过渡金属氧化物深度催化氧化邻二甲苯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯系污染物(苯、甲苯及二甲苯等)是挥发性有机化合物(VOCs,Volatile Organic Compounds)的主要组成部分。主要来源于化工原料的生产、加工、使用以及汽车尾气的排放等,对人体健康及环境构成较大危害。因此,彻底消除苯系污染物已成为当前环境治理中的重要课题之一。深度催化氧化法可将低浓度的VOCs完全转化为二氧化碳和水,是目前大气污染治理中最有效和最有发展前景的研究方法之一。本论文分别采用氧化还原共沉淀法、溶胶-凝胶法和室温固相合成法制备了系列Mn-Ce复合氧化物、CoAl2O4尖晶石及γ-Al2O3和CeO2-Al2O3负载的Cu、Co及CuCo复合物等过渡金属氧化物类催化剂。选取邻二甲苯作为目标污染物,采用深度催化氧化法从邻二甲苯的分解率和二氧化碳产率两者综合评价了上述系列催化剂的活性。并应用比表面积测定仪(Brunauer-Emmett-Teller BET)、X射线衍射(X-ray diffraction XRD)、X光电子能谱(X-ray photoelectron spectroseopy XPS)、X射线荧光光谱(X-ray fluorescence XRF)及氢气程序升温还原(Hydrogen temperature-programmed reduction H2-TPR)等技术对催化剂的微观结构进行了研究。具体内容概括如下:
     1.以高锰酸钾、硝酸锰、硝酸铈为原料,采用氧化还原共沉淀法制备了系列Mn-Ce(RP-MnCe)复合氧化物类催化剂。考察了锰铈摩尔比和焙烧温度对催化剂活性的影响。结果表明,当Mnat/Ceat为1.5,400 oC焙烧后的催化剂RP-MnCe1.5(400)具有最好的催化活性,240oC可使0.08 vol%的邻二甲苯完全分解为CO2和H2O。XRD、XRF、XPS和H2-TPR等研究手段表明:无定形的MnO2为RP-MnCe(400)类催化剂的活性中心,微晶态CeO2促进了氧的流动。MnO2和CeO2之间的协同作用促进了催化剂的氧化还原行为,进而提高了催化剂的活性。
     2.采用室温固相反应制备了20Co/γ-Al2O3、20Cu20Co/γ-Al2O3及20Cu20Co/CeO2-Al2O3等催化剂。活性测试及BET、SEM、XRD、TPR等表征结果表明,室温固相法得到的催化剂具有高活性和高比表面、低结晶度、小晶体粒度等结构特点。其中20Cu20Co/CeO2-Al2O3由于铜、钴之间的协同作用提高了其催化活性,275 oC可使邻二甲苯完全分解为CO2和H2O。
     3.以异丙醇铝和硝酸钴为前驱体,采用溶胶-凝胶法制备了系列CoAl2O4类催化剂,500oC氢气还原活化处理后,用于邻二甲苯的深度催化氧化。考察了Co/Al比、还原温度及反应空速等对催化剂活性的影响。BET、XRD表征结果显示,氢气还原引起CoAl2O4尖晶石晶格畸变而使其结晶程度降低,晶体粒径明显减小。XPS测试结果显示:CoAl2O4(Co/Al= 0.5)500 oC氢气还原处理后Co 2p、Al 2p、O 1s的结合能向低结合能端移动,晶格氧物种增加,使得其活性大幅提高,可使0.08 vol%的邻二甲苯在275 oC完全分解生成CO2和H2O。稳定性测试结果显示,还原后的CoAl2O4在275 oC氧化氛围中反应60h后仍具有良好的稳定性。
Benzene hydrocarbon (benzene, toluene and xylene) are the major composition of volatile organic compounds (VOCs). They are mainly vented from a variety of industrial and commercial processes, such as chemical production, printing and mobile emission and cause serious harm to human health and environment. Therefore, the removal of these pollutants has been one of the important research topics in environmental treatment. Catalytic deep oxidation technique which can convert VOCs into carbon dioxide and water is regarded as one of the most effective and promising way to remove the low concentration VOCs. In this paper, a series of Mn-Ce mixed oxides, CoAl2O4 spinel,γ-Al_2O_3 and CeO_2-Al_2O_3 supported Cu, Co, CuCo composite oxide catalysts were prepared by redox-precipitation, sol-gel method and solid state reaction, respectively. The catalysts were applied in the deep catalytic oxidation of o-xylene. The research took into account the catalytic behavior of the catalysts in term of both the conversion of o-xylene and the yield into CO2. Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroseopy (XPS), X-ray fluorescence (XRF), hydrogen temperature-programmed reduction (H2-TPR) etc were also applied to research the microstructure of the catalysts. The detail contents are as follows:
     First, a series of Mn-Ce (denoted as RP-MnCe) mixed oxides catalysts were prepared by“redox- precipitation”method using KMnO_4, Mn(NO_3)_2 and Ce(NO_3)_3 as precursors. The influence of Mn /Ce atomic ratios and calcination temperature on the activity of catalysts were investigated. The results showed that the catalyst exhibited excellent catalytic performance with Mnat/Ceat ratio of 1.5 calcined at 400 oC, Which could converse 0.08vol% of o-xylene into CO2 at 240 oC. Structure analysis by XRD, XPS, XRF and H2-TPR revealed that amorphous MnO2 is the active center of RP-MnCe catalyst and microcrystal state of CeO2 promot the mobilityof oxylene species. The synergistic effects between MnO2 and CeO2 improved the redox property and further affected the activity of the catalysts.
     Second, 20Co/γ-Al2O3, 20Cu20Co/γ-Al2O3, 20Cu20Co/CeO2-Al2O3 and other catalysts were synthesized by solid-state reaction at room temperature. Catalytic activity test and BET, SEM, XRD, TPR researchs showed that the catalyst prepared by this method had better catalytic activities as well as higher specific surface area, lower degree of crytallinity, smaller crystals grain size and so on. Among them 20Cu20Co/CeO2-Al2O3 catalyst conversed o-xylene into CO2 and H2O at 275 oC due to the synergistic effects between copper and cobalt.
     The third, a series of CoAl2O4 catalysts were prepared by sol-gel method using aluminium isopropoxide and cobalt nitrate as precursors. The catalysts were used to the deep catalytic oxidation of o-xylene after reduced in hydrogen flow at 500 oC. The influence of Co/Al molecular ratio, reduction temperatures and space velocity on the catalytic performance were investigated. BET, XRD characterization results showed that the reduction by hydrogen caused lattice distortion of the CoAl2O4 and then lead to the reduce of their crystallization degree and crystals grain size. XPS study revealed that the binding energy of Co 2p, Al 2p and O 1s shifted to lower bond energy after 500oC hydrogen reduction and more lattice oxygen species increased the catalytic activity. The CoAl_2O_4 reduced at 500 oC conversed 0.08 vol% of o-xylene into CO2 and H2O at 275 oC. Moreover the catalyst showed good stability in oxidative atmosphere after 60 h test at 275 oC.
引文
[1] Spivey J J. Complete catalytic oxidation of volatile organics [J]. Ind Eng Chem Res, 1987, 26(11): 2165-2171.
    [2] Jones A P. Indoor air quality and health[J]. Atmospheric Environment, 1999, 33: 4535-4564.
    [3] Faisal I K, Aloke K G. Removal of volatile organic compounds from polluted air[J]. Journal of Loss Frevention in the Process Industries, 2000, 13: 527-545.
    [4] 白洪亮. 活性炭吸附法脱除低浓度苯系物的研究[D]. 大连: 大连理工大学, 2006.
    [5] Kostas A K, Ioannis Z, Christos Z, et al. Benzene, toluene, ozone, NO2 and SO2 measurements in an urban streetcanyon inThessaloniki[J]. Atom Eviron, 2002, 36: 5355-5364.
    [6] 吴迓名, 胡敏. 挥发性有机物气体污染源监测中直接采样法的评价[J]. 中国环境监测, 2001, 17(3): 28-30.
    [7] Pires J, Carvalho A, Carvalho M B. Adsorption of volatile organic compounds in Y zeolites and pillared clays[J]. Mircroporous and Mesoporous Materials, 2001, 43: 277-287.
    [8] 钟理. 臭氧氧化降解废气中的苯及其反应性能[J]. 华南理理工大学学报:自然科学版, 1998, 26(10): 29-33.
    [9] Engleman V S. Updates on choices of appropriate technology forcontrol of VOC emissions[J]. Metal Finishing, 2000, 98: 433-445.
    [10] Tsou J, Magnoux P, Guisnet M, et al. Oscillations in the catalytic oxidation of volatile organic compounds[J]. Journal of Catalysis, 2004, 225: 147-154.
    [11] Chen M, Zheng X M. The effect of K and Al over NiCo2O4 catalyst on its character and catalytic oxidation of VOCs[J]. Journal of Molecular Catalysis A: Chemical, 2004, 221: 77-80.
    [12] Samantaray S K, Parida K. Modified TiO2-SiO2 mixed oxides 1: Effect of manganese concentration and activation temperature towards catalytic combustion of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2005, 57: 83-91.
    [13] Liu P K T, Leson G, Rhoads T, et al. Engineered bio-filter for removing organic contanminants in air[J]. Journal of Air and Waste Management Association. 1994, 48(1): 299-305.
    [14] John M. Membrane process capture viryl chloride and other VOC[J]. ChemicalProcessing, 1994, 9: 33-36.
    [15] Togna A P. Biological vapor-phase treatment using biliflter and biotrickling filter peactors: Practical operating regimes[J]. Environ Progress, 1994, 13(2): 94-97.
    [16] Chang J. Recent development of plasma pollution control technology: Acritical review[J]. Science and Technology of Advanced Materials, 2001, 2: 571-576.
    [17] Yan K, Heesch E J M, Van Peman A J M, et al. Elements of pulsed corona induced non–thermal plasmas for pollution control and sustainable development[J]. Electrostatics, 2001, 51–52: 218-224.
    [18] 王红娟, 李忠. 半导体多相光催化氧化技术[J]. 现代化工, 2002, 22(2): 56-60.
    [19] Garetto T F, Apesteguia C R. Structure sensitivity and in situactivation of benzene combustion on Pt/Al2O3 catalysts[J]. Appl Catal B: Environ, 2001, 32: 83-94.
    [20] Papaefthimiou P, Ioannides T, Verykios X E. Performance of doped Pt/TiO2(W6+) catalysts for combustion of volatile organic compounds(VOCs)[J]. Appl Catal B: Environ, 1998, 15: 75-92.
    [21] Papaefthimiou P, Ioannides T, Verykios X E. Catalytic incineration of volatile organic compounds present in industrial waste streams[J]. Appl Thermal Engineering, 1998, 18: 1005-1012.
    [22] Padilla–serrano M N, Maldonado–hodar F J, Moreno-castilla C. Influence of Pt. particle size on catalytic combustion of xylenes on carbon aerogel–supported Pt catalysts[J]. Appl Catal B: Environ, 2005, 61: 253-258.
    [23] Maldonado–hodar F J, Moreno-castilla C, Perez-cadenas A F. Catalytic combustion of toluene on platinum–containing monolithic carbon aerogels[J]. Appl Catal B: Environ, 2004, 54: 217-224.
    [24] Xia Q H, Hidajat K, Kawi S. Adsorption and catalytic combustion of aromatics on platinum–supported MCM-41 materials[J]. Catal Today, 2001, 68: 255-262.
    [25] Kim H, Kim T, Koh H, et al. Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ–alumina:influence of Pt-Pd ratio on the catalytic activity[J]. Appl Catal A: Gen, 2005, 280: 125-131.
    [26] Ryoo M, Chung S, Kim J, et al. The effect of mass transfer on the catalytic combustion of benzene and methane over palladium catalysts supported on porous materials[J]. Catal Today, 2003, 83: 131-139.
    [27] Tidahy H L, Siffert S, Wyrwalski F, et al. Catalytic activity of copper and palladium based catalysts for toluene total oxidation [J]. Catal Today, 2007, 119: 317-320.
    [28] Centeno M A, Paulis M, Montes M, et al. Catalytic combustion of volatile organic compounds on gold/titanium oxynitride catalysts[J]. Appl Catal B: Environ, 2005, 61: 177-183.
    [29] Centeno M A, Paulis M, Montes M, et al. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts[J]. Appl Catal A: Gen, 2002, 234: 65-78.
    [30] Kim S C. The Catalytic oxidation of Aromatic hydrocarbons over supported metal oxide [J].Journal of Hazardous Materials, 2002, B91: 285-299.
    [31] James J S. Complete catalytic oxidation of volatile organic compounds [J]. Ind Eng Chem Res, 1987, 26: 2165-2180.
    [32] Duclaux O, Chafika T, Zaitana H, et al. Deep catalytic oxidation of benzene in The presence of several volatile organic compounds on metal oxides and Pt/Al2O3 catalysts[J]. React Kinet Catal Lett, 2002, 76(1): 19-26.
    [33] Alvarez - Merino M A,. Ribeiro M F, Silva J M, et al. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion [J]. Environ. Sci. Technol, 2004, 38: 4664-4670.
    [34] Ataloglou T, Fountzoula C , Bourikas K, et al. Cobalt oxide/γ-alumina catalysts prepared by equilibrium deposition filtration: The influence of the initial cobaltconcentration on the structure of the oxide phase andthe activity for complete benzene oxidation[J]. Applied Catalysis A: General, 2005, 288: 1-9.
    [35] Wyrwalski F, Lamonier J F, Siffert S, et al. Modified Co3O4/ZrO2 catalysts for VOC emissions abatement[J]. Catalysis Today, 2007, 119: 332-337.
    [36] 黄海凤, 陈银飞, 唐伟, 等. VOCs 催化燃烧催化剂 Mn/γ-A12O3 和 CuMn/γ-A12O3 的性能研究[J]. 高校化学工程学报, 2004, 2 (18): 152-155.
    [37] Li W B, Chu W B, Zhuang M, et al. Catalytic oxidation of toluene on Mn-containing mixed oxides prepared in reverse microemulsions [J]. Catalysis Today, 2004, 93-95: 205-209.
    [38] 余凤江, 张丽丹. 苯催化燃烧反应Cu-Mn-Ce-Zr-O催化剂催化活性的研究[J]. 北京化工大学学报, 2001, 28(4): 67-72.
    [39] Tanaka H, Misono M. Advances in designing perovskite catalysts[J]. Curr Opin Solid State Mater Sci, 2001, 5(5): 381-387.
    [40] Swamy C S, Christopher. Decomposition of N2O on perovskite-related oxides[J]. Catal Rrv Sci Eng, 1992, 34(4): 409-425.
    [41] 曾佳, 汪浩, 朱满康, 等. 钙钛矿氧化物的化学结构及其催化性能的研究进展[J]. 材料导报, 2007, 21(1): 33-34.
    [42] Spinicci R, Faticanti M, Marini P, et al. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion[J]. Journal of Molecular Catalysis A: Chemical, 2003, 197: 147-155.
    [43] Alifanti M, Florea M, Parvulescu V I. Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC[J]. Applied Catalysis B: Environmental, 2007, 70: 400-405.
    [44] Blasin-Aubé V, Belkouch J, Monceaux L. General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst-influence of mixture[J]. Applied Catalysis B: Environmental, 2003, 43: 175-186.
    [45] 胡瑞生, 阿山, 吕宏缨,等. 焙烧温度对稀土钴系复合氧化物催化剂结构与性能的影响[J]. 分子催化, 2002, 16(2): 127-130.
    [46] 吴越. 催化化学[M]. 北京: 科学出版社, 1998: 687-689.
    [47] Castiglioni G L, Minelli G, Porta P, et al. Synthesis and properties of spinel-type Co-Cu-Mg-Zn-Cr mixed oxides[J]. Journal of Solid State Chemistry, 2000, 152: 526-532.
    [48] Shen Y, Nakayama T, Arai M, et al. Magnetic phase transition and physical properties of spinel-type nickel manganese oxide[J]. Journal of Physics and Chemistry of Solids, 2002, 63: 947-950.
    [49] 田俊峰, 詹自力, 蒋登高, 等. 尖晶石型复合氧化物纳米气敏材料研究进展[J]. 传感器世界, 2004, 10(6): 11-14.
    [50] 王幸宜, 卢冠忠, 汪仁, 等. 铜锰氧化物的表面过剩氧及其甲苯催化燃烧活性[J]. 催化学报, 1994, 15(2): 103-108.
    [51] 郑标练, 何小龙, 严兴国, 等. 甲苯深度氧化铜锰复氧化物催化剂的研究[J]. 厦门大学学报(自然科学版), 1995, 34(2): 214-220.
    [52] Chen M, Zheng X M. The effect of K and Al over NiCo2O4 catalyst on its character and catalytic oxidation of VOCs[J]. Journal of Molecular Catalysis A: Chemical, 2004, 221: 77-80.
    [53] 付冬, 胡瑞生, 阿山, 等. 铜钴尖晶石复合氧化物的组成对二甲苯完全氧化反应活性的影响[J]. 催化学报, 2001, 22 (6): 589-591.
    [54] Arena F, Trunfio G, Negro J, et al. Basic Evidence of the Molecular Dispersion ofMnCeOx Catalysts Synthesized via a Novel “Redox-Precipitation” Route[J] .Chem Mater, 2007, 19: 2269-2276.
    [55] Chen H, Sayari A, Adnot A, et al. Composition–activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation[J]. Appl Catal B, 2001, 32: 195-204.
    [56] Tang X, Li Y, Huang X, et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature[J]. Appl Catal B, 2006, 62: 265-273.
    [57] Papaefthimiou P, Ioannides T, Verykios X E. Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts[J]. Appl Catal B, 1997, 13: 175-184.
    [58] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B 1994, 3: 173-189.
    [59] Trovarelli A. Catalytic Properties of Ceria and CeO2-Containing Materials[J]. Catal Rev Sci Eng, 1996, 38(4): 439-520.
    [60] Carn? J, Ferrandon M, Bj?rbom E, et al. Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers[J]. Appl Catal A, 1997, 155: 265-281.
    [61] Ferrandon M, Carn? J, J?ras S, et al. Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: Characterisation[J]. Appl Catal A: Gen, 1999, 180: 141-151.
    [62] Ettireddy P R, Ettireddy N, Mamedov S, et al. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 [J]. Appl Catal B, 2007, 76 :123-134.
    [63] W?llner A, Lange F, Schmelz J, et al. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia[J]. Appl Catal A Gen, 1993, 94: 181-203.
    [64] álvarez-Galván M C, Shea V A ?, Fierro J L G, et al. Alumina-supported manganese- and manganese-palladium oxide catalysts for VOCs combustion[J]. Catal Commun, 2003, 4: 223-228.
    [65] Damyanova S, Perez C A, Schmal M, et al. Characterization of ceria-coated alumina carrier[J]. Appl Catal A, 2002, 234(1-2): 271-282.
    [66] Larachi F, Pierre J, Adnot A, et al. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts[J]. Appl Surf Sci, 2002, 195(1-4): 236-250.
    [67] 庄稼, 迟燕华, 王曦, 等. 室温固相反应制备纳米 Co3O4 粉体[J]. 无机材料报, 2001, 16(6): 1203-1206.
    [68] 胡瑞生, 付冬, 王克冰, 等. 铜钴复合氧化物的固相合成及二甲苯燃烧催化性能[J]. 石油化工, 2001, 30 (4): 266-269.
    [69] 唐伟, 胡晓东, 宣逸安. 掺铈的铜锰钴复合氧化物催化剂对甲苯催化燃烧的性能研究[J]. 能源环境保护, 2005, 19(1): 35-37.
    [70] 白延利, 严河清, 孙瑜. Co3O4/Al2O3 催化剂对甲烷低温燃烧的催化性能[J]. 武汉大学学报(理学版), 2005, 51(6): 673-677.
    [71] Haneda M, Kintaichi Y, Hamada H. Enhanced activity of mental oxide-doped Ga2O3-Al2O3 for NO reduction by propene[J]. Catalysis Today, 1999, 54: 391-400.
    [72] 罗金勇, 孟明, 查宇清, 等. 高分散 CuO/CeO2-Al2O3 催化剂中铜物种的精细结构表征[J]. 无机化学学报, 2005, 22(5): 861-866.
    [73] Haneda M, Mizushima T, Kakuta N. Synergistic effect between Pd and nonstoichiometric cerium oxide for oxygen activation in Methane Oxidation[J]. Phys Chem B , 1998, 102: 6579-6587.
    [74] 钱玲, 吕功煊, 毕玉水. Co/γ-Al2O3 催化剂上CO 氧化反应的研究[J]. 分子催化, 2003, 17(5): 330-336.
    [75] Xiong H F, Zhang Y H, Liew K Y, et al.Catalytic performance of zirconium-modified Co/Al2O3 for Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A: Chemical, 2005, 231: 145-151.
    [76] Bechara R, Balloy D, Vanhove D. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis[J]. Applied Catalysis A: General, 2001, 207: 343-353.
    [77] El-Shobaky G A, Ghozza A M, El Warraky A A, et al. Surface and catalytic investigations of Co3O4_/MoO3/Al2O3 system[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 219: 97-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700