六铝酸盐及其金属基整体式催化剂的甲烷催化燃烧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了一系列具有不同化学组成的六铝酸盐催化材料,并以其作为活性组分,以FeCrAlloy作为载体,制备了金属基整体式催化剂,考察了该催化材料的稳定性及在甲烷催化燃烧反应中的活性。
     首先考察了镜面层的组成对六铝酸盐的稳定性和甲烷催化燃烧活性的影响,以Sr2+、Ca2+、K+部分取代LaMnAl11O19六铝酸盐中的镜面阳离子La3+,合成了La1-xAxMnAl11O19(A= Sr2+、Ca2+、K+; x=0.2, 0.4, 0.8)系列六铝酸盐。当x=0.8时不能得到单一晶相的六铝酸盐,从而降低了材料的比表面积,Ca系列催化剂具有更高的甲烷催化燃烧活性,当x=0.2时活性最高,T10%=723K。镜面层的修饰对晶粒的生长有很大的抑制作用,Ca2+的部分取代使六铝酸盐晶粒变薄,提高了材料的抗烧结性能,使比表面积增大,并且使活性Mn3+的含量增加。这两方面的综合作用使催化活性显著提高。
     用Mg2+对LaMnAl11O19六铝酸盐进行修饰,合成了一系列Mg2+晶格取代Mn2+和以氧化物形式掺杂的样品,并与CeO2和ZrO2掺杂的样品进行了对比。在Mg2+部分取代的系列样品LaMn1-xMgxAl11O19中,当x=0.3时活性最高,T10%=704 K。以Mg2+部分取代Mn2+抑制了晶粒沿[001]方向的生长,使样品保持较大的比表面积。Mg2+的部分取代使Mn3+的量增多,并提高了Mn3+的氧化还原性能,同时促进了晶格氧的移动能力。这提高了催化剂的活性,使反应的活化能降低。Mg2+掺杂的样品在1373K煅烧后得到的是六铝酸盐与尖晶石的混合物,由于具有更多的晶格氧,因此比CeO2和ZrO2掺杂的样品具有更高的催化活性。Mg2+同时掺杂和取代的样品具有最高的催化活性,T10%=700 K。
     以不同方法制备了LaMnAl11O19/FeCrAl整体式催化剂,实验结果表明,制备方法对催化剂的形貌、氧化还原性能和催化活性有较大的影响。超声共沉淀法制得的粉末催化剂具有最大的比表面积,并且沉淀过程中施加超声波辐照使得到的产品具有更多的晶格氧,同时使Mn3+的还原性能增强,从而提高了样品的催化活性,T10%=730 K。前驱体的制备方法对整体催化剂的活性有较大的影响。以超声共沉淀法制备的粉末催化剂作为前驱体,用浸涂法制备的整体型催化剂具有最高的活性,甲烷起燃温度最低,但是该样品的粘附稳定性较差。以溶胶喷雾-分解法制备的整体式催化剂具有更高的粘附稳定性,超声振荡1 h重量损失低于20%,热冲击10次重量损失低于10%。
     以LaMnAl11O19和LaMn0.7Mg0.3Al11O19两种六铝酸盐作为活性组分,以FeCrAlloy为载体,分别以Al2O3和La2O3作为过渡层,采用dip-coating方法制备了金属基整体型催化剂,考察了过渡层对金属基整体催化剂稳定性和甲烷燃烧活性的影响。结果表明,使用过渡层可以改善整体式催化剂的稳定性和活性,以Al2O3作为过渡层可以提高整体式催化剂的粘附稳定性,以La2O3作为过渡层的样品活性更高。过渡层的存在可能降低了活性组分与载体之间的相互作用,从而有利于活性组分充分发挥催化性能。
Hexaaluminate powder with different composition was synthesized and metallic monolithic catalysts for methane combustion were prepared by coating the hexaaluminate, acting as the active components, on a FeCrAlloy support.
     The effect of substitution to the mirror plane ions on the thermal stability and catalytic activity was investigated. Mirror plane cation substituted La1-xAxMnAl11O19, with A= Sr2+、Ca2+、K+; x=0.2, 0.4, 0.8, hexaaluminate catalysts were synthesized by co-precipitation. For the samples with x=0.8 diffraction peaks other than the hexaaluminates structure were observed and the surface areas were decreased. It was also found that the sample Ca0.2La0.8MnAl11O19 possesses the best catalytic activity with T10%=723 K and the highest BET surface areas 26.1 m2/g after calcination at 1373 K. The TEM micrographs revealed that the substitution of La3+ by Ca2+ led to a thinner hexaaluminate planer crystal which improved the sintering resistance and increased the surface area. This substitution increased also the amount of reactive Mn3+ species and the reducibility of the hexaaluminate. The enhanced catalytic activity was attributed to the combined effects of higher specific surface area and Mn3+ content.
     Mg substitution to the Mn in the spinel blocks was examined. The physico-chemical properties and catalytic activity of the Mg doped samples were investigated and compared with the CeO2 and ZrO2 doped samples. Among the Mg-substituted ones a sample with a composition LaMn0.7Mg0.3Al11O19 has the best activity, with T10%=704 K. XRD and BET analysis suggests that the partial substitution by magnesium suppresses effectively the crystal growth along [001] direction, and retains a larger surface area than the non substituted samples. Although the increase in activity is partly attributable to the high surface area, O2-TPD and H2-TPR results confirm that the substitution affects also the oxygen adsorption property and the oxidation state of Mn ions in the hexaaluminate lattice. The reducibility, the amount of Mn3+ species and the lattice oxygen mobility are also improved. Excess Mg was incorporated into the hexaaluminate with a stoicoimetry LaMn0.7Mg0.3Al11O19. Mixtures of hexaaluminate and MgAl2O4 spinel is obtained after calcination the samples at 1373 K for 5 h. Mg-doping increases further the amount of lattice oxygen and results in a higher catalytic activity than the CeO2 and ZrO2 doped samples. A sample was found very active with T10%=700 K.
     LaMnAl11O19/FeCrAl monolithic catalysts were prepared by different methods and characterized by XRD, BET, TEM, hydrogen TPR and oxygen TPD. The results show that a sample prepared by ultrasonic co-precipitation possesses the highest BET surface area. Ultrasonic radiation during precipitation leads to an increase of the number of crystal oxygen, improves reducibility of Mn3+ and enhance the catalytic activity. Preparation method of powder samples influence the activity of the monolithic samples. Among the monolithic catalysts the sample prepared by dip-coating, through the powder prepared by ultrasonic co-precipitation as precursor, has the best activity, but the adhesion strength of this sample is poor. The catalyst prepared by spray-pyrolysis of sol possesses the best adhesion strength. The weight loss is lower than 20% during 1 h ultrasonic treatment and than 10% after 10 times of thermal treatment.
     LaMnAl11O19 and LaMn0.7Mg0.3Al11O19 catalysts were supported onto commercial FeCrAlloy foil, with Al2O3 and La2O3 as a primer. Different active phase/primer combinations were tested. The primers and the active phase were deposited by a dip-coating technique. The effects of primer on the stability and catalytic activity of monolithic catalyst were investigated. The results show that presence of the primer can improve the stability and activity of the monolithic catalyst. With Al2O3 as the primer the catalyst possesses higher adhesion strength, while with La2O3 as primer a higher activity can be obtained. The presence of the primer may reduce the interaction of hexaaluminate and metal support and consequently favor the catalytic activity.
引文
[1] L.D. Pferrerle, W.C. Pfefferle, Catalysis in combustion, Catal. Rev.-Sci. Eng., 1987, 29: 219~267
    [2] P. Thevenin, Catalytic combustion of methane, Ph.D, Kungliga Tekniska H?gskolan, 2002
    [3]吕宏缨,胡瑞生,沈岳年等,稀土型高温燃烧催化剂在天然气发电中的应用,稀土,2001, 22: 63~67
    [4] R. Quiceno, F. Chejne, A. Hill, Proposal of a methodology for determining the main chemical reactions involved in methane combustion, Energy and Fuels, 2002, 16: 536~542
    [5] J.S. Just, J. der Kinderen, Catalytic combustion: from reaction mechanism to commercial applications, Catal. Today, 1996, 29: 387~395
    [6] D. Liuparu, M.R. Lyubovsky, E. Altman, et al. Catalytic combustion of methane over palladium-based catalysts, Catal. Rev.-Sci. Eng., 2002, 44: 593~649
    [7] P.O. Thevenin, P.G. Menon, S.G. J?r?s, Catalytic total oxidation of methane, CATTECH, 2003, 7: 10~22
    [8] R.A.D. Betta, Catalytic combustion gas turbine systems: the preferred technology or low emissions electric power production and co-generation, Catal. Today, 1997, 35: 129~135
    [9] P. Forzatti, G. Groppi, Catalytic combustion for the production of energy, Catal. Today, 1999, 54: 165~180
    [10] R.W. Sidwell, H. Zhu, R.J. Kee, et al. Catalytic combustion of premixed methane-in-air on a high-temperature hexaaluminate stagnation surface, Comb. Flame, 2003, 134: 55~66
    [11] O. Deutschmann, J. Warnatz, Diagnostics for Catalytic Combustion, Taylor and Francis Publ., 2002, 518~533
    [12] G. Saracco, V. Specchia, Catalytic filters for the abatement of volatile organic compounds, Chem. Eng. Sci., 2000, 55: 897~908
    [13] R.E. Hayes, S.T. Kolaczkowski, Introduction to Catalytic Combustion, Amsterdam: Gordon and Breach Science Publ., 1997
    [14] J.H. Lee, D.L. Trimm, Catalytic combustion of methane, Fuel Proc. Tech., 1995, 42: 339~359
    [15]韩昭沦,燃料及燃烧,北京:冶金工业出版社,1984: 94~96
    [16] M.M. Zwinkels, S.G. J?r?s, P.G. Menon, Catalytic materials for high-temperature combustion, Catal. Rev-Sci. Eng., 1993, 35: 319~358
    [17]王务林,赵航,王继先,汽车转化器系统概论,北京:人民交通出版社,1999, 5~18
    [18] A.F. Sarofim, R.C. Flagan, NOx control for stationary combustion sources, Prog. Energy Combust. Sci., 1976, 2: 1~25
    [19]曾汉才,燃烧与污染,华中理工大学出版社,1990, 27~40
    [20] K. Eguchi, H. Arai, Recent advances in high temperature catalytic combustion, Catal. Today, 1996, 29: 379-386
    [21] A.M. James, M.P. Lord, Macmillan's Chemical and Physical Data, Macmilian, London, 1992
    [22]伍利群,汽车尾气污染及其净化处理技术,安全与环境工程,2002, 9:20~24
    [23]四川石油管理局编,天然气工程手册,北京:石油工业出版社,1984, 572
    [24] H. Arai, M. Machida, Recent progress in high-temperature catalytic combustion, Catal. Today, 1991, 10: 81~94
    [25]王建新,汽车排气污染治理及催化转化器,北京:化学工业出版社,2000, 28~50
    [26] D. Klvana, J. Chaouki, C. Guy, et al. Catalytic combustion: new catalysts for new technology, Combustion science and technology, 1996, 121: 51~65
    [27] J.W. Geus, J.C. van Giezen. Monolith in catalytic oxidation. Catal. Today, 1999, 47: 169~180
    [28] R. Carroni, V. Schmidt, T. Griffin, Catalytic combustion for power generation, Catal. Today, 2002, 75: 287~295
    [29] C.N. Satterfield, H. Resnick, R.L. Wentworth, Chem. Eng. Prog., 1954, 50: 460~468
    [30]陈笃慧,提高热效,降低污染的催化燃烧法,化工时刊,1997, 11: 23~27
    [31]王军威,田志坚,徐金光等,甲烷高温燃烧催化剂研究进展,化学进展, 2003, 15: 242~248
    [32] S.H. Oh, P.J. Mitchell, R.M. Siewert, Catalytic Contral of Air Pollution, ACS Symposium Series, 1992, 12: 495~509
    [33] V.R. Choudhary, B.S. Uphade, S.G. Pataskar. Low temperature complete combustion of dilute methane over Mn-doped ZrO2 catalysts: factors influencing the reactivity of lattice oxygen and methane combustion activity of the catalyst. Appl. Catal. A: Gen., 2002, 227: 29~41
    [34]翟彦青,催化燃烧用金属载体整体催化剂的制备及表征[博士论文],天津:天津大学,2004
    [35] J. Kirchnerova, D. Klvana, Design criteria for high-temperature combustion catalysts, Catal. Lett., 2002, 67: 175~181
    [36]阎子峰,薛锦珍,沈师孔等,Pd/SiO2催化剂上甲烷活化的TPSR研究,天然气化工,1997, 22: 19~23
    [37] R. Burch, D.J. Crittle, M.J. Hayes, C-H bond activation in hydrocarbon oxidation on heterogeneous catalysts, Catal. Today, 1999, 47: 229~234
    [38]岑可法,姚强,骆仲泱等主编,高等燃烧学,杭州:浙江大学出版社,2002:672~673
    [39] E. Pocoroba, L.J. Pettersson, J. Agrell, et al. Exhaust gas catalysts for heavy-duty applications: influence of the Pd particle size and particle size distribution on the combustion of natural gas and biogas, Topics in Catal., 2001, 16: 407~412
    [40] H. Widjaja, K. Sekizawa, K. Eguchi, Oxidation of methane over Pd/mixed oxides for catalytic combustion, Catal. Today, 1999, 47: 95~101
    [41] L.F. Liotta, G. Deganello, D. Sannino, et al. Influence of barium and cerium oxides on alumina supported Pd catalysts for hydrocarbon combustion, Appl. Catal. A: Gen., 2002, 29: 217~227
    [42] K. Sekizawa, H. Widjaja, S. Maeda, et al. Low temperature oxidation of methane over Pd/SnO2 catalyst, Appl. Catal. A: Gen., 2000, 20: 211~217
    [43] C.K. Ryu, M.W. Ryoo, I.S. Ryu, et al. Catalytic combustion of methane over supported bimetallic Pd catalysts: Effect of Ru or Rh addition, Catal. Today, 1999, 47: 141~147
    [44] K. Sekizawa, H. Widjaja, S. Maeda, et al. Low temperature oxidation of methane over Pd catalyst supported on metal oxides, Catal.Today, 2000, 59: 69~74
    [45]杨玉霞,肖利华,徐贤伦,负载型钯催化剂上甲烷催化燃烧的研究进展,工业催化,2004, 12: 1~5
    [46] E. Garbowski, M. Guenin, M.C. Marion, et al. Catalytic properties and surface states of cobalt-containing oxidation catalysts, Appl. Catal., 1990, 64: 209~224
    [47] E. Finocchio, G. Busca, Characterization and hydrocarbon oxidation activity of coprecipitated mixrd oxides Mn3O4/Al2O3, Catal. Today, 2001, 70: 213~225
    [48] W.B. Li, Y. Lin, Y. Zhang, Promoting effect of water vapor on catalytic oxidation of methane over cobalt/manganese mixed oxides, Catal. Today, 2003, 83: 239~245
    [49] R. Villa, C. Cristiani, G. Groppi, et al. Ni based mixed oxide materials for CH4 oxidation under redox cycle condition, J. Mol. Catal. A: Chem., 2003, 204: 637~646
    [50]李然家,沈师孔,晶格氧用于甲烷氧化制合成气的研究,分子催化,2001, 15: 181~187
    [51] J.G. Mecarty, H. Wise, Perovskite catalysts for methane combustion, Catal. Today, 1990, 8: 231~248
    [52]王翔,马军,段连运等,甲烷的催化燃烧,催化学报,1998, 19: 325~328
    [53] T. Xiao, S. Ji, H. Wang, et al. Methane combustion over supported cobalt catalysts, J. Mol. Catal. A: Chem., 2001, 175: 111~123
    [54] T. Xiao, H. Wang, E. Flahaut, et al. Catalytic Combustion of Methane over cobalt-magnesium Oxide solid solution catalysts, Catal. Lett., 2001, 75: 65~71
    [55] Y. Morooka, A. Ozaki, J. Catal., 1966, 5: 116
    [56] H. Arai, M. Machida, Thermal stabilization of catalyst supports and theirapplication to high temperature catalytic combustion, Appl. Catal. A: Gen., 1996, 138: 161~167
    [57] K.R. Barnard, K. Foger, T.W. Turney, et al. Lanthanum cobalt oxide oxidation catalysts derived from mixed hydroxide precursors, J. Catal., 1990, 125: 265~275
    [58] K. Tabata, M. Misono, Elimination of pollutant gases-oxidation of CO, reduction and decomposition of NO, Catal. Today, 1990, 8: 249~261
    [59] J.L.G. Fierro, Structure and composition of perovskite surface in relation to adsorption and catalytic properties, Catal. Today, 1990, 8: 153~174
    [60] J.O. Petunchi, E.A. Lombardo, The effect of bulk and surface reduction upon the catalytic behavior of perovskite oxides, Catal. Today, 1990, 8: 201~219
    [61] N. Mizuno, Supported perovskites. Catal. Today, 1990, 8: 221~230
    [62] N. Yamazoe, Y. Teraoka, Oxidation catalysis of perovskites-relation to bulk structure and composition (valency, defect, etc.), Catal. Today, 1990, 8: 175~199
    [63] H. Arai, T. Yamaha, K. Eguchi, et al. Catalytic combustion of methane over various perovskite-type oxides, Appl. Catal., 1986, 26: 265~276
    [64]刘源,王颖,钙钛矿型稀土复合氧化物整体式催化剂的研究进展,稀土,2002, 23: 54~58
    [65]黄端平,徐庆,江金国等,钙钛矿型复合氧化物La1-xSrxFe1-yCoyO3的制备与应用,材料导报,2002, 16: 48~50
    [66]翁端,丁红梅,吴晓东等,LaMnO3稀土纳米材料及催化活性,物理化学学报,2001, 17: 248~251
    [67]刘源,秦永宁,钙钛矿型复合氧化物用作深度氧化催化剂,天然气化工,1997, 22: 47~51
    [68] G. Saracco, G. Scibilia, A. Iannibello, et al. Methane combustion on Mg-doped LaCoO3 perovskite catalysts, Appl. Catal. B: Envir., 1996, 8: 229~244
    [69]夏治强,汽车废气净化方法和催化剂的分类,中国环保产业,1996, 6: 26~28
    [70]翁端,丁红梅,徐鲁华等,锶和铈对LaMnO3+x稀土纳米钙钛矿材料性能的影响,中国稀土学报,2001, 19: 339~342
    [71] S. Ponce, M.A. Pena, J.L G. Fierro, Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites, Appl. Catal. B: Envir., 2000, 24: 193~205
    [72] A. Baiker, P.E. Marti, P. Keusch, Influence of the A-site cation in ACoO3 (A=La, Pr, Nd, Gd) perovskite-type oxides on catalytic activity for methane combustion, J. Catal., 1994, 146: 268~276
    [73] M. Alifanti, J. Kirchnerova, B. Delmon, Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion, Appl. Catal. A: Gen., 2003, 245: 231~243
    [74] T. Nakamura, N. Minsono, Y. Yoneda, Chem. Lett., 1981, 15: 89~100
    [75]肖益鸿,詹瑛瑛,蔡国辉等,镧锰系钙钛矿可脱附氧与催化氧化活性,华侨大学学报,2000, 21: 399~403
    [76]张桂英,张志强,敖炳秋,汽车尾气转换器中的催化材料,内燃机,1997, 6: 21~24
    [77] A. Gonzalez, M. Tamayo, B. Porter, et al. Synthesis of high surface area perovskite catalysts by non-conventional routes, Catal. Today, 1997, 33: 361~369
    [78]钟子宜,曹学强,曾跃等,纳米钙钛矿型氧化物LaFe1-yAlyO3制备及催化性能,分子催化,1997, 11: 95~101
    [79] N.K. Labhsetwar, A. Watanabe, R.B. Biniwale, et al. Alumina supported, perovskite oxide based catalytic materials and their auto-exhaust application, Appl. Catal. B: Envir., 2001, 33: 165~173
    [80] Z.Y. Zhong, L.G. Chen, O.J. Yan, et al. Study on the preparation of nanometer perovskite type complex oxide LaFeO3 by sol-gel method, Stud. Surf. Sci. Catal., 1995, 91: 647~653
    [81]翟永青,姚子华,丁士文等,EDTA络合溶胶-凝胶法制备La0.8Sr0.2FeO3纳米粉体,稀有金属,2002, 26: 69~73
    [82] I. Rossetti, L. Forni, Catalytic flameless combustion of methane over perovskites prepared by flame-hydrolysis, Appl. Catal. B: Envir, 2001, 33: 345~352
    [83] R. Leanza, I. Rossetti, L. Fabbrini, et al. Perovskite catalysts for the catalytic flameless combustion of methane Preparation by flame-hydrolysis and characterization by TPD-TPR-MS and EPR, Appl. Catal. B: Envir, 2000, 28: 55~64
    [84] L. Fabbrini, I. Rossetti, L. Forni, La2O3 as primer for supporting La0.9Ce0.1CoO3±δon cordieritic honeycombs, Appl. Catal. B: Envir., 2005, 56: 221~227
    [85] N. Iyi, S. Takekawa, S. Kimura, Crystal chemistry of hexaaluminates:β-alumina and magnetoplumbite structure, J. Solid State Chem., 1989, 83: 8~19
    [86]张俊英,张中太,唐子龙,六铝酸盐基荧光粉的发光性能,材料科学与工艺,2002, 10: 213~219
    [87] C.M. Jantzen, P.R. Neurganonkar, Solid-state reaction in the system Al2O3-Nd2O3-CaO: a system pertinent to radioactive disposal, Mater. Res. Bull. , 1981, 16: 519~524
    [88] J. Kirchnerova, D. Klvana, Design criteria for high-temperature combustion catalysts, Catal. Lett., 2000, 67: 175~181
    [89] D.L. Trimm, Materials selection and design of high temperature catalytic combustion units, Catal. Today, 1995, 26: 231~238
    [90] M. Machida, K. Eguchi, H. Arai, Effect of additives on the surface area of oxide supports for catalytic combustion, J. Catal., 1987, 103: 385~393
    [91] J.G. Park, A.N. Cormack, Crystal/Defect structure and phase stability in Bahexaaluminates, J. Solid State Chem., 1996, 121: 278~290
    [92]徐占林,六铝酸盐AMAl11O19催化剂上甲烷二氧化碳重整制合成气反应研究[博士论文],长春:吉林大学,2000
    [93] M. Machida, A. Sato, T. Kijima, et al. Catalytic properties and surface modification of hexaaluminate microcrystals for combustion catalyst, Catal. Today, 1995, 26: 239~245
    [94] B.W.L. Jang, R.M. Nelson, J.J. Spivey, et al. Catalytic oxidation of methane over hexaaluminates and hexaaluminate-supported Pd catalysts, Catal. Today, 1999, 47: 103~113
    [95] M. Machida, K. Eouchi, H. Arai, Effect of structural modification on the catalytic property of Mn-substituted hexaaluminates, J. Catal., 1990, 123: 477~485
    [96]翟彦青,孟明,李永丹等,La、Ba离子对高温燃烧催化剂六铝酸盐结构和性质的影响,应用化学,2005, 22: 320~325
    [97] G. Groppi, M. Bellotto, C. Cristiani, et al. Thermal evolution crystal structure and cation valence of Mn in substituted Ba-β-Al2O3 prepared via coprecipitation in aqueous medium, J. Mater. Sci., 1999, 34: 2609~2620
    [98]陈笃慧,毛双通,杨乐夫等,Mn2+和La3+对提高六铝酸盐热稳定性燃烧活性的作用,天然气化工,1996, 21: 24~27
    [99] S.R. Jansen, J.W. de Haan, L.J.M. Vande, et al. Incorporation of nitrogen in alkaline-earth hexaaluminates with aβ-aluminate- or a magnetoplumbite-type structure, Chem. Mater., 1997, 9: 1516~1523
    [100] R. Gadow, M. Lischka, Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development, Surf. Coat. Tech., 2002, 151: 392~399
    [101] G. Groppi, C. Cristiani, P. Forzatti, Preparation, characterization and catalytic of pure and substituted La-hexaaluminate systems for high temperature catalytic combustion, Appl. Catal. B: Envir., 2001, 35: 137~148
    [102] T.T. Yeh, H.G. Lee, K.S. Chu, et al. Characterization and catalytic combustion of methane over hexaaluminates, Mater. Sci. Eng. A, 2004, 384: 324~330
    [103] M. Machida, K. Eguchi, H. Arai, Catalytic properties of BaMAl11O19 (M=Cr, Mn, Fe, Co, and Ni) for high-temperature catalytic combustion, J. Catal., 1989, 120: 377~386
    [104] P.A. Duart, Y. Brullé, F. Gaillard, et al. Catalytic combustion of methane over copper- and manganese-substituted barium hexaaluminates, Catal. Today, 1999, 54:181~190
    [105]谭亚军,蒋展鹏,祝万鹏等,用于有机污染物湿式氧化的铜系催化剂活性研究,化工环保,2000, 20: 6~10
    [106] P. Artizzu, N. Guilhaume, E. Garbowski, et.al. Catalytic combustion of methane on copper-substituted barium hexaaluminates, Catal. Lett., 1998, 51: 69~75
    [107] R. Kikuchi, Y. Tanaka, K. Sadaki, et al. High temperature catalytic combustion of methane and propane over hexaaluminate catalysts: NOx emission characteristics, Catal. Today, 2003, 83: 223~231
    [108]朱崇恩,董文魁,丁玉洁等,稀土纳米复合氧化物的制备及应用,甘肃联合大学学报(自然科学版),2005, 19: 47~49
    [109] J.M. Sohn, S.K. Kang, S.I. Woo, Catalytic properties and characterization of Pd supported on hexaaluminate in high temperature combustion, J. Mol. Catal. A: Chem., 2002, 186: 135~144
    [110] D. Naoufal, J.M. Millet, E. Grabowski, et al. Synthesis, structure and catalytic properties of Fe-substituted barium hexaaluminates, Catal. Lett., 1998, 54: 141~148
    [111] S.I. Woo, S.K. Kang, J.M. Sohn, Effect of water content in the precursor solution on the catalytic property and stability of Sr0.8La0.2MnAl11O19 high-temperature combustion catalyst, Appl. Catal. B: Envir., 1998, 18: 317~324
    [112]徐金光,高温催化材料制备方法及其在甲烷催化燃烧中应用的研究[博士论文],大连:中国科学院大连化学物理研究所,2003
    [113] S.J. Cho, Y.S. Seo, K.S. Song, et al. Surfactant-mediated synthesis of metal substituted hexaaluminate from alumina sol. Appl. Catal. B: Envir., 2001, 30: 351~357
    [114] A.J. Zarur, J.Y. Ying, Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion, Nature, 2000, 403: 65~67
    [115]张益群,余力挺,马建新,构件化催化剂的研究现状与应用,工业催化,2003, 11: 1~7
    [116] F. Kapteijn, T.A. Nijhuis, J.J. Heiszwolf, et al. New non-traditional multiphase catalytic reactors based on monolithic structures, Catal. Today, 2001, 66: 133~144
    [117]龙军,邵潜,贺振富等,规整结构催化剂及反应器研究进展,化工进展,2004, 23: 925~932
    [118] R.M. Heck, S. Gulati, R.J. Farrauto, The application of monoliths for gas phase catalytic reactions, Chem. Eng. J., 2001, 82: 149~156
    [119] J.L. Williams, Monolith structures, materials, properties and uses, Catal. Today, 2001, 69: 3~9
    [120] T.V. Marco, J.G. Linders, K. Freek, et al. Carbon based monolithic structures, Catal. Rev., 2001, 43: 291~314
    [121] T. Nakatsuzi, A. Miyamoto, Removal technology for nitrogen oxides and sulfur oxides from exhaust gases, Catal. Today, 1991, 10: 21~31
    [122] A. Baiker, P. Dollenmeier, M. Glinske, Selective catalytic reduction of nitric oxide with ammoniaⅡ.Monolayers of vanadia immobilized on titania-silica mixed gels, Appl. Catal., 1987, 35: 365~380
    [123] I.M. Lachman, R.N. Mcnally, Chem. Eng. Prog., 1985, 81: 29~31
    [124] A. Cybulski, J.A.oulijn, Structure Catalysts and Reactors, New York: Marcel Dekker, 1998, 15~284
    [125]王爱琴,蜂窝陶瓷载体上沸石分子筛的原位合成及在deNOx中的应用[博士论文],大连:中科院大连化物所,2001
    [126] T.A. Nijhuis, A.E.W. Beers, T. Vergunst, et al. Preparation of monolithic catalysts, Catal. Rev., 2001, 43: 345~380
    [127] G. Groppi, E. Tronconi, Simulation of structure catalytic with enhanced thermal conductivity for selective oxidation reaction, Catal. Today, 2001, 69: 63~73
    [128] E. Crezee, A. Barendregt, F. Kapteijn, et al. Carbon coated monolithic catalysts in selective oxidation of cyclohexanone, Catal. Today, 2001, 69: 282~290
    [129] P.H. Cuong, S. Marin, M.J. Ledoux, et al. Synthesis and characterization of platinum-rhodium supported on SiC and SiC doped with cerium: Catalytic activity for the automobile exhaust reactions, Appl. Catal. B: Envir., 1994, 4: 45~63
    [130] N. Mizuno, H. Fujii, M. Misono, et al. Preparation of perovskite-type mixed oxides supported on cordierite: An efficient combustion catalyst, Chem. Lett., 1986, 176: 1333~1336
    [131]彭小圣,林赫,黄震等,采用钙钛矿型催化剂(La0.8K0.2Cu0.05Mn0.95O3)同时催化去除NOx和碳烟的研究,环境科学学报,2006, 26: 779~784
    [132] Z. Shan, W.E.J. van Kooten, O.L. Oudshoorn, et al. Optimization of the preparation of binderless ZSM-5 coatings on stainless steel monoliths by in situ hydrothermal synthesis, Micro. Meso. Mater., 2000, 34: 81~91
    [133] L. Giani, C. Cristiani, G. Groppi, et al. Washcoating method for Pd/γ-Al2O3 deposition on metallic foams, Appl. Catal. B: Envir., 2006, 62: 121~131
    [134] M. Valentini, G. Groppi, C. Cristiani, et al. The deposition ofγ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts, Catal. Today, 2001, 69: 307~314
    [135] J.P. Reymond, Structured supports for noble catalytic metals: stainless steel fabrics and foils, and carbon fabrics, Catal. Today, 2001, 69: 343~349
    [136] A. Suknev, A.C. van Veen, A. Toktarev, et al. NO decomposition over a new type of low metal content fiberglass catalysts studied by the TAP technique, Catal. Commun., 2004, 5: 691~695
    [137] T. Cui, J. Fang, A. Zheng, et al. Fabrication of microreactors for dehydrogenation of cyclohexane to benzene, Sen. Actua. B, 2000, 71: 228~231
    [138] P.A. Beauseigneur, I.M. Lachman, M.D. Patil, et al. Pore Impregnated Catalyst Device, US 5 334 570, 1994
    [139] A.E. Duisterwinkel, Clean coal combustion with in-situ impregnated sol-gel sorbent. Ph.D. Thesis Delft University of Technology, Delft, 1991
    [140] W.P. Addiego, I.M. Lachman, M.D. Patil, et al. High surface area washcoated substrate and method for producing same, US Patent 5 212 130, 1993(assigned to Corning Inc.)
    [141] S. Hofacker, M. Mechtel, M. Mager, et al. Sol-gel: a new tool for coating chemistry, Prog. Org. Coat., 2002, 45: 159~164
    [142]高金良,刘军霞,张德权等,添加剂对多孔陶瓷载体氧化铝涂层的影响,高校化学工程学报,2006, 20: 142~146
    [143]华金铭,蔡英灵,郑起等,蜂窝状堇青石载体Al2O3涂层的原位合成,催化学报,2003, 24: 513~519
    [144] M.H. Han, Y.S. Ahn, S.K. Kim, et al. Synthesis of manganese-substituted hexaaluminate and its fabrication into monolithic honeycombs for catalytic combustion, Mater. Sci. Eng. A, 2001, 302: 286~293
    [145] A.A. Klinghoffer, R.L. Cerro, M.A. Abraham, Catalytic wet oxidation of acetic acid using platinum on alumina monolith catalyst, Catal. Today, 1998, 40: 59~71
    [146] X. X. Ding, H. Vonk, A. Cybulski, et al, Alumina washcoating and metal deposition of ceramic monolith, Preparation of Catalysts VI, 1995, 1069~1078
    [147] F. Schmidt, New catalyst preparation technologies-observed from an industrial viewpoint, Appl. Catal. A: Gen., 2001, 221: 15~21
    [148]杨立英,李成岳,刘辉,金属基体上铝溶胶涂层的制备,催化学报,2004, 25: 283~288
    [149] A.I. Stankiewicz, J,A, Moulijn, Process intensification: Transforming chemical engineering, Chem. Eng. Progr., 2000, 96: 20~35
    [150] K. Heitnes, S. Lindberg, O.A. Rokstad, et al. Catalytic partial oxidation of methane to synthesis gas using monolithic reactors, Catal. Today, 1994, 21: 471~480
    [151] H. Bosch, F. Janssen, Formation and control of nitrogen oxides, Catal. Today, 1988, 2: 369~379
    [152] F.J. Gulian, J.S. Rieck, C.J. Peveira, Camet oxidation catalyst for cogeneration applications, Ind. Eng. Chem. Res., 1991, 30: 122~126
    [153] D.L. Hickman, A.N. Mack, T.A. Collins, et al. Gravity-flow water filter cartridge used in drinking water carafe, comprises microporous cyst reduction filter element provided in water-retaining reservoir having water catacity sufficient to cover the filter element, US 6 159 363, 2000
    [154] G. Groppi, E. Tronconi, Design of novel monolith catalyst supports for gas/solid reactions with heat exchange, Chem. Eng. Sci., 2000, 55: 2161~2171
    [155] F.M. Dautzenberg, M. Mukherjee, Process intensification using multifunctional reactors, Chem. Eng. Sci., 2001, 56: 252~267
    [156]曹荣,陈燕馨,李峥嵘等,甲烷部分氧化制甲醛催化剂MoO3/SiO2及MoO3·MxOy/SiO2的程序升温还原研究,分子催化,1996, 10: 368~374
    [157] T.A. Nijhuis, M.T. Kreutzer, A.C.J Romijn, et al. Monolithic catalysts as efficient three-phase reactors, Chem. Eng. Sci., 2001, 56: 823~829
    [158] V.J.M. de Campos, R.M.Q. Ferreira, Structured catalysts for partial oxidations,Catal. Today, 2001, 69: 121~129
    [159] A.M. Hilmen, E. Bergene, O.A. Lindv?g, et al. Fischer-Tropsch synthesis on monolithic catalysts of different materials, Catal. Today, 2001, 69: 227~232
    [160] S. Cimino, L. Lisi, R. Pirone, et al. Methane combustion on perovskites-based structured catalysts, Catal. Today, 2000, 59: 19~31
    [161] L.A. Isupova, G.M. Alikina, S.V. Tsybulya, et al. Honeycomb-supported perovskite catalysts for high-temperature processes, Catal. Today, 2002, 75: 305~315
    [162] L. Fabbrini, I. Rossetti, L. Forni, Effect of honeycomb supporting on activity of LaBO3±δperovskite-like catalysts for methane flameless combustion, Appl. Catal. B: Envir., 2006, 63: 131~136
    [163]陈能展,季生福,银凤翔等,LaAl1-xFexO3/ Al2O3/ FeCrAl催化剂的制备及其对甲烷燃烧的催化性能,催化学报,2005, 26: 1017~1021
    [164]翟彦青,李鑫刚,陈久岭等,催化燃烧用金属整体催化反应器的制备及性能,化学通报,2005, 2: 145~149
    [165] A. Ersson, Materials for high-temperature catalytic combustion, Ph. D, Kungliga Tekniska H?gskolan, 2003
    [166] K. Eguchi, H. Inoue, K. Sekizawa, et al. Role of A- and B-cations in catalytic property of substituted hexaaluminate (ABAl11O19-α) for high temperature combustion, Stud. Surf. Sci. Catal., 1996, 101: 417~425
    [167] L. Lietti, C. Cristiani, G. Groppi, et al. Preparation, characterization and reactivity of Me-hexaaluminate (Me=Mn, Co, Fe, Ni, Cr) catalysts in the catalytic combustion of NH3-containing gasified biomasses, Catal. Today, 2000, 59: 191~204
    [168]吕宏缨,胡瑞生,高官俊等,共沉淀法制备稀土磁铅石型催化剂Ba1-xLaxMnAl11O19及其甲烷催化燃烧活性的研究,稀土,2003, 24: 24~26
    [169] S. Li, X. Wang, Catalytic combustion of methane over Mn-substituted Ba-La-Hexaaluminate nanoparticles, J. Alloys Comp., 2007, 432: 333~337
    [170] L. Marchetti, L. Forni, Catalytic combustion of methane over perovskites, Appl. Catal. B: Envir., 1998, 15: 179~187
    [171] V. Szabo, M. Bassir, A.V. Neste, et al. Perovskite-type oxides synthesized by reactive grinding PartⅣ. Catalytic properties of LaCo1-xFexO3 in methane oxidation, Appl. Catal. B: Envir., 2003, 43: 81~92
    [172] S.J. Cho, Y.S. Seo, K.S. Song, et al. Surfactant-mediated synthesis of metal substituted hexaaluminate from alumina sol. Appl. Catal. B: Envir., 2001, 30: 351~357
    [173]段华超,刘源,李增喜等,六铝酸盐的结构及其在甲烷制氢中的应用,化工进展,2004, 23: 486~491
    [174] L. Lietti, C. Ramella, G. Groppi, Oxidation of NH3 and NOx formation during the catalytic combustion of gasified biomasses fuels over Mn-hexaaluminate and alumina-supported Pd catalysts, Appl. Catal. B: Envir., 1999, 21: 89~102
    [175] B.R. Strohmeier, D.M. Hercules, Surface spectroscopic characterization of Mn/Al2O3 catalysts, J. Phys. Chem., 1984, 88: 4922~4929
    [176] E.R. Stobbe, B.A. de Boer, J.W. Geus, The reduction and oxidation behavior of manganese oxides, Catal. Today, 1999, 47: 161~167
    [177] P.A. Duart, J,M. Millet, N.Guilhaume, et al. Catalytic combustion of methane on substituted barium hexaaluminates, Catal. Today, 2000, 59: 163~177
    [178] L.C. Yan, L.T. Thompson, Synthesis and characterization of aerogel-derived cation-substituted barium hexaaluminates, Appl. Catal. A: Gen., 1998, 171: 219~228
    [179] M. Berg, S. J?r?s, Catalytic combustion of methane over magnesium oxide, Appl. Catal. A: Gen., 1994, 114: 227~241
    [180] M. Berg, S. J?r?s, High temperature stable magnesium oxide catalyst for catalytic combustion of methane: A comparison with manganese-substituted barium hexaaluminate, Catal. Today, 1995, 26: 223~229
    [181] P. Artizzu, E. Garbowski, M. Primet, et al. Catalytic combustion of methane on aluminate-supported copper oxide, Catal. Today, 1999, 47: 83~93
    [182] M. Machida, K. Eguchi, H. Arai, Analytical electron microscope analysis of the formation of BaO·6Al2O3, J. Am. Ceram. Soc., 1988, 71: 1142~1147
    [183]韩兵强,李楠,氧化镁含量对MgAl2O4/W复合材料组成和结构的影响,中国有色金属学报,2004, 14: 79~83
    [184] Y.C. Ko, J.T. Lay, Thermal expansion characteristics of alumina-magnesia and alumina-spinel castables in the temperature range 800~1650 oC, J. Am. Ceram. Soc., 2000, 83: 2872~2874
    [185]罗星源,乔芝郁,A90尖晶石在熔融还原炉渣中的侵蚀行为,耐火材料,1999, 33: 70~73
    [186] J.C. Vedrine, Characterization of heterogeneous catalysis, Marcel Dekker, New York, 1984: 161
    [187] J. Xu, Z. Luan, T. Wasowicz, et al. ESR and ESEM studies of Mn-containing MCM-41 materials, Micro. Meso. Mater., 1998, 22: 179~191
    [188] S. Velu, N. Shah, T.M. Jyothi, et al. Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg-Al layered double hydroxides, Micro. Meso. Mater., 1999, 33: 61~75
    [189] H.M. Zhang, Y. Shimizu, Y. Teraoka, et al. Oxygen sorption and catalytic properties of La1-xSrxCo1-yFeyO3 perovskite-type oxides, J. Catal., 1990, 121: 432~440
    [190] Y. Teraoka, H.M. Zhang, N. Yamazoe, Oxygen-sorptive properties of defect perovskite-type La1-xSrxCo1-yFeyO3-δ, Chem. Lett., 1985, 165: 1367~1370
    [191] B. Yue, R. Zhou, Y. Wang, et al. Study of the methane combustion and TPR/TPO properties of Pd/Ce-Zr-M/Al2O3 catalysts with M=Mg, Ca, Sr, Ba, J. Mol. Catal. A: Chem., 2005, 238: 241~249
    [192] L.F. Liotta, G. Deganello, D. Sannino, et al. Influence of barium and ceriumoxides on alumina supported Pd catalysts for hydrocarbon combustion, Appl. Catal. A: Gen., 2002, 229: 217~227
    [193] V.R. Choudhary, B.S. Uphade, S.G. Pataskar, Low temperature complete combustion of dilute methane over Mn-doped ZrO2 catalysts: factors influencing the reactivity of lattice oxygen and methane combustion activity of the catalyst. Appl. Catal. A: Gen., 2002, 227: 29~41
    [194]李淑莲,陈光文,孙继良等,CeO2-ZrO2复合氧化物对金属蜂窝整体催化剂性能的影响,催化学报,2002, 23: 341~344
    [195] R. Kikuchi, K. Takeda, K. Sekizawa, et al. Thich-film coating of hexaaluminate catalyst on ceramic substrates and its catalytic activity for high-temperature methane combustion, Appl. Catal. A: Gen., 2001, 218: 101~111
    [196] J. Wang, Z. Tian, J. Xu, et al. Preparation of Mn substituted La-hexaaluminate catalysts by using supercritical drying, Catal. Today, 2003, 83: 213-222
    [197] G. Groppi, M. Bellotto, Preparation and characterization of hexaaluminate-based materials for catalytic combustion, Appl. Catal. A: Gen., 1993, 104: 101~108
    [198] J. Kirchnerova. M. Alifanti, B. Delmon, Evidence of phase cooperation in the LaCoO3-CeO2-Co3O4 catalytic system in relation to activity in methane combustion, Appl. Catal. A: Gen., 2002, 231: 65~80
    [199] R. Spinicci, A. Tofanari, M. Faticanti, et al. Hexane total oxidation on LaMO3 (M=Mn, Co, Fe) perovskite-type oxides, J. Mol. Catal. A: Chem., 2001, 176: 247~252
    [200] I. Rosso, G. Saracco, V. Specchia, et al. Sulphur poisoning of LaCr0.5-xMnxMg0.5O3·yMgO catalysts for methane combustion, Appl. Catal. B: Envir., 2003, 40: 195~205
    [201] X. Wu, D. Wang, S. Zhao, et al. Influence of an aluminized intermediate layer on the adhesion of aγ-Al2O3 washcoat on FeCrAl, Surf. Coat Tech., 2005, 190: 434~439
    [202] F. Magali, B. Magnus, Thermal stability of metal-supported catalysts for reduction of cold-start emission in a wood-fired domestic boiler, Catal. Today, 1999, 53: 647~659
    [203]梁新义,马智,白正辰等,超声共沉淀法制备纳米结构LaNiO3及其性质,物理化学学报,2002, 18: 567~571
    [204]黄开辉,万惠霖,催化原理,北京:科学出版社,1983
    [205] M. Kakihana, T. Okubo, Low temperature powder synthesis of LaAlO3 through in situ polymerization route utilizing citric acid and ethylene glycol, J. Alloy Comp., 1998, 266: 129~133
    [206] M. Popa, M. Kakihana, Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route, Solid State Ioni., 2002, 151: 251~257
    [207] Y. Han, S. Li, X. Wang, et al. Synthesis and sintering of nanocrystallinehydroxyapatite powders by citric acid sol-gel combustion method, Mater. Res. Bull., 2004, 39: 25~32
    [208]武鹏,六铝酸盐高温燃烧催化剂的合成与甲烷催化氧化性能研究[硕士论文],内蒙古:内蒙古大学,2004
    [209] H. Zhao, D.J. Draelants, G.V. Baron, Preparation and characterization of nickel-modified ceramic filters, Catal. Today, 2000, 56: 229~237
    [210] A.G. Ersson, E.M. Johansson, S.G. Jaras, Techniques for preparation of manganese-substituted lanthanum hexaaluminates, Stud. Surf. Sci. Catal., 1998, 118: 601~608
    [211] Y. Li, Q. Fu, M.F. Stephanopoulos, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts, Appl. Catal. B, 2000, 27: 179~191
    [212] J.A. Pask, From technology to the science of glass/metal and ceramic/metal sealing, Ceram. Bull., 1987, 66: 1587~1589
    [213] S. Cimino, A.D. Benedetto. R. Pirone, et al. Transient behaviour of perovskites-based monolithic reactors in the catalytic combustion of methane, Catal. Today, 2001, 69: 95~103
    [214] S. Yasaki, Y. Yoshino, K. Ihara, et al. Catalytic converter for exhaust gas-comprises aluminium contg. Steel support coated with aluminum oxide slips which are calcined to produce gamma-aluminium oxide bonds, US 5 208 206. 1993
    [215]吴晓东,翁端,陈震等,等离子喷涂NiCrAl/ZrO2过渡层对FeCrAl/γ-Al2O3结合性能的影响,清华大学学报(自然科学版),2002, 42: 1293~1296
    [216]吴晓东,翁端,徐鲁华等,等离子喷涂氧化铝涂层的结构与性能研究,稀土,2002, 23: 1~5
    [217]闫慧忠,孔繁清,赵增祺等,催化剂载体FeCrAlY材料磷化工艺研究,中国稀土学报,2002, 20: 47~49
    [218] M.F.M. Zwinkels, O. Haussner, P.G. Menon, et al. Preparation and characterization of LaCoO3 and Cr2O3 methane combustion catalysts supported on LaAl11O18- and Al2O3-coated monoliths, Catal. Today, 1999, 47: 73~82
    [219] M.J. Andrews, M.K. Ferber, E.L. Curzio, Mechanical properties of zirconia-based ceramics as functions of temperature, J. Eur. Ceram. Soc., 2002, 22: 2633~2639
    [220] L. Fabbrini, I. Rossetti, L. Forni, Effect of primer on honeycomb-supported La0.9Ce0.1CoO3 perovskite for methane catalytic flameless combustion, Appl. Catal. B: Envir., 2003, 44: 107~116
    [221] D. Truyen, M. Courty, P. Alphonse, et al. Catalytic coatings on stainless steel prepared by sol-gel route, Thin Solid Films, 2006, 495: 257~261
    [222]王喜娜,敬承斌,赵修建,溶胶-凝胶法制备致密α-Al2O3涂层的研究,材料科学与工艺,2005, 13: 1~3
    [223] M.W. Swain, Structure and properties of ceramics, Beijing, Science press,1998, 455
    [224] Y.Q. Zhai, Y.D. Li, Preparation of metal supported hexaaluminate catalyst for methane combustion, Stud. Surf. Sci. Catal., 2006, 162: 665~672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700