结构型负载杂多酸复合微球的构筑及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两相催化反应因应用广泛而受到人们极大关注。其中,提高两相催化反应效率以及简化催化剂和产物分离过程是该领域研究中主要课题。已有的研究结果表明,在两相催化反应中,基于相转移和胶束特点的催化反应体系在提高催化反应效率方面具有一定优势,但表面活性剂或相转移试剂复杂的分离过程是该方法主要缺点。因此,在保证催化效率的条件下,探索在催化剂回收和产物分离方面具有广泛适用性的两相催化反应体系研究,仍然具有重要的理论和应用价值。依据胶束结构特点,结合本实验室有关微球的研究结果,本研究提出在微凝胶表面负载具有两相催化性质的相转移催化剂,制备具有类似胶束结构特点的复合微球,以此复合微球所具有的整体回收催化剂和产物功能,以解决两相催化反应的普遍难题。
     基于上述目的,本研究主要集中在以下几个方面:
     1、以可聚合表面活性剂与微凝胶单体共聚模板微球制备复合微球
     合成了季铵盐型可聚合表面活性剂,丙烯酰胺丙基十二烷基二甲基溴化铵(APDDAB),并对其进行了表征;以丙烯酰胺(AM)和APDDAB为单体,利用反相乳液聚合法制得了P(AM-co-APDDAB)微凝胶;利用磷钨酸(PWA)与P(AM-co-APDDAB)微球中的季铵盐离子交换作用,获得P(AM-co-APDDAB/PW_(12)O_(40))复合微球。通过红外光谱、扫描电子显微镜、热重、能谱等手段对复合微球成分和形貌进行表征。
     研究结果表明:
     通过反相乳液聚合可以制得粒径分布均匀、表面光滑的P(AM-co-APDDAB)微凝胶,这种微凝胶与PAM微球相比具有较小网络孔径,且孔径随APDDAB引入量的增加而减小。
     所得到的P(AM-co-APDDAB)/PW_(12)O_(40)复合微球,具有与模板微球类似的球形形貌和光滑的表面,其溶胀性与模板微球相比有所降低。PW_(12)O_(40)~(3-)主要分布在复合微球表面。
     所得复合微球核主要为水凝胶,而壳层主要分布磷钨酸季铵盐复合物,这种结构特点,决定了所得复合微球具有一定的表面活性和催化作用。
     2、以可聚合表面活性剂甲醇溶液浸渍孔结构微凝胶模板制备复合微球
     将水溶胀聚丙烯酰胺(PAM)微凝胶冷冻干燥制得多孔微球;再将其浸渍于APDDAB的甲醇溶液中;所得微球(PAM/APDDAB)在磷钨酸水溶液中进行离子交换反应;在水中超声洗涤后,经丙酮和水交替洗涤得到表面覆盖有磷钨酸季铵盐复合物纳米颗粒的复合微球(PAM/APDDAB-PWA)。通过红外光谱、元素分析、等离子体发射原子吸收光谱、光电子能谱、扫描电子显微镜等手段,研究了PAM微凝胶不同交联度、APDDAB浸渍液浓度、离子交换反应时间以及洗涤方式等因素对复合微球形貌及组成的影响。
     研究结果表明:
     PAM/APDDAB-PWA复合微球具有表面褶皱形貌;这种褶皱的形成是由于PAM聚合物骨架内部和外部收缩的不均匀引起的;这种不均性收缩与APDDAB-PWA在复合微球网络骨架上沉积量不同而引起网络骨架刚性差异性有关,这种刚性的差异性导致水溶胀复合微球经丙酮或甲醇洗涤收缩而产生网络骨架的变形。
     复合微球表面褶皱上呈现APDDAB-PWA小颗粒形貌;这种小颗粒是可聚合表面活性剂APDDAB的簇集和PWA反应的结果,其中PWA阴离子起着交联剂的作用而将APDDAB的球形簇集固定下来;APDDAB-PWA小颗粒的形成与溶剂的成分关系密切;丙酮或醇和水的混合溶剂有利于其形成;只有当溶剂比例合适时才能形成APDDAB-PWA小颗粒。
     所得复合微球具有核/壳结构;核为水凝胶,使复合微球具有储存水溶性物质的作用;壳层为APDDAB-PWA复合物使其不仅具有双亲性而且具有潜在的催化性;复合微球整体具有大体积,表面密集覆盖小尺寸的APDDAB-PWA颗粒,使复合微球易于分离且有利于催化;APDDAB-PWA球形簇集体具有双亲性,使其能够在水或有机溶剂中稳定地分散,并能在油水界面自发地组装;这些性质赋予了PAM/APDDAB-PWA复合微球应用于两相催化反应的良好功能。
     3、以PAM微凝胶季铵化改性微球为模板制备复合微球
     以聚丙烯酰胺(PAM)微凝胶与羟甲基二甲胺(甲醛和二甲胺反应物)在pH=9-11的水溶液中进行Mannich反应,再与十二烷基溴进行季铵化反应,之后在磷钨酸水溶液中进行离子交换反应,最终得到负载磷钨酸季铵盐催化剂的CPAM/PWA复合微球。通过红外光谱、光电子能谱、扫描电子显微镜等手段对复合微球进行了表征,并研究了上述过程中不同反应条件对复合微球形貌及组成产生的影响。
     研究结果表明:所得CPAM/PWA复合微球表面光滑、球形保持;随着修饰程度提高,复合微球溶胀度变小;PAM与羟甲基二甲胺的配比是决定磷钨酸负载量的关键因素;该配比不仅影响复合微球对磷钨酸阴离子负载量,而且影响复合微球的溶胀性。
     4、复合微球催化过氧化氢氧化脱硫的性能研究
     以催化过氧化氢氧化十氢萘中二苯并噻吩(DBT)为模型反应,以PAM/APDDAB-PWA复合微球为催化微反应器,考察了反应温度、复合微球用量、复合微球组成、H_2O_2/DBT摩尔比、模板微球交联度、溶剂中DBT浓度、复合微球回收利用次数等因素对过氧化氢氧化DBT催化效率的影响。
     研究结果表明:
     PAM/APDDAB-PWA复合微球对于DBT具有良好的催化反应效率。说明了利用该方法所构筑的复合微球材料作为两相催化微反应器的可行性,可以实现催化剂的反复回收利用。
     PAM/APDDAB-PWA复合微球材料具有萃取过氧化氢氧化DBT产物砜的作用。说明通过复合微球中水凝胶高分子的设计实现对不同两相催化产物的萃取分离是完全可能的。
     在利用这类核壳型复合微球进行两相催化反应时,水相与复合微球配比对催化反应效率具有显著的影响,且合适的溶胀是非常重要的;水相相对较高时,因复合微球间易于聚集而不利于催化反应进行;水相相对较低时,因氧化剂不足导致催化反应不完全。
     复合微球的尺寸对于催化性能有显著影响。复合微球尺寸越小越催化效率越高;若兼顾催化性能和分离,选择合适的复合微球尺寸是非常重要的。
     综上所述:以具有水溶胀行为的高分子微凝胶为核,以负载于其表面的杂多酸季铵盐为壳所构筑的复合微球,应用于两相催化是切实可行的;该类复合微球易于分离和重复使用;本研究所得到的复合微球不仅具有较高的催化过氧化氢氧化脱硫效率,使这种方法在燃料油脱硫方面具有借鉴意义,而且依据本研究所提出的构筑两相催化微反应器的基本设想,这类复合微球构筑方法具有普遍的适用性。
The study of biphasic catalysis has attracted wide interests.Considerable research findings showed that micellar phase-transfer catalysis has obvious advantages.However,separation of both surfactants and products is relatively difficult.Therefore,enhancement of biphasic catalysis and simplization of process in separation and recovery of the catalysts and products are still significant for theory and application.Based on the micellar phase-transfer catalysis features and our previous works related to preparation of core-shell composite microspheres,a novel method for preparation of composite microspheres with microgel core and phase-transfer catalyst shell was proposed in this thesis.This kind of composite microspheres has the feature of micellar phase-transfer catalysis and the advantage in separation.
     Based on the idea mentioned above,the main contents of this thesis include four aspects as follows:
     1 Preparation of the composite microshperes by using copolymer microspheres of surfmer (polymerizable surfactant) and AM as templates
     Surfmer[3-(Acryloylamino)propyldodecyldimethylammonium bromide,APDDAB]has been synthesized and characterized.Based on the reverse emulsion polymerization technique,the copolymer microgels have been obtained by using copolymerization of AM and APDDAB.Then, the resulting copolymer microgels were placed in phosphotungstic acid(PWA) aqueous solution. Finally,the P(AM-co-APDDAB)/PW_(12)O_(40) composite microspheres were prepared by ion-exchange reaction.The morphologies and compositions of the P(AM-co-APDDAB)/PW_(12)O_(40) composite microspheres were characterized by scanning electron microscopy(SEM), thermogravimetric analysis(TGA) and Fouier transform infrared spectroscopy(FT-IR), respectively.
     The results indicated that the P(AM-co-APDDAB)/PW_(12)O_(40) composite microspheres are of core/shell structure.For the composite microspheres,the hydrogel P(AM-co-APDDAB) dominantly locates in the core,and the complexes of PWA with APDDAB mainly locates in the shell.The structure of the P(AM-co-APDDAB)/PW_(12)O_(40) composite microspheres is similar to that of the micellar phase-transfer catalyst.However,the composite microspheres are easy to be separated.
     2 Preparation of the composite microspheres by using the porous PAM microspheres immersed with APDDAB as templates
     The PAM/APDDAB-PWA composite microspheres were prepared by following method. Firstly,the water-swollen PAM microspheres were treated by the freeze-drying to obtain porous microspheres.Secondly,the porous microspheres were impregnated in methanol solution containing APDDAB.Then the PAM/APDDAB microspheres were placed in HPW aqueous solution for 7days.At last,the PAM/APDDAB-PWA composite microspheres were obtained.The morphologies and compositions of PAM/APDDAB-PWA composite microspheres were characterized by scanning electron microscopy(SEM),thermogravimetric analysis(TGA),Fouier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectra(XPS),inductive coupled plasma atom emission spectrometer(ICP-AES),and Elementar Analyzer,respectively.
     The results indicated that PAM/APDDAB-PWA composite microsphere with different hierarchical surface structures could be obtained by controlling the weight ratio of APDDAB to PAM microgels,cross-linking degree of PAM microgels,the amount of PWA reacted with APDDAB in PAM/APDDAB,and solvent-washing process.
     A general feature of PAM/APDDAB-PWA composite microsphere was of the core-shell structure and the wrinkly surface covered with APDDAB-PWA particles.The formation of the wrinkly surface is attributed to the difference in shrink between inside and outside of PAM microgel frameworks,and the formation of APDDAB-PWA small particles originates from the reaction between APDDAB aggregation and PWA.
     This composite microsphere with PAM hydrogel core is suitable to store water-soluble substances,and the shell composed of the surfactant/Keggin-type polyoxometalate complexes is not only amphiphilic but also catalytic.
     3 Preparation of the composite microspheres by using the quaterised PAM microspheres as templates
     Mannich reaction of PAM microgel with hydroxymethyl dimethylammonia was conducted in pH 9-11 aqueous solution.Then,resulting products were quarterized with dodecyl bromide.At last, the quaterised microspheres(CPAM) were placed in the HPW aqueous solution for ion-exchange. The CPAM/PWA composite microspheres were obtained.The morphologies and compositions of the CPAM/PWA composite microspheres were characterized by scanning electron microscopy (SEM),thermogravimetric analysis(TGA),X-ray photoelectron spectra(XPS) and Fouier transform infrared spectroscopy(FT-IR),respectively.The results indicated that the CPAM/PWA composite microspheres are of core/shell structure.For the composite microspheres,the hydrogel CPAM dominantly locates in the core,and the complexes of PWA with quaternary ammonium salt mainly locates in the shell.The structure of the CPAM/PWA composite microspheres is similar to that of P(AM-co-APDDAB)/PW_(12)O_(40).The CPAM/PWA composite microspheres are mainly controlled by mole ratio of PAM to hydroxymethyl dimethylammonia.
     4 The catalytic performances of the PAM/APDDAB-PWA composite microspheres were systematically investigated by using dibenzothiophene(DBT) oxidized by H_2O_2 in decalin as a model system so that some key factors related to the catalytic performances of the composite microspheres were obtained.
     The results indicated that the PAM/APDDAB-PWA composite microspheres used as microreactors have excellent performances in ultra-deep desulfurization.Meanwhile,the microreactors are renewable.
     The results indicated that PAM/APDDAB-PWA composite microspheres can extract sulfoxide-the product of the oxidized DBT.So,the prepared PAM/APDDAB-PWA composite microspheres are of bifunctions in extaction and separation.
     The results indicated that swelling degree of PAM/APDDAB-PWA composite microspheres with H_2O_2 is very important in biphasic catalysis.
     The results indicated that the size of the PAM/APDDAB-PWA composite microspheres is a very important factor in the catalytic efficiency.The smaller PAM/APDDAB-PWA composite microspheres,the higher the catalyticaly efficiency.
     In summary,based on the results from application of the PAM/APDDAB-PWA composite microspheres in the ultra-deep desulfurization based on biphasic catalysis,the following conclusions for general biphasis catalysis could be obtained.Firstly,the composite microspheres with the hydrogel core and the shell composed of phase-transfer catalysts are feasibly used in biphasic catalysis,and the composite microspheres are easily separated from the reaction medium.
引文
[1]P.J.Flory.Principles of Polymer Chemistry[M].New York:Cornell University press,Ithaca,1953.
    [2]詹东风.多糖共混及其分子设计[J].化学通报,1997,2:28-32.
    [3]M.L.Zhai,H.F.Ha,F.Yoshiib,et al.Effect of Kappa-carrageenan on the Properties of Poly(N-vinyl pyrrolidone)/Kappa-carrageenan Blend Hydrogel Synthesized by γ-radiation Technology[J].Radiat.Phys.Chem.,2000,57:459-464.
    [4]翟茂林,哈鸿飞.水凝胶的合成,性质及应用[J].大学化学,2001,16(5):22-27.
    [5]S.Nayak,L.A.Lyon.Soft Nanotechnology with Soft Nanoparticles[J].Angew.Chem.Int.Ed.,2005,44:7 686-7 708.
    [6]M.P.Florian.Different States of Water in Hydrogels[J].Macromolecules,1998,31(19):6 721-6 723.
    [7]A.K.Lele,M.M.Hirve,M.V.Badiger,et al.Predictions of Bound Water Content in Poly(N-isopropylacrylamide) Gel[J].Macromolecules,1997,30(1):157-159.
    [8]Y.Tamai,H.Tanaka,K.Nakanishi.Molecular Dynamics Study of Polymer-Water Interaction in Hydrogels.1.Hydrogen-bond Structure[J].Macromolecules,1996,29(21):6 750-6 760.
    [9]K.D.Yao,W.G.Liu,J.J.Liu.The Unique Characteristics of Water in Chitosan-Polyether Semi-IPN Hydrogel[J].Appl.Polym.Sci.,1999,71(3):449-453.
    [10]W.I.Cha,S.H.Hyon,Y.Ikada.Microstructure of Poly(vinyl alcohol)Hydrogels Investigated with Differential Scanning Calorimetry[J].Macromol.Chem.Phys.,1993,194:2 433-2 441.
    [11]M.B.Ahmad,M.B.Huglin.States of Water in Poly(Methyl Methacrylate-co-N-vinyl-2-pyrrolidone) Hydrogels during Swelling[J].Polymer,1994,35(9):1 997-2 000.
    [12]T.Tanaka,E.Sato-Matsuo.Kinetics of Discontinuous Volume-phase Transition of Gels[J].J.Chem.Phys.,1988,89(3):1 695-1 703.
    [13]T.Tanaka,Y.Li.Kinetics of Swelling and Shrinking of Gels[J].J.Chem.Phys.,1990,92(2):1 365-1 371.
    [14]T.P.Davis,M.B.Huglin.Studies on Copolymeric Hydrogels of N-vinyl-2-pyrrolidone with 2-Hydroxyethyl Methacrylate[J].Macromolecules,1989,22(6):2 824-2 829.
    [15]T.P.Davis,M.B.Huglin.Copolymeric-N-vinyl-2-pyrrolidone/Methyl Methacrylate Hydrogels and Organogels[J].Polymer,1990,31(3):513-519.
    [16]Y.Cohen,O.Romon,I.J.Kopelman,et al.Characterization of Inhomogeneous Polyacrylamide Hydrogels[J].Polym.Sci.Part B,1992,30:1 055-1 067.
    [17]J.P.Baker,H.W.Blanch,J.M.Prausnitz.Equilibrium Swelling Properties of Weakly Ionizable 2-hydroxyethyl Methacrylate(HEMA)-based Hydrogels[J].Appl.Polym.Sci.,1994,52(6):783-788.
    [18]潘祖仁.高分子化学[M].第三版.北京:化学工业出版社.2003:91-93.
    [19]N.Nagaoka,A.Safrani,M.Yoshida,et al.Synthesis of Poly(N-isopropylacrylamide) Hydrogels by Radiation Polymerization and Crosslinking[J].Macromolecules,1993,26(26):7 386-7 388.
    [20]翟茂林.水凝胶的辐射合成,性质及应用[D].北京:北京大学,1999.
    [21]刘锋,卓仁禧.水凝胶的制备和应用[J].高分子通报,1995,4:205-215.
    [22]D.M.Lynn,M.M.Amiji,R.Langer.pH-responsive Polymer Microspheres:Rapid Release of Encapsulated Material within the Range of Intracellular pH[J].Angew.Chem.Int.Ed.,2001,40(9):1 707-1 710.
    [23]J.G.Zhang,S.Q.Xu,E.Kumacheva.Polymer Microgels:Reactors for Semiconductor,Metal,and Magnetic Nanoparticles[J].J.Am.Chem.Soc.,2004,126(25):7 908-7 914.
    [24]D.Horak,M.Babic,H.Mackova,et al.Preparation and Properties of Magnetic Nano- and Microsized Particles for Biological and Environmental Separations [J].J.Sep.Sci.,2007,30:1 751-1 772.
    [25]C.R.Mayer,V.Cabuil,T.Lalot,et al.Magnetic Nanoparticles Trapped in pH 7Hydrogels as a Tool to Characterize the Properties of the Polymeric Network[J].Adv.Mater.,2000,12(6):417-420.
    [26]A.Pich,S.Bhattacharya,Y.Lu,et al.Temperature-sensitive Hybrid Microgels with Magnetic Properties [J]. Langmuir, 2004, 20(24): 10 706-10 711.
    [27] J. E. Wong, A. K. Gaharwar, M. S. Detlef, et al. Layer-by-layer Assembly of a Magnetic Nanoparticle Shell on a Thermoresponsive Microgel Core [J]. J. Magn. Magn. Mater., 2007, 311: 219-223.
    [28] J. E. Wong, A. K. Gaharwar, D. Muller-Schulte, et al. Dual-stimuli Responsive PNiPAM Microgel Achieved via Layer-by-layer Assembly: Magnetic and Thermoresponsive [J]. J. Colloid Interface Sci., 2008, 324: 47-54.
    [29] J. Rubio-Retama, N. E. Zafeiropoulos, C. Serafinelli, et al. Synthesis and Characterization of Thermosensitive PNIPAM Microgels Covered with Superparamagnetic γ-Fe_2O_3 Nanoparticles [J]. Langmuir, 2007, 23(20): 10280-10285.
    [30] Y. Y. Liang, L. M. Zhang, W. Jiang, et al. Embedding Magnetic Nanoparticles into Polysaccharide-based Hydrogels for Magnetically Assisted Bioseparation [J]. Chem. Phys. Chem., 2007, 8: 2 367-2 372.
    [31] D. Ma, L. M. Zhang. Fabrication and Modulation of Magnetically Supramolecular Hydrogels [J]. J. Phys. Chem. B, 2008, 112(20): 6 315-6 321.
    [32] C. D. Jones, L. A. Lyon. Photothermal Patterning of Microgel/Gold Nanoparticle Composite Colloidal Crystals [J]. J. Am. Chem. Soc, 2003,125(2): 460-465.
    [33] J. H. Kim, T. R. Lee. Thermo- and pH-responsive Hydrogel-coated Gold Nanoparticles [J]. Chem. Mater., 2004,16(19): 3 647-3 651.
    [34] Y. Mei, Y. Lu, M. Ballauff, et al. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core-shell Microgels [J]. Chem. Mater., 2007, 19(5): 1 062-1 069.
    [35] A. Biffis, L. Minati. Efficient Aerobic Oxidation of Alcohols in Water Catalyzed by Microgel-stabilized Metal Nanoclusters [J]. J. Catal., 2005, 236: 405-409.
    [36] A. Biffis, E. Sperotto. Microgel-stabilized Metal Nanoclusters: Improved Solid-state Stability and Catalytic Activity in Suzuki Couplings [J]. Langmuir,2003,19(22): 9 548-9 550.
    [37] A. Biffis, N. Orlandi, B. Corain. Microgel-Stabilized Metal Nanoclusters: Size Control by Microgel Nanomophology [J]. Adv. Mater., 2003, 15(18): 1551-1555.
    [38] D. Suzuki, H. Kawaguchi. Gold Nanoparticle Localization at the Core Surface by Using Thermosensitive Core-shell Particles as a Template [J]. Langmuir, 2005,21(25): 12 016-12 024.
    [39] D. Suzuki, H. Kawaguchi. Hybrid Microgels with Reversibly Changeable Multiple Brilliant Color [J]. Langmuir, 2006, 22(8): 3 818-3 822.
    [40] D. Suzuki, J. G. McGrath, H. Kawaguchi, et al. Colloidal Crystals of Thermosensitive, Core/Shell Hybrid Microgels [J]. J. Phys. Chem. C, 2007, 111(15): 5 667-5 672.
    [41] I. Gorelikov, L. M. Field, E. Kumacheva. Hybrid Microgels Photoresponsive in the Near-infrared Spectral Range [J]. J. Am. Chem. Soc, 2004, 126(49): 15 938-15 939.
    [42] V. R. R. Kumar, A. K. Samal, T. Pradeep, et al. Gold Nanorads Grown on Microgels Leading to Hexagonal Nanostructures [J]. Langmuir, 2007, 23(17): 8667-8 669.
    [43] R. N. Mitra, P. K. Das. In Situ Preparation of Gold Nanoparticles of Varying Shape in Molecular Hydrogel of Peptide Amphiphiles [J]. J. Phys. Chem. C,2008, 112(22): 8 159-8 166.
    [44] S. Q. Xu, J. G Zhang, E. Kumacheva. Hybrid Polymer-inorganic Materials: Multiscale Hierarchy [J]. Composite Interfaces, 2003, 10(4-5): 405-421.
    [45] M. Kuang, D. Wang, M. Gao, et al. A Bio-inspired Route to Fabricate Submicrometer-sized Particles with Unusual Shapes — Mineralization of Calcium Carbonate within Hydrogel Spheres [J]. Chem. Mater., 2005, 17(3):656-660.
    [46] D. Ogomi, T. Serizawa, M. Akashi. Controlled Release Based on the Dissolution of a Calcium Carbonate Layer Deposited on Hydrogels. [J] J. Control. Release, 2005, 103: 315-323.
    [47] O. Grassmann, P. Lobmann. Biomimetic Nucleation and Growth of CaCO_3 in Hydrogels Incorporating Carboxylate Groups. [J] Biomaterials, 2004, 25: 277-282.
    [48] J. Ford, S. Yang. Directed Synthesis of Silica Nanoparticles on Micropatterned Hydrogel Templates Tethered with Poly(ethyleneimine) [J]. Chem. Mater., 2007, 19(23): 5 570-5 575.
    [49] N. Hantzschel, F. Zhang, A. Pich, et al. Poly(N-vinylcaprolactam-co-glycidyl methacrylate) Aqueous Microgels Labeled with Fluorescent LaF_3:Eu Nanoparticles [J]. Langmuir, 2007, 23(21): 10 793-10 800.
    [50] C. A. Coutinho, V. K. Gupta. Formation and Properties of Composites Based on Microgels of a Responsive Polymer and TiO_2 Nanoparticles [J]. J. Colloid Interface Sci., 2007, 315: 116-122.
    [51] C. A. Coutinho, R. K. Harrinauth, V. K. Gupta. Settling Characteristics of Composites of PNIPAM Microgels and TiO_2 Nanoparticles [J]. Colloids and Surf. A: Physicochem. Eng. Aspects, 2008, 318: 111-121.
    [52] R. M. K. Ramanan, P. Chellamuthu, K. T. Nguyen, et al. Development of a Temperature-sensitive Composite Hydrogel for Drug Delivery Applications [J]. Biotechnol. Prog., 2006, 22(1): 118-125.
    [53] J. P. K. Tan, K. C. Tarn. Application of Drug Selective Electrode in the Drug Release Study of pH-responsive Microgels [J]. J. Control. Release, 2007, 118: 87-94.
    [54] J. Li, B. Liu, J. H. Li. Controllable Self-assembly of CdTe/poly(N-isopropylacrylamide-acrylic acid) Microgels in Rresponse to pH Stimuli [J]. Langmuir, 2006, 22(2): 528-531.
    [55] Y. Murakam, M. Maeda. DNA-Responsive Hydrogels That Can Shrink or Swell [J]. Biomacromolecules, 2005, 6(6): 2 927-2 929.
    [56] Z. Cao, B. Y. Du, T. Y. Chen, et al. Fabrication and Properties of Thermosensitive Organic/Inorganic Hybrid Hydrogel Thin Films [J]. Langmuir, 2008, 24(10): 5 543-5 551.
    [57] T. Bourenko, I. Willner. Gold Nanoparticle/Hydrogel Composites with Solvent-switchable Electronic Properties [J]. Adv. Mater., 2001, 13(17): 1320-1323.
    [58] Y. G. Guo, J. S. Hu, H. P. Liang, et al. Highly Dispersed Metal Nanoparticles in Porous Anodic Alumina Films Prepared by a Breathing Process of Polyacrylamide Hydrogel [J]. Chem. Mater., 2003, 15(22): 4 332-4 336.
    [59] T. L. Sun, H. Liu, J. Lei, et al. Responsive Aligned Carbon Nanotubes [J]. Angew. Chem. Int. Ed., 2004, 43: 4 663-4 666.
    [60] H. J. Li, X. B. Wang, J. Lei, et al. Super-"amphiphobic" Aligned Carbon Nanotube Films [J]. Angew. Chem. Int. Ed., 2001, 40(9): 1 743-1 746.
    [61] T. L. Sun, G. J. Wang, J. Lei, et al. Control over the Wettability of an Aligned Carbon Nanotube Film [J]. J. Am. Chem. Soc, 2003,125(49): 14 996-14 997.
    [62] Z. H. Yang, Z. Cao, Y. Li, et al. Composite Films Based on Aligned Carbon Nanotube Arrays and a Poly(N-isopropyl acrylamide) Hydrogel[J].Adv.Mater.,2008,20:2 201-2 205.
    [63]G.Garnweitner,B.Smarsly,R.Assink,et al.Characterization of Self-assembled Lamellar Thermoresponsive Silica-hydrogel Nanocomposite Films[J].Langmuir,2004,20(22):9 811-9 820.
    [64]C.L.Bai,Y.Fang,Y.Zhang.Synthesis of Novel Metal Sulfide-polymer Composite Microspheres Exhibiting Patterned Surface Structures[J].Langmuir,2004,20(1):263-265.
    [65]Y.Fang,C.L.Bai,Y.Zhang.Preparation of Metal Sulfide-polymer Composite Microspheres with Patterned Surface Structures[J].Chem.Commun.,2004:804-805.
    [66]杨菊香,房喻,白超良.表面图案化CuS-P(NIPAM-co-AA)复合微球的制备和表征[J].科学通报,2004,49(18):1 845-1 850.
    [67]Y.Zhang,Y.Fang,S.Wang.Preparation of Spherical Nanostructured Poly(methacrylic acid)/PbS Composites by a Microgel Template Method[J].J.Colloid Interface Sci.,2004,272:321-325.
    [68]白超良,王姗,房喻.微凝胶模板法制备PNIPAM/PbS有机-无机复合微球[J].陕西师范大学学报(自然科学版),2003,31(4):62-66.
    [69]张颖,房喻,林书玉.纳米结构型复合微球的微凝胶模板法制备研究[J].物理化学学报,2004,20(专刊):897-901.
    [70]彭军霞,张颖,房喻.硫化物-高分子复合微球表面形貌与模板组成关系的研究[J].物理化学学报,2006,22(4):424-429.
    [71]张颖,刘慧瑾,房喻.BaSO_4-PAM无机-高分子复合微球的制备研究[J].陕西师范大学学报(自然科学版),2007,35(1):64-68.
    [72]梁红莲,张颖,房喻.硒化银-聚丙烯酰胺复合微球的制备[J].陕西师范大学学报(自然科学版),2008,36(4):56-60.
    [73]Y.Zhang,Y.Fang,H.Y.Xia,et al.Preparation of AgCl-polyacrylamide Composite Microspheres via Combination of a Polymer Microgel Template Method and a Reverse Micelle Technique[J].J.Colloid Interface Sci.,2006,300:210-218.
    [74]J.X.Yang,D.D.Hu,Y.Fang,et al.Novel Method for Preparation of Structural Microspheres Poly(N-isopropylacrylamide-co-acrylic acid)/SiO_2[J].Chem.Mater.,2006,18(20):4 902-4 907.
    [75]吴华涛,张颖,房喻.核-壳结构P(AM-co-MAA)-W-Ag复合微球的制备[J].物理化学学报,2008,24(4):646-652.
    [76]吴华涛,张颖,房喻.多层核-壳结构高分子-钨-二氧化硅复合微球的制备研究[J].陕西师范大学学报(自然科学版),2007,35(4):72-75.
    [77]X.J.Wang,D.D.Hu,J.X.Yang.Synthesis of PAM/TiO_2 Composite Microspheres with Hierarchical Surface Morphologies[J].Chem.Mater.,2007,19(10):2 610-2 621.
    [78]M.L.Freedman.Polymerization of Anions:The Hydrolysis of Sodium Tungstate and of Sodium Chromate[J].J.Am.Chem.Soc.,1958,80:2 072-2077.
    [79]M.J.Unzue,H.A.S.Schoonbrood,J.M.Asua,et al.Reactive Surfactants in Heterophase Polymerization.Ⅵ.Synthesis and Screening of Polymerizable Surfactants(Surfmers) with Varying Reactivity in High Solid Styrene-butyl acrylate-acrylic acid Emulsion Polymerization[J].J.Appl.Polym.Sci.,1997,66(9):1 803-1 820.
    [80]H.A.S.Schoonbrood,M.J.Unzue,J.M.Asua,et al.Reactive Surfactants in Heterophase Polymerization.7.Emulsion Copolymerization Mechanism Involving Three Anionic Polymerizable Surfactant(Surfmers) with Styrene-butyl acrylate-acrylic acid[J].Macromolecules,1997,30(20):6 024-6033.
    [81]M.Dreja,W.P.Hintzen,B.Tieke.Copolymerization Behavior and Structure of Styrene and Polymerizable Surfactants in There-component Cationic Microemulsion[J].Macromolecules,1998,31(2):272-280.
    [82]K.Tajima,T.Aida.Controlled Polymerizations with Constrained Geometries[J].Chem.Commun.,2000:2 399-2 412.
    [83]Y.Chevalier.New surfactants:New Chemical Functions and Molecular Architectures[J].Curr.Op.Coll.Int.Sci.,2002,7:3-11.
    [84]Y.Y.Luk,N.L.Abbott.Applications of Functional Surfactants[J].Curr.Op.Coll.Int.Sci.,2002,7:267-275.
    [85]A.Guyot.Advances in Reactive Surfactants[J].Advances in Colloid and Interface Science,2004,108-109:3-22.
    [86]M.Summers,J.Eastoe.Applications of Polymerizable Surfactants[J].Advances in Colloid and Interface Science,2003,100-102:137-152.
    [87] C. M. Paleos, C. I. Stasslnopoulou, A. Malllarls. Comparative Studies between Monomeric and Polymeric Sodium 10-undecenoate Micelles [J]. J. Phys. Chem., 1983, 87(2): 251-254.
    [88] S. Hamid, D. Sherrington. Polymerized Micelles: Fact or Fancy? [J]. J. Chem. Soc. Chem. Commun., 1986: 936-938.
    [89] K. Stahler, J. Selb, F. Candau. A Study of Multicompartment Polymeric Micelles [J]. Materials Science and Engineering C, 1999, 10: 171-178.
    
    [90] B. J. Gao, H. P. Guo, J. Wang, et al. Preparation of Hydrophobic Association Polyacrylamide in a New Micellar Copolymerization System and its Hydrophobically Associative property [J]. Macromolecules, 2008, 41(8): 2890-2 897.
    
    [91] S. R. Kline. Polymerization of Rodlike Micelles [J]. Langmuir, 1999, 15, 2726-2732.
    [92] S. L. Regen, B. Czech, A. Singh. Polymerized Vesicles [J]. J. Am. Chem. Soc, 1980,102(21): 6 638-6 640.
    [93] J. H. Fendler. Potentials of Polymerized Surfactant Assemblies in Membrane Research [J]. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24(1): 107-113.
    [94] K. Kurihara, J. H. Fendler. Electron-transfer Catalysis by Surfactant Vesicle Stabilized Colloidal Platinum [J]. J. Am. Chem. Soc, 1983, 105(19): 6152-6153.
    [95] M. Jung, I. D. Ouden, A. M. Go(?)i, et al. Polymerization in Polymerizable Vesicle Bilayer membranes [J]. Langmuir, 2000,16(9): 4 185-4 195.
    [96] S. I. Stupp, S. Son, L. S. Li, et al. Bulk Synthesis of Two-dimensional Polymers: The Molecular Recognition Approach [J]. J. Am. Chem. Soc, 1995, 117(19): 5212-5 227.
    
    [97] T. M. Sisson, W. Srisiri, D. F. O. Brien. Novel Polymer Architectures via the Selective Polymerization of Lyotropic Liquid Crystals of Heterobifunctional Amphiphiles [J]. J. Am. Chem. Soc, 1998, 120(10): 2 322-2 329.
    [98] R. Thundathil, J. O. Stoffer, S. E. Friberg. Polymerization in Lyotropic Liquid Crystals. I. Change of Structure during Polymerization [J]. J. Polym. Sci., 1980,18(8): 2 629-2 640.
    
    [99] W. Srisiri, T. M. Sission, D. F. O. Breen, et al. Polymerization of the Inverted Hexagonal Phase [3]. J. Am. Chem. Soc, 1997, 119(21): 4 866-4 873.
    [100] Y. S. Lee, J. Z. Yang, D. F. O. Breen, et al. Polymerization of Nonlamellar Lipid Assemblies [J]. J. Am. Chem. Soc, 1995, 117(20): 5 573-5 578.
    [101] H. Deng, D. L. Gin, R. C. Smith. Polymerizable Lyotropic Liquid Crystals Containing Transition-metal and Lanthanide Ions: Architectural Control and Introduction of New Properties into Nanostructured Polymers [J]. J. Am. Chem. Soc, 1998,120(14): 3 522-3 523.
    [102] J. H. Ding, D. L. Gin. Catalytic Pd Nanoparticles Synthesized using a Lyotropic Liquid Crystal Polymer Template [J]. Chem. Mater., 2000,12(1): 22-24.
    [103] S. A. Miller, E. Kim, D. H. Gray, et al. Heterogeneous Catalysis with Cross-linked Lyotropic Liquid Crystal Assemblies: Organic Analogues to Zeolites and Mesoporous Sieves [J]. Angew. Chem. Int. Ed., 1999, 38: 3 021-3026.
    [104] W. Q. Gu, W. J. Zhou, D. L. Gin. A Nanostructured, Scandium-containing Polymer for Heterogeneous Lewis acid Catalysis in Water [J]. Chem. Mater., 2001,13(6): 1 949-1 951.
    [105] Y. J. Xu, W. Q. Gu, D. L. Gin. Heterogeneous Catalysis Using a Nanostructured Solid acid Resin Based on Lyotropic Liquid Crystals [J]. J. Am. Chem. Soc, 2004,126(6): 1 616-1 617.
    [106] M. J. Zhou, T. J. Kidd, R. D. Noble, et al. Supported Lyotropic Liquid-crystal Polymer Membranes: Promising Materials for Molecular-size-selective Aqueous Nanofiltration [J]. Adv. Mater., 2005, 17: 1 850-1 853.
    [107] J. I. Amalvy, M. J. Unzue, H. A. S. Schoonbrood, et al. Reactive Surfactants in Heterophase Polymerization. 11. Particle Nucleation [J]. Macromolecules, 1998, 31(17): 5 631-5 638.
    [108] R. E. Kesting. The Four Tiers of Structure in Integrally Skinned Phase Inversion Membranes and Their Relevance to the Various Separation Regimes [J]. J. Appl. Polym. Sci., 1990, 41(11-12): 2 739-2 752.
    [109] I. M. Wienk, V. D. Boomgaard, C. A. Smolders. The Formation of Nodular in the Top in the Layer of Ultrafiltration Membranes [J]. J. Appl. Polym. Sci., 1994, 53(8):1 011-1 023.
    [110] S. Schantz, H. T. Carlsson, T. Andersson, et al. Poly(methylmethacrylate-co-ethyl acrylate) Latex Particles with Poly(ethylene glycol) Grafts: Structure and Film Formation [J]. Langmuir, 2007, 23(7): 3 590-3 602.
    [111] E. Rukenstein, F. Sun. A New Concentrated Emulsion Polymerization Pathway [J]. J. Appl. Polym. Sci., 1992, 46(7): 1 271-1 227.
    [112] A. M. Gon, D. C. Sherrington, H. A. S. Schoonbrood. Reactive Surfactants in Heterophase Polymerization. XXIV. Emulsion Polymerization of Styrene with Maleate- and Succinate-containing Cationic Surfactants [J]. Polymer, 1999, 40: 1 359-1 366.
    [113] Y. Y. Zheng, Y. Cao, G. Q. Pan. High Purity Nanolatex Prepared by Ultrasonically Irradiated Emulsion Polymerization [J]. Ultrason. Sonochem., 2008, 15: 314-319.
    [114] D. C. Steytler, A. Gurgel, R. Ohly, et al. Retention of Structure in Microemulsion Polymerization: Formation of Nanolatices [J]. Langmuir, 2004, 20(9): 3 509-3 512.
    [115] L. J. M. Gaspar, G. Baskar. Glycine Derived Polymerizable Cosurfactant in the Synthesis of Functionalized Poly(butyl acrylate) Nanolatexes [J]. Biomacromolecules, 2006, 7(4): 1 318-1 322.
    [116] F. Gao, C. C. Ho, C. C. Co. Polymerization in Bicontinuous Microemulsion Glasses [J]. Macromolecules, 2006, 39(26): 9 467-9 472.
    [117] P. Y. Chow, C. H. Chew, C. L. Ong, et al. Ion-containing Membranes from Microemulsion Polymerization [J]. Langmuir, 1999, 15(9): 3 202-3 205.
    [118] T. H. Chieng, L. M. Gan, C. H. Chew, et al. Microstructural Control of Porous Polymeric Materials via a Microemulsion Pathway Using Mixed Nonpolymerizable and Polymerizable Anionic Surfactants [J]. Langmuir, 1996, 12(2): 319-324.
    [119] L. M. Gan, T. H. Chieng, C. H. Chew, et al. Microporous Polymeric Materials from Microemulsion Polymerization [J]. Langmuir, 1994, 10(11): 4 022-4 026.
    [120] L. M. Gan, T. D. Li, C. H. Chew, et al. Microporous Polymeric Materials from Polymerization of Zwitteronic Microemulsions [J]. Langmuir, 1995, 11(9): 3 316-3 320.
    [121] T. D. Li, L. M. Gan, C. H. Chew, et al. Preparation of Ultrafiltration Membranes by Direct Microemulsion Polymerization Using Polymerization Surfactants [J]. Langmuir, 1996, 12(24): 5 863-5 868.
    [122] J. Liu, L. M. Gan, C. H. Chew, et al. Nanostructured Polymeric Materials from Microemulsion Polymerization Using Poly(ethylene oxide) Macromonomer [J]. Langmuir, 1997, 13(24): 6 421-6 426.
    [123] W. Xu, K. S. Siow, Z. Q. Gao, et al. Microporous Polymeric Composite Electrolytes from Microemulsion Polymerization [J]. Langmuir, 1999, 15(14): 4 812-4 819.
    [124] E. Aramendia, M. J. Barandiaran, J. M. Asua, et al. Improving Water Sensitivity in Acrylic Films Using Surfmers [J]. Langmuir, 2005, 21(4): 1 428-1 435.
    [125] E. Aramendia, J. Mallegol, J. M. Asua, et al. Distribution of Surfactants near Axrylic Latex Film Surfaces: A Comparison of Conventional and Reactive Surfactants(Surfmers) [J]. Langmuir, 2003,19(8): 3 212-3 221.
    [126] H. A. S. Schoonbrood, J. M. Asua. Reactive Surfactants in Heterophase Polymerization. 9. Optimum Surfmer Behavior in Emulsion Polymerization [J]. Macromolecules, 1997, 30, 6 034-6 041.
    [127] N. Moumen, M. P. Pileni, R. A. Mackay. Polymerization of Methacrylate in a W/O Microemulsion Stabilized by a Methacrylate Surfactant [J]. Colloids Surf. A: Phys. Eng. Aspects, 1999,151(3): 409-417.
    [128] A. Hammouda, T. Gulik, M. P. Pileni. Synthesis of Nanosize Latexes by Reverse Micelle Polymerization [J]. Langmuir, 1995,11(10): 3 656-3 659.
    [129] X. J. Xu, H. L. Goh, L. M. Gan, et al. Synthesis of Polymerizable Anionic Surfactants and Their Emulsion Copolymerization with Styrene [J]. Langmuir, 2001,17(20): 6 077-6 085.
    [130] X. Wang, E. D. Sudol, M. S. El-Aasser. Emulsion Polymerization of Styrene Using the Homopolymer of a Reactive Surfactant [J]. Langmuir, 2001, 17(22): 6 865-6 870.
    [131] X. R. Wang, B. Boya, M. S. El-Aasser, et al. Effect of a Reactive Surfactant and Its Polymeric Counterpart on the Kinetics of Seeded Emulsion Polymerization of Styrene [J]. Macromolecules, 2001, 33(26): 8 907-8 912.
    [132] M. Summers, J. Eastoe, S. Davis. Formation of BaSO_4 Nanoparticles in Microemulsions with Polymerized Surfactant Shells [J]. Langmuir, 2002, 18(12): 5 023-5 026.
    [133] K. Nagai, Y. Igarashi, T. Taniguichi. Preparation of Carbon Black Dispersion with Enhanced Stability by Aqueous Copolymerization of a Polymerizable Surfactant [J]. Colloids Surf. A: Phys. Eng. Aspects, 1999,153: 161-163.
    [134]C.Larpent,E.Bernard,J.Richard,et al.Polymerization in Microemulsions with Polymerizable Cosurfactants:A Route to Highly Functionalized Nanoparticles [J].Macromolecules,1997,30(3):354-362.
    [135]A.Weber,M.Herold,G.E.M.Tovar,et al.Bioconjugative Polymer Nanospheres Studied by Isothermal Titration Calorimetry[J].Thermochimica.Acta.,2004,415:69-74.
    [136]K.Takahashi,K.Nagai.Preparation of Reactive Polymeric Microspheres by Seeded Copolymerization Using a Polymerizable Surfactant Bearing an Active Ester Group[J].Polymer,1996,37(7):1 257-1 266.
    [137]A.Pich,S.Datta,A.Musyanovych,et al.Polymeric Particles Prepared with Fluorinated Surfmer[J].Polymer,2005,46:1 323-1 330.
    [138]F.M.Pavel,R.A.Mackay.Reverse Micellar Synthesis of a Nanoparticle/Polymer Composite[J].Langmuir,2000,16(23):8 568-8 574.
    [139]T.Hirai,T.Watanabe,I.Komasawa.Preparation of Semiconductor Nanoparticle-polymer Composites by Direct Reverse Micelle Polymerization Using Polymerizable Surfactants[J].J.Phys.Chem.B,2000,104(38):8 962-8966.
    [140]梁朝林.高硫原油加工[M].北京:中国石化出版社,2001:112-114.
    [141]朱和.“十一五”石化业发展的机遇与挑战[J].中国石化,2006,5:16-19.
    [142]李怀彬.“十一五”期间我国机动车排放控制水平有望与世界接轨[J].商用汽车杂志,2006,5:109-110.
    [143]吕宏缨.乳液氧化-萃取法用于柴油的超深度脱硫[D].大连市:中国科学院大连化学物理研究所,2006.
    [144]刘淑芝.高效脱硫体系及柴油深度氧化脱硫技术研究[D].大庆市:大庆石油学院,2007.
    [145]I.V.Babich,J.A.Moulijn.Science and Technology of Novel Processes for Deep Desulfurization of Oil Refinery Streams:A Review[J].Fuel,2003,82:607-631.
    [146]V.Hulea,F.Fajula,J.Bousquet.Mild Oxidation with H_2O_2 over Ti-containing Molecular Sieves---A very Efficient Method for Removing Aromatic Sulfur Compounds From Fuels[J].J.Catal.,2001,198:179-186.
    [147]A.V.Anisimov,E.V.Fedorova,A.Z.Lesnugin,et al.Vanadium Peroxocomplexes as Oxidation Catalysts of Sulfur Organic Compounds by Hydrogen peroxide in Bi-phase Systems[J].Catal.Today,2003,78:319-325.
    [148]J.Palomeque,J.M.Clacens,F.Figueras.Oxidation of Dibenzothiophene by Hydrogen peroxide Catalyzed by Solid Bases[J].J.Catal.,2002,211:103-108.
    [149]K.Yazu,Y.Yamamoto,T.Furuya,et al.Oxidation of Dibenzothiophenes in an Organic Biphasic System and Its Application to Oxidative Desulfurization of Light Oil[J].Energy Fuels,2001,15(6):1 535-1 536.
    [150]S.D.S.Murti,H.Yang,K.H.Choi,et al.Influences of Nitrogen Species on the Hydrodesulfurization Reactivity of a Gas Oil over Sulfide Catalysts of Variable Activity[J].Appl.Catal.A,2003,252:331-346.
    [151]Y.Shiraishi,T.Naito,T.Hirai.Vanadosilicate Molecular Sieve as a Catalyst for Oxidative Desulfurization of Light Oil[J].Ind.Eng.Chem.Res.,2003,42(24):6 034-6 039.
    [152]凌昊,沈本贤,周晓龙.含硫化合物的量子化学性质及选择性氧化动力学[J].华东理工大学学报(自然科学版),2005,31(1):48-51.
    [153]S.Otsuki,T.Nonaka,N.Takashima,et al.Oxidative Desulfurization of Light Gas oil and Vacuum Gas Oil by Oxidation and Solvent Extraction[J].Energy Fuels,2000,14(6):1 232-1 239.
    [154]Y.Shiraishi,T.Hirai.Desulfurization of Vacuum Gas Oil Based on Chemical Oxidation Followed by Liquid-liquid Extraction[J].Energy Fuels,2004,18(1):37-40.
    [155]Y.Shiraishi,K.Tachibana,T.Hirai,et al.Desulfurization and Denitrogenation Process for Light Oils Based on Chemical Oxidation Followed by Liquid-liquid Extraction[J].Ind.Eng.Chem.Res.,2002,41(17):4 362-4 375.
    [156]吕志凤,战风涛,李林.用H_2O_2--有机酸氧化脱除催化裂化柴油中的硫化物[J].石油大学学报(自然科学版),2001,25(3):26-29.
    [157]余国贤,陆善祥,朱中南.加氢精制柴油选择性氧化-萃取深度脱硫[J].石油与天然气化工,2004,33(6):410-413.
    [158]C.Komintarachat,W.Trakarnpruk.Oxidative Desulfurization Using Polyoxometalates[J].Ind.Eng.Chem.Res.,2006,45(6):1 853-1 856.
    [159]W.Trakarnpruk,K.Rujiraworawut.Oxidative Desulfurization of Gas Oil by Polyoxometalates Catalysts[J].Fuel Process.Technol.,2009,90:411-414.
    [160]余国贤,陈辉,陆善祥.柴油催化氧化深度脱硫研究[J].高校化学工程学报,2006,20(4):616-621.
    [161] G. X. Yu, S. X. Lu, H. Chen, et al. Oxidative Desulfurization of Diesel Fuels with Hydrogen Peroxide in the Presence of Activated Carbon and Formic Acid [J]. Energy Fuels, 2005, 19(2): 447-452.
    [162] G. X. Yu, S. X. Lu, H. Chen, et al. Diesel Fuel Desulfurization with Hydrogen Peroxide Promoted by Formic Acid and Catalyzed by Activated Carbon [J]. Carbon, 2005, 43: 2 285-2 294.
    [163] F. M. Collins, A. R. Lucy, C. Sharp. Oxidative Desulphurisation of Oils via Hydrogen Peroxide and Heteropolyanion Catalysis [J]. J. Mol. Catal. A, 1997, 117: 397-403.
    [164] H. Y. Lu, J. B. Gao, C. Li, et al. Ultra-deep Desulfurization of Diesel by Selective Oxidation with [C_(18)H_(37)N(CH_3)_3]_4[H_2NaPW_(10)O_(36)] Catalyst Assembled in Emulsion Droplets [J]. J. Catal., 2006, 239: 369-375.
    [165] C. Li, J. B. Gao, Z. X. Jiang, et al. Selective Oxidations on Recoverable Catalysts Assembled in Emulsions [J]. Top. Catal., 2005, 35(1-2): 169-175.
    [166] C. Li, Z. X. Jiang, J. B. Gao, et al. Ultra-deep Desulfurization of Diesel: Oxidation with a Recoverable Catalyst Assembled in Emulsion [J]. Chem. Eur. J., 2004,10: 2 277-2 280.
    [167] D. Huang, Y. J. Wang, G. S. Luo, et al. Chemical Oxidation of Dibenzothiophene with a Directly Combined Amphiphilic Catalyst for Deep Desulfurization [J]. Ind. Eng. Chem. Res., 2006, 45(6):1 880-1 885.
    [168] D. Huang, Z. Zhai, G. S. Luo, et al. Optimization of Composition of a Directly Combined Catalyst in Dibenzothiophene Oxidation for Deep Desulfurization [J]. Ind. Eng. Chem. Res., 2007, 46(5): 1 447-1 451.
    [169] D. Huang, Y. C. Lu, G. S. Luo, et al. Catalytic Kinetics of Dibenzothiophene Oxidation with the Combined Catalyst of Quaternary Ammonium Bromide and Phosphotungstic Acid [J]. Ind. Eng. Chem. Res., 2007, 46(19): 6 221-6 227.
    [170] H. Mei, B. W. Mei, T. F. Yen. A New Method for Obtaining Ultra-low Sulfur Diesel Fuel via Ultrasound Assisted Oxidative Desulfurization [J]. Fuel, 2003, 82: 405-414.
    [171] S. P. Tu, T. F. Yen. The Feasibility Studies for Radical-induced Decomposition and Demetalation of Metalloporphyrins by Ultrasonication [J]. Energy Fuels, 2000, 14(6): 1 168-1 175.
    [172] M. W. Wan, T. F. Yen. Enhance Efficiency of Tetraoctylammonium Fluoride Applied to Ultrasound-assisted Oxidative Desulfurization(UAOD) Process[J].Appl.Catal.A,2007,319:237-245.
    [173]A.Deshpande,A.Bassi,A.Prakash,et al.Ultrasound-assisted,Base-catalyzed Oxidation of 4,6-dimethyldibenzothiophene in a Biphasic Diesel-acetonitrile System[J].Energy Fuels,2005,19(1):28-34.
    [174]D.Zhao,H.W.Ren,Ying Zhao.Kinetics and Mechanism of Quaternary Ammonium Salts as Phase-transfer Catalysts in the Liquid-liquid Phase for Oxidation of Thiophene[J].Energy Fuels,2007,21(5):2 543-2547.
    [175]孙兰兰.柴油深度氧化脱硫技术的研究[D].大庆市:大庆石油学院,2007.
    [176]V.Hulea,A.L.Maciuca,A.M.Cojocariu,et al.New Heterogeneous Catalysts for Mild Oxidation of S-containing Organic Compounds[J].C.R.Chimie.,2009,1-8.
    [177]L.Y.Kong,G.Li,X.S.Wang,et al.Oxidative Desulfurization of Organic Sulfur in Gasoline over Ag/TS-1[J].Energy Fuels,2006,20(3):896-902.
    [178]Y.Wang,G.Li,X.S.Wang,et al.Oxidative Desulphurization of 4,6-dimethyldibenzothiophene with Hydrogen Peroxide over Ti-HMS[J].Energy Fuels,2007,21(3):1 415-1 419.
    [179]C.Jin,G.Li,X.S.Wang,et al.A Titanium Containing Micro/Mesoporous Composite and its Catalytic Performance in Oxidative Desulfurization[J].Micropor.Mesopor.Mater.,2008,111:236-242.
    [180]孔令艳,李钢,王祥生.TS过氧化氢催化体系中有机硫化物的选择氧化[J].催化学报,2004,25(10):775-778.
    [181]J.L.Garcia-Gutierrez,G.A.Fuentes,M.E.Hernandez-Teran,et al.Ultra-deep Oxidative Desulfurization of Diesel Fuel with H_2O_2 Catalyzed under Mild Conditions by Polymolybdates Supported on Al_2O_3[J].Appl.Catal.A,2006,305:15-20.
    [182]D.Huang,Y.J.Wang,G.S.Luo,et al.Direct Synthesis of Mesoporous TiO_2 and its Catalytic Performance in DBT Oxidative Desulfurization[J].Micropor.Mesopor.Mater.,2008,116:378-385.
    [183]X.M.Yan,P.Mei,J.H.Lei,et al.Synthesis and Characterization of Mesoporous Phosphotungstic Acid/TiO_2 Nanocomposite as a Novel Oxidative Desulfurization Catalyst[J].J.Mol.Catal.A,2009,ⅹⅹⅹ:ⅹⅹⅹ-ⅹⅹⅹ.
    [184]L.F.Ramirez-Verduzco,E.Torres-Garcia,R.Gomez-Quintana.Desulfurization of Diesel by Oxidation/Extraction Scheme:Influence of the Extraction Solvent [J].Catal.Today,2004,98:289-294.
    [185]J.L.Garcia-Gutierrez,G.A.Fuentes,M.E.Hernandez-Teran,et al.Ultra-deep Oxidative Desulfurization of Diesel Fuel by the Mo/Al_2O_3-H_2O_2 System:The Effect of System Parameters on Catalytic Activity[J].Appl.Catal.A,2008,334:366-373.
    [186]B.Zapata,F.Pedraza,M.A.Valenzuela.Catalyst Screening for Oxidative Desulfurization Using Hydrogen Peroxide[J].Catal.Today,2005,106:219-221.
    [187]S.Mondal,Y.Hangun-Balkir,L.Alexandrova,et al.Oxidation of Sulfur Components in Diesel Fuel Using Fe-TAML Catalysts and Hydrogen Peroxide [J].Catal.Today,2006,116:554-561.
    [188]A.V.Anisimov,E.V.Fedorova,A.Z.Lesnugin,et al.Vanadium Peroxocomplexes as Oxidation Catalysts of Sulfur Organic Compounds by Hydrogen peroxide in Bi-phase Systems[J].Catal.Today,2003,78:319-325.
    [189]M.Te,C.Fairbridge,Z.Ring.Oxidation Reactivities of Dibenzothiophenes in Polyoxometalate/H_2O_2 and Formic acid/H_2O_2 Systems[J].Appl.Catal.A,2001,219:267-280.
    [190]L.C.Caero,E.Hernandez,F.Pedraza,et al.Oxidative Desulfurization of Synthetic Diesel Using Supported Catalysts.Part I.Study of the Operation Conditions with a Vanadium Oxide Based Catalyst[J].Catal.Today,2005,107-108:564-569.
    [191]J.Manasseh.Homogeneous Catalysis with Macromolecular Ligands[J].Platinum Met.Rev.,1971,15:142-144.
    [192]殷元骐.羰基合成化学[M].北京:化学化工出版社,1995:44-63.
    [193]吴乙丑,袁刚,周启昭.用水溶性铑膦络合催化剂制备高碳醛[J].石油化工,1991,20(2):79-85.
    [194]Z.W.Xi,Z.Ning,S.Yu.Reaction Controlled Phase-transfer Catalysis for Propylene Epoxidation to Propylene Oxide[J].Science,2001,292(5519):1139-1 141.
    [195]Z.L.Jin,X.L.Zheng,B.Fell.Therrnoregulated Phase Transfer Ligands and Catalysis.I.Synthesis of Novel Polyether-substituted Triphenylphosphines and Application of Their Rhodium Complexes in Two-phase Hydroformylation[J].J.Mol.Catal.A:Chem.,1997,116(1-2):55-58.
    [196]Y.M.A.Yamada,H.Tabata,S.lkegami,et al.Oxidation of Allylic Alcohols,Amines,and Sulfides Mediated by Assembled Triphase Catalyst of Phosphotungstate and Non-cross-linked Amphiphilic Copolymer[J].Tetrahedron,2004,60:4 087-4 096.
    [197]H.Hamamoto,M.Kudoh,H.Takahashi,et al.Novel Use of Cross-linked Poly(N-isopropylacrylamide) Gel for Organic Reactions in Aqueous Media[J].Org.Lett.,2006,8(18):4 015-4 018.
    [198]Y.Horii,H.Onukl,S.Doi,et al.Desulfurization of Light Oil by Extraction[P].US:5494572,1996.
    [199]I.Funakoshi,T.Aida.Process for Recovering Organic Sulfur Compounds from Fuel Oil[P].US:5753102,1998.
    [200]T.Okano,T.Aoyagi,K.Kataoka,et al.Hydrophilic-hydrophobic Microdoman Surfaces Having an Ability to Suppress Platelet Aggregation and Their in Vitro Antithrombogenicity[J].J.Biomed.Mater.Res.,1986,20:919-928.
    [201]Y.X.Qiu,X.J.Yu,L.X.Feng,et al.Synthesis of Graft Copolymers via Macromonomers Technique[J].J.Polym.Sci.,1993,11(1):67-75.
    [202]苏明华,陈一民.醇水混合物的全蒸发分离[R].全国高分子学术论文报告会论文集.合肥,1997:103-104.
    [203]T.R.Chern,W.L.Koros,H.B.Hopfenberg,et al.Peameation of Mixed Penetrants Through Glassy Polymer Membranes[R].Materials science of synthetic membrane,ACS Symp.,Series 269 American Chemical Society,Washington,DC.,1985:25-27.
    [204]李效玉,陈国举,焦书科.阳离子P(BA-St-MBDM)共聚物乳液合成及应用[J].合成树脂及塑料,1995,12(1):15-18.
    [205]陈尔凡,赵常礼,程远杰.甲基丙烯酸二甲氨基乙酯溴代烷季铵盐与苯乙烯共聚合的研究[J].高分子学报,1999,5:588-595.
    [206]高学鲁,古国华,胡正水.双亲聚合物在稳定金属胶体方面的应用进展[J].材料导报,2001,15(12):58-60.
    [207]M.F.Hoover,G.B.Butler.Recent Advances in Ion-containing Polymers[J].J.Polym.Sci.Symp.,1974,45:1-10.
    [208]N.Katsutoshi,O.Yoshiyuki,I.Hiroshi,et al.Polymerization of Surface-active Monomers.Ⅰ.Micellization and Polymerization of Higher Alkyl Salts of Dimethylaminoethyl Methacrylate[J].J.Polym.Sci.Part A:Polym.Chem., 1985,23(4):1 221-1 230.
    [209]N.Katsutoshi,O.Yoshiyuki.Polymerization of Surface-active Monomers.Ⅱ.Polymerization of Quarternary Alkyl Salts of Dimethylaminoethyl Methacrylate with a Different Alkyl Chain Length[J].J.Polym.Sci.Part A:Polym.Chem.,1987,25(1):1-14.
    [210]Y.H.Chang,C.L.McCormick.Water-soluble Copolymers.49.Effect of the Distribution of the Hydrophobic Cationic Monomer Dimethyldodecyl(2-acrylamidoethyl)Ammonium Bromide on the Solution Behavior of Associating Acrylamide Copolymers[J].Macromolecules,1993,26(22):6 121-6 126.
    [211]Y.M.A.Yamada.Self-assembled Complexes of Non-cross-linked Amphiphilic Polymeric Ligands with Inorganic Species:Highly Active and Reusable Solid-phase Polymeric Catalysts[J].Chem.Pharm.Bull.,2005,53(7):723-739.
    [212]Y.M.A.Yamada,H.Q.Guo,Y.Uozumi.Tightly Convoluted Polymeric Phosphotungstate Catalyst.:An Oxidative Cyclization of Alkenols and Alkenoic Acids[J].Org.Lett.,2007,9(8):1 501-1 514.
    [213]马光辉,苏志国.高分子微球材料[M].2005,北京:化学化工出版社.
    [214]H.Sun,H.L.Li,W.F.Bu,et al.Self-organized Microporous Structures Based on Surfactant-encapsulated Polyoxometalate Complexes[J].J.Phys.Chem.B,2006,110(49):24 847-24 854.
    [215]J.D.Kim,I.Honma.Highly Proton Conducting Hybrid Materials Synthesized from 12-Phosphotungstic and Hexadecyltrimethylammonium Salt[J].Solid State Ionics,2005,176:547-552.
    [216]L.N.Yang,J.Li,X.D.Yuan,et al.One Step Non-hydrodesulfurization of Fuel oil:Catalyzed Oxidation Adsorption Desulfurization over HPWA-SBA-15[J].J.Mol.Catal.A:Chem.,2007,262:114-118.
    [217]曲淑华,周桂林,胥勃.12-钼和12-钨杂多酸热稳定性的研究[J].科学通报,1985.16:1 228-1 232.
    [218]谢文华,杨向光,叶兴凯.12-磷钨杂多酸受热相变的研究[J].分子催化,1998,12(1):31-35.
    [219]王作屏,牛景扬,王恩波.Keggin结构杂多酸热性质研究[J].化学学报,1995.53:757-764.
    [220]D.J.Wang,Z.D.Fang,D.Y.Han.Synthesis and Thermal Behavior for Polyoxometalates of Large Organic Cation with H_nXW_(12)O_(40) (X=B, Si, P) [J]. Rare Metal Materials and Engineering, 2006, 35(2): 205-208.
    
    [221] W. Feng, T. R. Zhang, Y. Y. Zhao, et al. Novel Hybrid Inorganic-organic Film Based on the Tungstophosphate Acid-polyacrylamide System: Photochromic Behavior and Mechanism [J]. J. Mater. Res., 2002,17(1): 133-136.
    
    [222] W. Feng, R. Lu, Y. Y. Zhao, et al. Sonochemical Preparation of Photochromic Nanocomposite Thin Film Based on Polyoxometalates Well Dispersed in Polyacrylamide [J]. J. Solid State Chem., 2002,169: 1-5.
    
    [223] C. R. Mayer, R. Thouvenot. New Hybrid Covalent Networks Based on Polyoxometalates: Part 1. Hybrid Networks Based on Poly(ethyl methacrylate) Chains Covalently Cross-linked by Heteropolyanions: Synthesis and Swelling Properties [J]. Chem. Mater., 2000,12(2): 257-260.
    
    [224] C. R. Mayer, R. Thouvenot. Hybrid Hydrogels Obtained by the Copolymerization of Acrylamide with Aggregates of Methacryloyl Derivatives of Polyoxotungstates. A Comparison with Polyacrylamide Hydrogels with Trapped Aggregates [J]. Macromolecules, 2000, 33(12): 4 433-4 437.
    
    [225] K. Yamaguchi, C. Yoshida, S. Uchida, et al. Peroxotungstate Immobilized on Ionic Liquid-modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide [J]. J. Am. Chem. Soc, 2005,127(2): 530-531.
    
    [226] M. V. Vasylyev, R. Neumann. New Heterogeneous Polyoxometalate Based Mesoporous Catalysts for Hydrogen Peroxide Mediated Oxidation Reactions [J]. J. Am. Chem. Soc, 2004,126(3): 884-890.
    
    [227] W. A. Herrmann, J. J. Haider, J. Fridgen, et al. Chiral Molybdenum(VI) and Tungsten(VI) 2'-pyridinyl Alcoholate Complexes. Synthesis, Structure and Catalytic Properties in Asymmetric Olefin Epoxidation [J]. Organomet. Chem., 2000, 603:69-79.
    
    [228] D. Sloboda-Rozner, P. L. Alsters, R. Neumann. A Water-soluble and "Self-assembled" Polyoxometalate as a Recyclable Catalyst for Oxidation of Alcohols in Water with Hydrogen Peroxide [J]. J. Am. Chem. Soc, 2003, 125(18): 5 280-5 281.
    
    [229] B. F. Sels, D. E. De Vos, P. A. Jacobs. Use of WO_4~(2-) on Layered Double Hydroxides for Mild Oxidative Bromination and Bromide-assisted Epoxidation with H_2O_2 [J]. J. Am. Chem. Soc, 2001, 123(34): 8 350-8 359.
    [230] B. Karimi, M. Ghoreishi-Nezhad, J. H. Clark. Selective Oxidation of Sulfides to Sulfoxides Using 30% Hydrogen Peroxide Catalyzed with a Recoverable Silica-based Tungstate Interphase Catalyst [J]. Org. Lett., 2005, 7(4): 625-628.
    [231] R. C. Schroden, C. F. Blanford, B. J. Melde, et al. Direct Synthesis of Ordered Macroporous Silica Materials Functionalized with Polyoxometalate Clusters [J]. Chem. Mater., 2001,13(3): 1 074-1 081.
    [232] U. Schubert. Polymers Reinforced by Covalently Bonded Inorganic Clusters [J]. Chem. Mater., 2001,13(10): 3 487-3 494.
    
    [233] J. Ichihara, S. Yamaguchi, T. Nomoto, et al. Keggin-type Polyacid Clusters on Apatite: Characteristic Catalytic Activities in Solvent-free Oxidation [J]. Tetrahedron Lett., 2002, 43: 8 231-8 234.
    
    [234] M. Carraro, L. Sandei, A. Sartorel, et al. Hybrid Polyoxotungstates as Second-generation POM-based Catalysts for Microwave-assisted H_2O_2 Activation [J]. Org. Lett., 2006, 8(1): 3 671-3 674.
    
    [235] C. R. Mayer, V. Cabuil, T. Lalot, et al. Incorporation of Magnetic Nanoparticles in New Hybrid Networks Based on Heteropolyanions and Polyacrylamide [J]. Angew. Chem. Int. Ed., 1999, 38(24): 3 672-3 675.
    
    [236] P. X. Lei, C. C. Chen, J. Yang, et al. Degradation of Dye Pollutants by Immobilized Polyoxometalate with H_2O_2 under Visible-light Irradiation [J]. Environ. Sci. Technol., 2005, 39(21): 8 466-8 474.
    [237] K. K. Kasem, F. A. Schultz. Electrochemistry of Polyoxometalates Immobilized in Ion exchange Polymer Films [J]. Can. J. Chem., 1995, 73: 858-864.
    [238] W. Feng, Y. S. Ding, Y. Liu, et al. The Photochromic Process of Polyoxometalate-based Nanocomposite Thin Film by in Situ AFM and Spectroscopy [J]. Mater. Chem. Phys., 2006, 98: 347-352.
    
    [239] A. V. Murugan, C. W. Kwon, G Campet, et al. Synthesis and Characterization of Novel Organo-inorganic Hybrid Material of Poly(3,4-ethylene dioxythiophene) and Phosphomolybdate Anion [J]. Active and Passive Elec. Comp., 2003, 26(2):81-86.
    
    [240] C. Cannizzo, C. R. Mayer, F. Secheresse, et al. Covalent Hybrid Materials Based on Nanolatex Particles and Dawson Polyoxometalates [J]. Adv. Mater., 2005, 17: 2 888-2 892.
    [241] P. Judeinstein. Synthesis and Properties of Polyoxometalates Based Inorganic-organic Polymers [J]. Chem. Mater., 1992, 4(1): 4-7.
    [242] R. Neumann, A. M. Khenkin. Peroxometalate Catalyzed Oxidations with Hydrogen Peroxide in Biphasic Reaction Media: Reactions in Inverse Emulsions [J]. J. Org. Chem., 1994, 59(25): 7 577-7 579.
    [243] M. Benaglia, A. Puglisi, F. Cozzi. Polymer-supported Organic Catalysts [J]. Chem. Rev., 2003, 103(9): 3 401-3 429.
    [244] Y. Ishii, K. Yamawaki, T. Ura, el at. Hydrogen Peroxide Oxidation Catalyzed by Heteropoly Acids Combined with Cetylpyridinium Chloride: Epoxidation of Olefins and Allylic Alcohols, Ketonization of Alcohols and Diols, and Oxidative Cleavage of 1,2-diols and Olefins [J]. J. Org. Chem., 1988, 53(15): 3 587-3 593.
    [245] Y. M. A. Yamada, H. Q. Guo, Y. Uozumi. Tightly Convoluted Polymeric Phosphotungstate Catalyst: An Oxidative Cyclization of Alkenols and Alkenoic Acids [J]. Org. Lett., 2007, 9(8): 1 501-1 504.
    [246] H. Hamamoto, Y. Suzuki, H. Takahashi, et al. Direct transformation of Benzilic Amines to Carbonyls Using Polyacrylamide-bound Tungstate under Phase-transfer Catalysis Conditions [J]. Tetrahedron Lett., 2007, 48: 4 239-4 242.
    [247] Y. M. A. Yamada, M. Ichinohe, S. Ikegami, et al. Development of a New Triphase Catalyst and its Application to the Epoxidation of Allylic Alcohols [J]. Org. Lett., 2001, 3(12): 1 837-1 840.
    [248] H. Hamamoto, Y. M. A. Yamada, S. Ikegami, et al. A Recyclable Catalytic System Based on a Temperature-responsive Catalys [J]. Angew. Chem. Int. Ed., 2005, 44: 4 536-4 538.
    [249] J. X. Yang, Y. Fang, D. D. Hu, et al. CuS-poly (N-isopropylacrylamide-co-acrylic acid) Composite Microspheres with Patterned Surface Structures: Peparation and Characterization [J]. Chinese Science Bulletin, 2004, 49(19): 2 026-2 032.
    [250] R. P. Washington, O. Steinbock. Frontal Polymerization Synthesis of Temperature-sensitive Hydrogels [J]. J. Am. Chem. Soc, 2001,123(32): 7 933-7 934.
    [251] E. S. Matsuo, M. Orkiszj, S. T. Sun, et al. Origin of Structural Inhomogeneities in Polymer Gels [J]. Macromolecules, 1994, 27(23): 6 791-6 796.
    [252] T. Tanaka, D. Fillmore, I. Nishio, et al. Phase Transitions in Ionic Gels [J]. Phys. Rev. Lett., 1980, 45(20): 1 636-1 639.
    [253] G Tuin, F. Candau, R. Zana. The influence of Salicylate Counterions on the Aggregation Behaviour of a Polymerizable Cationic Surfactant [J]. Colloids Surf. A: Phys. Eng. Aspects, 1998,131: 303-313.
    [254] K. Char, A. P. Gast, C. W. Frank. Fluorescence Studies of Polymer Adsorption. 1. Rearrangement and Displacement of Pyrene-terminated Poly(ethylene glycol) on Colloidal Silica Particles [J]. Langmuir, 1988, 4(4): 989-998.
    [255] J. R. Lawowica. Principles of Fluorescence Spectroscopy [M]. Kluwer Academic /Plenum Publishers: New York:1999: 238-264.
    [256] D. G Kurth, P. Lehmann, D. Volkmer, et al. Biologically Inspired Polyoxometalate-surfactant Composite Materials. Investigations on the Structures of Discrete, Surfactant-enapsulated Clusters, Monolayers, and Langmuir-Blodgett Films of (DODA)_(40)(NH_4)_2[(H_2O)_n(?)Mo_(132)O_(372)(CH_3CO_2)_(30)(H_2O)_(72)] [J]. J. Chem. Soc, Dalton Trans., 2000, 3 989-3 998.
    [257] H. L. Li, H. Sun, W. Qi, et al. Onionlike Hybrid Assemblies Based on Surfactant-encapsulated Polyoxometalates [J]. Angew. Chem. Int. Ed., 2007, 46:1 300-1 303.
    [258] J. F. Zhu, Y. J. Zhu. Microwave-assisted One-step Synthesis of Polyacrylamide-metal (M=Ag, Pt, Cu) Nanocomposites in Ethylene Glycol [J]. J. Phys. Chem. B, 2006, 110(17): 8 593-8 597.
    [259] A. M. Douvas, E. Makarona, N. Glezos. Polyoxometalate-based Layered Structures for Charge Transport Control in Molecular Devices [J]. ACS Nano, 2008, 2(4): 733-742.
    [260] C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, R. Thouvenot. Vibrational Investigations of Polyoxometalates. 2. Evidence for Anion-anion Interactions in Molybdenum(VI) and Tungsten(VI) Compounds Related to the Keggin Structure [J]. Inorg. Chem., 1983, 22(2): 207-216.
    [261] W. H. Geng, Y. Kumabe, A. Ohki, et al. Analysis of Hydrothermally-treated and Weathered Coals by X-ray Photoelectron Spectroscopy (XPS) [J]. Fuel, 2009, 88:644-649.
    
    [262] L. Kong, X. F. Lu, W. J. Zhang, et al. Templated Synthesis of Polyaniline Nanotubes with Pd Nanoparticles Attached onto Their Inner Walls and its Catalytic Activity on the Reduction of p-Nitroanilinum [J]. Composites Science and Technology, 2009, 69: 561-566.
    [263] D. W. Fan, J. C. Hao, T. B. Liu, et al. Self-patterning of Hydrophobic Materials into Highly Ordered Honeycomb Nanostructures at the Air/Water Interface [J]. Angew. Chem. Int. Ed., 2007, 46: 3 342-3 345.
    [264] W. F. Bu, H. L. Li, L. X. Wu, et al. Polyoxometalate-based Vesicle and Its Honeycomb Architectures on Solid Surfaces [J]. J. Am. Chem. Soc, 2005, 127(22): 8 016-8 017.
    [265] D. G. Kurth, P. Lehmann, D. Volkmer, et al. Surfactant-encapsulated Clusters (SECs): (DODA)_(20)(NH_4)[H_3Mo_(57)V_6(NO)_6O_(183)(H_2O)_(18)], a Case Study [J]. Chem. Eur. J., 2000, 6(2): 385-393.
    [266] W. F. Bu, L. X. Wu, X. Zhang, et al. Surfactant-encapsulated Europium-substituted Heteropolyoxotungatate: The Structural Characterization and Photophysical Properties of its Solid State, Solvent-casting Film, and Langmuir-Blodgett Film [J]. J. Phys. Chem. B, 2003,107(48): 13 425-13 431.
    [267] W. F. Bu, H. L. Li, L. X. Wu, et al. Surfactant-encapsulated Europium-substituted Heteropolyoxotungstates: Structural Characterizations and Photophysical Properties [J]. J. Phys. Chem. B, 2004,108(34): 12 776-12 782.
    [268] W. Li, W. F. Bu, H. L. Li, et al. A Surfactant-encapsulated Polyoxometalate Complex towards a Thermotropic Liquid Crystal [J]. Chem. Commun., 2005: 3 785-3 787.
    [269] W. Li, S. Y. Yi, Y. Q. Wu, et al. Thermotropic Mesomorphic Behavior of Surfactant-encapsulated Polyoxometalate Hybrids [J]. J. Phys. Chem. B, 2006, 110(34): 16 961-16 966.
    [270] S. Polarz, B. Smarsly, M. Antonietti. Colloidal Organization and Clusters: Self-assembly of Polyoxometalate-surfactant Complexes towards Three-dimensional Organized Structures [J]. Chem. Phys. Chem., 2001, 7:457-461.
    [271] H. L. Li, W. Qi, L. X. Wu, et al. A highly Transparent and Luminescent Hybrid Based on the Copolymerization of Surfactant-Encapsulated Polyoxometalate and Methyl Methacrylate [J] Adv. Mater., 2005, 17: 2 688-2 692.
    [272] Y. Shiraishi, K. Tachibana, T. Hirai, et al. Desulfurization and Denitrogenation Process for Light Oils Based on Chemical Oxidation Followed by Liquid-liquid Extraction [J]. Ind. Eng. Chem. Res., 2002, 41(17): 4 362-4 375.
    [273] S. Otsuki, T. Nonaka, N. Takashima, et al. Oxidative Desulfurization of Light Gas Oil and Vacuum Gas Oil by Oxidation and Solvent Extraction [J]. Energy Fuels, 2000, 14(6): 1 232-1 239.
    [274] O. Bortolini, S. Campestrini, F. Di Furia, et al. Metal Catalysis in Oxidation by Peroxides. Kinetics and Mechanism of the Molybdenum-catalyzed Oxidation of Sulfoxides to Sulfones with Hydrogen Peroxide [J]. J. Org. Chem., 1987, 52(23): 5 093-5 095.
    [275] P. Moreau, V. Hulea, S. Gomez, et al. Oxidation of Sulfoxides to Sulfones by Peroxide over Ti-containing Zeolites [J]. Appl. Catal. A, 1997,155: 253-263.
    [276] S. Murata, K. Murata, K. Kidena, et al. A Novel Oxidative Desulfurization System for Diesel Fuels with Molecular Oxygen in the Presence of Cobalt Catalysts and Aldehydes [J]. Energy Fuels, 2004, 18(1): 116-121.
    [277] K. Yazu, Y. Yamamoto, T. Furuya, et al. Oxidation of Dibenzothiophenes in an Organic Biphasic System and its Application to Oxidative Desulfurization of Light Oil [J]. Energy Fuels, 2001,15(6): 1 535-1 536.
    [278] K. Yazu, T. Furuya, K. Miki, et al. Tungstophosphoric Acid-catalyzed Oxidative Desulfurization of Light Oil with Hydrogen Peroxide in a Light Oil/Acetic acid Biphasic System [J]. Chem. Lett., 2003, 32(10): 920-921.
    [279] P. D. Filippis, M. Scarsella. Oxidative Desulfurization: Oxidation Reactivity of Sulfur Compounds in Different Organic Matrixes [J]. Energy Fuels, 2003, 17(6):1 452-1 455.
    [280] L. Y. Kong, G. Li, X. S. Wang. Mild Oxidation of Thiophene over TS-1/H_2O_2 [J]. Catal. Today, 2004, 93-95: 341-345.
    [281] Y. Shiraishi, T. Hirai, I. Komasawa. Oxidative Desulfurization Process for Light Oil Using Titanium Silicate Molecular Sieve Catalysts [J]. J. Chem. Eng. Japan, 2002, 35(12): 1 305-1 311.
    [282] K. M. Sadeghi, M. A. Sadeghi, T. F. Yen. Novel Extraction of Tar Sands by Sonication with the Aid of in situ Surfactants [J]. Energy Fuels, 1990, 4:604-608.
    [283] E. R. Alexand, E. U. Nderhill. Studies on the Mechanism of the Mannich Reaction. I. Ethylmalonic Acid, a Methynyl Compound [J]. J. Am. Chem. Soc, 1949, 71 (12): 4 014-4 019.
    [284]T.F.Cummings,J.R.Shelton.Mannich Reaction Mechanisms[J].Cummings and Shelton,1960,25:419-423.
    [285]马喜平.聚丙烯酰胺类阳离子聚合物的合成及应用[J].化学世界,1995,11:588-591.
    [286]刘丹凤,陈夫山,马万勇.两性聚丙烯酰胺的合成[J].山东轻工业学院学报,1999,13(4):47-52.
    [287]陈夫山,王海毅,何秋实.两性聚丙烯酰胺的制备及应用[J].广东造纸,1999.4:9-12.
    [288]庄曦,刘明华,余敏.两性型聚丙烯酰胺乳液的制备及其性能[J].石油化工高等学校学报,2005,18(3):39-41.
    [289]庄曦,刘明华.阳离子聚丙烯酰胺微乳液的制备及其絮凝性能研究[J].西安石油大学学报(自然科学版),2005,20(6):49-52.
    [290]夏峥嵘,李友清,李绵贵.阳离子聚丙烯酰胺的合成与应用[J].精细石油化工,2004,6:54-57.
    [291]赵勇,何炳林.丙烯酰胺反相微胶乳的Mannich反应研究[J].高分子材料科学与工程,2001,17(2):61-63
    [292]李正惠,郭艳丽.共聚合阳离子聚丙烯酰胺的合成及性能测试[J].工业水处理,2003,23(4):38-40.
    [293]C.J.McDonald,R.H.Beaver.The Mannich Reaction of Poly(acry1amide)[J].Macromolecules,1979,12(2):202-208.
    [294]J.E.Fernandez,G..B.Butler.The Reaction of Secondary Amines with Formaldehyde[J].J.Org.Chem.,1963,28(11):3 258-3 259.
    [295]郭艳丽.共聚合阳离子聚丙烯酰胺的合成及性能测试[D].北京:北京化工大学,2003.
    [296]蒋平平,殷福珊,沈风雷.新型可聚合表面活性剂DMDB合成与性能[J].石油化工高等学校学报,2000,13(4):13-16.
    [297]K.U.Nandhini,B.Arabindoo,M.Palanichamy,et al.Al-MCM-41 Supported Phosphotungstic Acid:Application to Symmetrical and Unsymmetrical Ring Opening of Succinic Anhydride[J].J.Mol.Catal.A,,2006,243:183-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700