu, Aperture Compensation Technique for Innovative Design of Ultra-Broand Microstrip Bandpass Filter, IEEE MTT-S Digest,2000,Jun., Vol.1.pp.315-318.
    [111]P.Cai,Design of ultra-wideband bandpass filter using step-impedance four-mode resonator and aperture-enhanced coupled structure, Microwave and Optical Technology Letters, 2008, Mar., Vol. 50, No. 3,pp.696-699.
    [112]R.Li, L.Zhu, Compact UWB Bandpass Filter Using Stub-Loaded Multiple- Mode Resonator, IEEE Microw Wireless Compon. Lett., 2007, Jan., Vol. 17, No. 1,pp. 40-42.
    [113]J.-S. Hong , H. Shaman, An optimum ultra wideband microstrip filter, Microwave and Optical Technology Letters, 2005, Nov.,Vol. 47, No. 3,pp.230-233.
    [114]H. Shaman, J.-S.Hong, An Optimum Ultra-Wideband (UWB) Bandpass Filter with Spurious Response Suppression, IEEE Wireless and Microwave Technology Conference, 2006, Dec.,pp.1-5.
    [115] W. Wong, Y. Lin, C.Wang, and C. Chen, Highly selective microstrip bandpass filters for ultra-wideband (UWB) applications, Asia-Pasific Microw. Conf. (APMC), 2005, Dec., Vol. 5. pp.2850-2853.
    [116]H. Shaman, J.-S. Hong, A Novel Ultra-Wideband (UWB) Bandpass Filter (BPF) With Pairs of Transmission Zeroes, IEEE Microw Wireless Compon. Lett.,2007, Feb., Vol. 17, No. 2, pp.121-123.
    [117]P. Cai, Z. Ma,X. Guan, X.Yang, A compact UWB bandpass filter using two section open-Circuited stubs to realize transmission zeros, Asia-Pasific Microw. Conf. (APMC), 2005, Dec.,Vol. 5. pp.3356-3359.
    [118]D. Kaddour, J.-D. Arnould, P, Ferrari. Design of a miniaturized ultra wideband bandpass filter based on a hybrid lumped capacitors- distributed transmission lines topology, Proceedings of the 36th European Microwave Conference, 2006,Sep.,pp.1264-1266.
    [119]J. D. Baena, J. Bonache, F. Martín, Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines, IEEE Trans. Microwave TheoryTech., 2005, Apr., Vol. 53, No. 4, pp.1451-1461.
    [120]J. Bonache,1 F. Mart?′n,J. Garc?′a-Garc?′a, I. Gil, Ultra wide band pass filters (UWBPF) based on complementary split rings resonators, Microwave and Optical Technology Letters, 2005, Aug., Vol. 46, No. 3, pp.283-286.
    [121]J. Bonache, I. Gil, J. García-García, Complementary split rings resonators (CSRRs): Towards the miniaturization of microwave device design, Journal of Computational Electronics, 2006,Jul.,Vol.5, No 2-3 pp.193-197.
    [122]P. Mondal, M. K. Mandal, A. Chaktabarty, Compact Bandpass Filters With Wide Controllable Fractional Bandwidth, IEEE Microw Wireless Compon. Lett., 2006 ,Oct., Vol. 16, No. 10, pp.540-542.
    [123]L. H. Hsieh and K. Chang, Compact, low insertion loss, sharp rejection wideband bandpass filters using dual-mode ring resonators with tuning stubs, Electronics Letters, 2001,Oct., Vo1.37, No.22, pp.1345-1347.
    [124]L. H. Hsieh and K. Chang, Compact, low insertion-loss, sharp- rejection, and wide-band microstrip bandpass filters, IEEE Trans. Microwave Theory Tech., 2003. Apr.,Vo1.51, No.4, pp.1241一1246.
    [125]H. Ishida, and K. Araki, Design and analysis of UWB bandpass filter with ring filter, IEEE Trans. MTT-S. Microwave Symp. Dig., 2004, Jun.,Vo1.3, pp.1307-1310.
    [126]C.-Y.Chen , C.-Y. Hsu , S.-F.Lin, A novel compact miniaturized wideband microstrip bandpass filters with dual-mode ring resonators, Microwave and Optical Technology Letters, 2005, Apr., Vol. 45,No. 4,pp.312-315.
    [127]H. Ishida, and K. Araki, A design of tunable UWB filters, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies Dig., 2004. May, pp.424-428.
    [128]H. Ishida, and K. Araki, Design and analysis of UWB BPF with ring filter, Microwave and Optical Technology Letters, 2005, May., Vol. 45, No. 4, pp. 312-315.
    [129] H. Wang and L. Zhu, Ultra-wideband bandpass filter using back-to-back microstrip-to-CPW transition structure, Electronics Letters, 2005., Nov., Vol. 41 No. 24,pp. 1337- 1338.
    [130] T.-N, Kuo, S.-C.Lin, and C. H.Chen, Compact Ultra-Wideband BandpassFilters Using Composite Microstrip–Coplanar-Waveguide Structure, IEEE Trans. Microwave Theory Tech., 2006, Oct.,Vol. 54, No. 10, pp. 3772-3778.
    [131]C.-L.Hsu,F.-C. Hsu, J.-K.Kuo, Microstrip bandpass filters for Ultra-Wideband (UWB) wireless communications, IEEE MTT-S International,2005, Jun.,pp.1-4.
    [132]G.M. Yang, R. Jin, J. Geng, Ultra-wideband bandpass filter with hybridquasi-lumped elements and defected ground structure, IET Microw. Antennas Propag., 2007,Vol.1No.3, pp. 733–736
    [133] Y.S. Lin et al., Wideband coplanar-waveguide bandpass filters with good stopband rejection, IEEE Microwave and Wireless Components Lett., 2004, Sept., Vo1. l4, No.9, pp. 422-424.
    [134]A. M. Abbos, Planar Bandpass Filters for Ultra-Wideband Applications, IEEE Trans. Microwave Theory Tech., 2007, Oct., Vol. 55,No. 10, pp.2262—2269.
    [135]D. Kurita, K. Li, Two-layered ultra-wideband (UWB) bandpass filter, IEICE Electron. Express, 2008,Vol. 5, No. 8, pp.291-295.
    [136]M. Nedil, T.A. Denidni and A. Djaiz, Ultra-wideband microstrip to CB-CPW transition applied to broadband filter, Electronics Letters, 2007, Apr., Vol.43, No.8, pp. 464-466.
    [137]D. Ahn, J. S. Park, C. S. Kim, Y. Qian, and T. Itoh, A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans. Microwave Theory Tech., 2001, Jan. vol. 49, pp. 86–93.
    [138]J.-S. Yoon, J.-G.Kim, J.-S. Park, A new DGS resonator and its application to bandpass filter design, IEEE Microwave Symposium Digest, 2004, Jun., Vol.3, pp.1605-1608.
    [139]J-S. Park, J-S. Yun, and D. Ahn, A design of the novel coupled line bandpass filter using defected ground structure with wide stopband performance, IEEE Trans. Microwave Theory Tech., 2002, Sep.,Vol.50, No.9, pp.2037-2043.
    [140]X.-C. Lin, L.-T. Wang, A wideband CPW-fed patch antenna with defective ground plane IEEE Antennas and Propagation Society Symposium, 2004, Jun., Vol.4, pp. 3717- 3720.
    [141]J. Y.C., L. J.S.,A Novel Frequency Doubler Using Feed forward Technique and Defected Ground Structure, IEEE Microwave Guided WaveLett., 2004, Dec., Vol.14 ,No.12 , pp.557-559.
    [142]V. Radisic, Y. Qian, and T. Itoh, Broad power amplifier using dielectric photonic bandgap structure, IEEE Microwave Guided Wave Lett., 1998, Jan.,vol.8, No.1,pp. 13–14.
    [143]J. S. Lim, H. S. Kim, J. S. Park, A power amplifier with efficiency improved using defected ground structure, IEEE Microwave Wireless Compon. Lett., 2001, Apr.,Vol.11, No.4, pp. 170–172.
    [144]J.-S. Park, M.-S. Jung, A novel defected ground structure for an active device mounting and its application to a microwave oscillator, IEEE Microwave Wireless Compon. Lett., 2004, Mar., Vol. 14, No. 5, pp.198-200.
    [145] N. Katsarakis, T. Koschny, M. Kafesaki, Electric coupling to the magnetic resonance of split ring resonators, Appl. Phys. Lett., 2004, Apr., Vol.84, No.15,pp. 2943-2945.
    [146]B. Sauivac, C. R. Simovski, S. Tretyakov, Double Split-Ring Resonators: Analytical Modeling and Numerical Simulations, Electromagnetics, 2004, Jul., Vol. 24, No.5, pp. 317-325.
    [147]G.-B. Philippe, O. J. F. Martin, Electromagnetic resonances in individual and coupled split-ring resonators, J. Appl. Phys., 2002,Vol.92, pp. 2929-2936.
    [148]M.Shamonin, E.Shamonina, V.Kalinin, L.Solymar, Properties of a Metamaterisl element: Analytical solutions and numerical simulations for a singly split double ring, J. Appl. Phys, 2007, Apr.,Vol.95, No.7, pp.3778-3784.
    [149]C. Krowne, Electromagnetic theorems for complex anisotropic media, IEEE Trans. Antennas Propag., 1984. Nov., Vol.32, No.11, pp.1224-1230.
    [150] R. Marqués, F. Medina, R. Rafii-El-Idrissi., Role of bianisotropy in negative permeability and left-handed metamaterials, Phys. Rev. B, 2002, Vol.65, pp.144440(1-6).
    [151]D. R. Smith, J. Gollub, J. J. Mock, et al., Calculation and measurement of bianisotropy in a split ring resonator metamaterial , J. Appl. Phys, 2006,Jul.,Vol.100,No.2,pp. 024057(1-9).
    [152] L. F. Chen, C. K. Ong, C. P. Neo, et al., Microwave Electronics– Measurement and Materials Characterization, Wiley New York, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700