p型ZnMgO薄膜器件相关性能研究和Ga掺杂ZnO薄膜表面处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同为直接宽禁带半导体材料,ZnO比GaN有激子结合能是其两倍多Zn源在自然界中储量丰富、价格便宜、环境友好、抗辐射性能强等优势。在本征状态下ZnO呈n型电导,其p型电导转变的实现较困难,这也是限制ZnO器件应用的瓶颈。目前,对于ZnO的p型研究还有许多问题没有解决,p型ZnO薄膜相关的器件性能研究是其中很重要的部分。本文制备了一系列的Na掺杂p型ZnMgO薄膜材料,并进一步研究Na掺杂p型ZnMgO薄膜相关的半导体器件方面的性能。
     透明导电薄膜作为透明电极在光电器件中有着广泛的应用。氧化锌基透明导电薄膜相对于目前被广泛应用的氧化铟基透明导电薄膜(比如ITO)有着成本低,分布广泛,无毒性等优点。目前研究都证实了Ga对于ZnO的n型掺杂是一种良好的施主掺杂元素,因为Ga在替代位时对ZnO的晶格尺寸的改变较小且Ga的活性较弱,Ga掺杂时可获得更高的载流子浓度。薄膜表面性能是除了电学性能和光学透射率以外对光电器件很关键的因素,本文利用氧等离子体处理的方法来改进Ga掺杂ZnO薄膜的表面性质。
     本文主要工作包括以下内容:
     1)首先本文用PLD方法制备了一系列的Na掺杂ZnMgO薄膜材料,从各项性能分析看,薄膜晶体质量良好,XRD分析表明Mg在薄膜中是处于Zn的晶格位置,Hall测试显示薄膜具有p型导电性,且具有较好的光学性能,为接下来进一步研究薄膜的相关半导体器件方面的性能奠定了基础。
     2)因为霍尔效应本身的原理局限,本文利用p型场效应晶体管来进一步验证Na掺杂ZnMgO薄膜的p型导电性,实验制备了基于此薄膜的p沟道耗尽型场效应晶体管,电学性能的测试表明薄膜是p型导电的,沟道的载流子迁移率大约是2.3cm2V-1S-1,且经过365nm紫外光照射以后,薄膜仍然是p型导电的。
     3)本文就退火温度对Na掺杂p型ZnMgO薄膜的表面形貌、晶体质量、光电性能等方面影响进行分析,找到了一个很宽的温度窗口用来退火实现较好性能的p型薄膜,因为快速退火在制造LED中实现p型欧姆接触是很关键的步骤,所以研究有很强的现实意义和重要性。
     4)因为在光电器件的制造和使用过程中光照几乎是不可避免的,所以光电流特性很重要。Na掺杂p型ZnMgO薄膜在红色激光照射后出现光电流是由于缺陷和表面态的存在。在照射光发光功率相同的情况下,紫外光波长越短,薄膜的光电流变化越显著,载流子复合几率越小,随着照射光波长的增加,薄膜在制作光电器件时有相对比较稳定的性质。
     5)本文通过在Na掺杂p型ZnMgO薄膜上沉积Ni/Pt多层膜的电极制备方式,对比通常采用的Ni/Pt单层膜,得到Ni/Pt多层膜形成欧姆接触的比接触电阻率比Ni/Pt单层膜的要低,提供了一种获得更低比接触电阻率的欧姆接触的方式。
     6)本文采用氧等离子体处理的方法来改进Ga掺杂ZnO薄膜的表面性能,处理后薄膜表面的功函数增大,因为费米能级降低和电离势偏移的共同作用。处理后薄膜表面的静态接触角减小,表面能增加,而透射率没有降低。
Compared with GaN, ZnO has unique advantages such as:the exciton energy is two times of that of GaN, ZnO is environment-friendly with low cost and high-resist to the radiation. The advantages promote ZnO as a promising material instead of GaN for short-wavelength optoelectronic devices. Due to the asymmetric doping limitations, p-type ZnO is hard to realize and has been thought to be a bottleneck in the development of ZnO-based devices, one of which is the device properties of p-type ZnO thin films. Therefore, in this work, we concentrated on the device properties of p-type ZnO thin films.
     The transparent conducting oxides (TCOs) are widely used as transparent electrodes in optoelectronic devices owing to the unique combination of high electrical conductivity and excellent visible transparency. ZnO based TCOs possess the advantages of low cost, earth abundant, and non-toxicity compared with the most popular indium oxide based TCOs, i.e. tin doped indium oxide (ITO). Many research groups demonstrated that Ga is a decent dopant for producing high quality n-type ZnO because Ga atoms cause little distortion of the ZnO lattices when they are in substitutional sites. In this study, we utilized oxygen plasma treatment to modify the surfaces of GZO thin films.
     The detailed investigations included:
     1) Na doped ZnMgO thin films with excellent structural and electrical properties were prepared on quartz substrates by pulsed laser deposition.
     2) In this study, we have presented results for fabricated ZnO based FET. The electrical measurements confirmed that the conductivity of the Na doped ZnMgO thin film was P-type, and the carrier mobility was estimated to be2.3cm2V-1S-1. Moreover, after exposed to the365nm ultraviolet light, the Na doped ZnMgO thin films still exhibited p-type behavior under gate voltage ranging from-5to2V.
     3) The effects of rapid thermal annealing (RTA) on the structural and electrical properties of Na-doped ZnMgO films grown by pulsed laser deposition have been studied. Conclusively, a wide temperature window for achieving reasonable p-type by RTA was found, which was important because RTA was generally needed to get p-type Ohmic contact when fabricating LED.
     4) Photocurrents were measured under a bias of6V in air at room temperature when the Na doped ZnMgO thin film was irradiated by red laser beam,365nm and254nm ultraviolet beam for20s. The film exhibited a higher current intensity after illumination. The photocurrent exhibited after red laser irradiation because of the existence of the defects and surface states. The carrier recombination rate was smaller and the photocurrent changed more significantly when the film was exposed to the254nm ultraviolet beam than that of the film exposed to the365nm ultraviolet beam.
     5) Na-doped ZnMgO thin films were grown on quartz substrates, Ni/Pt multilayer films and Ni/Pt films were deposited sequentially by electron-beam evaporation and patterned by photoresist lift-off to form circular transmission line model (CTLM) patterns. The specific contact resistivity of Ni/Pt multilayer films was relatively low compared with Ni/Pt films.
     6) The oxygen plasma treatment significantly changed the surface properties of the Ga doped ZnO thin films, leading to an increase of work function and a large reduction in contact angles. We attributed the increase of work function of the GZO thin films after oxygen plasma treatment to both the lowering of the Fermi level and the shift in ionization potential.
引文
[1]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner. Recent progress in processing and properties of ZnO. Superlattices and Microstructures,2004, 34(1-2):3-32.
    [2]D. C. Look. Recent advances in ZnO materials and devices. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2001, 80(1-3):383-387.
    [3]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner. Recent advances in processing of ZnO. Journal of Vacuum Science & Technology B,2004, 22(3):932-948.
    [4]龚丽.ZnO基透明导电膜的制备与掺杂研究浙江大学博士论文,2011.
    [5]C. Klingshirn. Luminescence of Zno under High One-Quantum and 2-Quantum Excitation. Physica Status Solidi B-Basic Research,1975,71(2):547-556.
    [6]L. L. Chen, Z. Z. Ye, J. G. Lu, P. K. Chu. Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO thin films. Applied Physics Letters,2006,89(25):252113-1-3.
    [7]J. E. Jaffe, A. C. Hess. Hartree-Fock Study of Phase-Changes in Zno at High-Pressure. Physical Review B,1993,48(11):7903-7909.
    [8]林兰.射频磁控溅射法制备Na-N共掺p型ZnO薄膜及其性能的研究.浙江大学硕士论文,2010.
    [9]吕建国.ZnO半导体光电材料的制备及其性能的研究.浙江大学博士论文,2005.
    [10]卢洋藩.ZnO薄膜的N相关掺杂及p-ZnO欧姆接触的研究.浙江大学博士论文,2009.
    [11]C. H. Bates, R. Roy, W. B. White. New High-Pressure Polymorph of Zinc Oxide. Science,1962,137(3534):993-993.
    [12]A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. W. Ok, T. Y. Seong. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Applied Physics Letters,2000,76(5):550-552.
    [13]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc. A comprehensive review of ZnO materials and devices. Journal of Applied Physics,2005,98(4):041301-1-103.
    [14]D. G. Thomas. THE EXCITON SPECTRUM OF ZINC OXIDE. Journal of Physics and Chemistry of Solids,1960,15(1-2):86-96.
    [15]K. Shindo, A. Morita, H. Kamimura. Spin-Orbit Coupling in Ionic Crystals with Zincblende and Wurtzite Structures. Journal of the Physical Society of Japan,1965, 20(11):2054-2059.
    [16]W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, B. K. Meyer. Valence-band ordering and magneto-optic exciton fine structure in ZnO. Physical Review B,2002,65(7):075207-12.
    [17]B. Gil. Oscillator strengths of A, B, and C excitons in ZnO films. Physical Review B,2001,64(20):201310-3.
    [18]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, W. C. Harsch. Valence-band ordering in ZnO. Physical Review B,1999,60(4):2340-2344.
    [19]D. C. Look, D. C. Reynolds, J. W. Hemsky, R. L. Jones, J. R. Sizelove. Production and annealing of electron irradiation damage in ZnO. Applied Physics Letters,1999, 75(6):811-813.
    [20]C. Klingshirn. ZnO:Material, physics and applications. Chemphyschem,2007, 8(6):782-803.
    [21]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, A. V. Rodina. Bound exciton and donor-acceptor pair recombinations in ZnO. Physica Status Solidi B-Basic Solid State Physics,2004,241(2):231-260.
    [22]林均铭.PLD法制备Nb掺杂ZnO基透明导电薄膜及其性能研究.浙江大学硕士论文,2008.
    [23]胡少华.直流反应磁控溅射法制备Ga-N共掺p型ZnMgO薄膜.浙江大学硕士论文,2007.
    [24]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc. A comprehensive review of ZnO materials and devices. Journal of Applied Physics,2005,98(4).
    [25]V. Kumar, B. S. R. Sastry. Thermal expansion coefficient of binary semiconductors. Crystal Research and Technology,2001,36(6):565-569.
    [26]D. R. Lide, editor. CRC Handbook of Chemistry and Physics; 2004-2005.
    [27]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner. Recent progress in processing and properties of ZnO. Progress in Materials Science,2005, 50(3):293-340.
    [28]Y. Li, G. S. Tompa, S. Liang, C. Gorla, Y. Lu, J. Doyle. Transparent and conductive Ga-doped ZnO films grown by low pressure metal organic chemical vapor deposition. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1997,15(3):1063-1068.
    [29]M. Liu, A. H. Kitai, P. Mascher. Point-Defects and Luminescence-Centers in Zinc-Oxide and Zinc-Oxide Doped with Manganese. Journal of Luminescence, 1992,54(1):35-42.
    [30]袁国栋.Al-N共掺实现p型ZnO的机理及其相关器件基础研究.[博士学位论文],2006:6.
    [31]龚丽.ZnO基透明导电膜的制备与掺杂研究.浙江大学博士论文,2011.
    [32]A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. O. Everitt. Excitonic fine structure and recombination dynamics in single-crystalline ZnO. Physical Review B,2004,70(19):195207-1-10.
    [33]D. C. Reynolds, D. C. Look, B. Jogai, T. C. Collins. Polariton and free-exciton-like photoluminescence in ZnO. Applied Physics Letters,2001,79(23):3794-3796.
    [34]D. W. Hamby, D. A. Lucca, M. J. Klopfstein, G. Cantwell. Temperature dependent exciton photoluminescence of bulk ZnO. Journal of Applied Physics,2003, 93(6):3214-3217.
    [35]J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, J. Narayan. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. Journal of Applied Physics,1999, 85(11):7884-7887.
    [36]S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, C. W. Litton. Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal. Journal of Applied Physics,2003,93(1):756-758.
    [37]Y. S. Park, C. W. Litton, T. C. Collins, D. C. Reynolds. Exciton Spectrum of Zno. Physical Review,1966,143(2):512-519.
    [38]W. Y. Liang, A. D. Yoffe. Transmission Spectra of Zno Single Crystals. Physical Review Letters,1968,20(2):59-62.
    [39]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch, G. Cantwell. Neutral-donor-bound-exciton complexes in ZnO crystals. Physical Review B,1998,57(19):12151-12155.
    [40]H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, B. K. Meyer. Optical investigations on excitons bound to impurities and dislocations in ZnO. Optical Materials,2003,23(1-2):33-37.
    [41]K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag, R. Sauer. Donor-acceptor pair transitions in ZnO substrate material. Physica B-Condensed Matter,2001,308-310:945-948.
    [42]C. Boemare, T. Monteiro, M. J. Soares, J. G. Guilherme, E. Alves. Photoluminescence studies in ZnO samples. Physica B-Condensed Matter,2001, 308-310:985-988.
    [43]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 1997,70(17):2230-2232.
    [44]D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. Journal of Crystal Growth,1998,184-185(1):605-609.
    [45]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, T. Goto. High temperature excitonic stimulated emission from ZnO epitaxial layers. Applied Physics Letters, 1998,73(8):1038-1040.
    [46]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社,2006:35-36.
    [47]W. Guo, A. Allenic, Y. B. Chen, X. Q. Pan, W. Tian, C. Adamo, D. G. Schlom. ZnO epitaxy on (111) Si using epitaxial Lu(2)O(3) buffer layers. Applied Physics Letters,2008,92(7).
    [48]W. Guo, M. B. Katz, C. T. Nelson, T. Heeg, D. G. Schlom, B. Liu, Y. Che, X. Q. Pan. Epitaxial ZnO films on (111) Si substrates with Sc2O3 buffer layers. Applied Physics Letters,2009,94(12).
    [49]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:34-63.
    [50]J. S. Choi, C. H. Yo. STUDY OF NONSTOICHIOMETRIC COMPOSITION OF ZINC-OXIDE. Journal of Physics and Chemistry of Solids,1976, 37(12):1149-1151.
    [51]G. D. Mahan. INTRINSIC DEFECTS IN ZNO VARISTORS. Journal of Applied Physics,1983,54(7):3825-3832.
    [52]F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, I. Tanaka. Energetics of native defects in ZnO. Journal of Applied Physics,2001,90(2):824-828.
    [53]D. C. Look, J. W. Hemsky, J. R. Sizelove. Residual native shallow donor in ZnO. Physical Review Letters,1999,82(12):2552-2555.
    [54]A. F. Kohan, G. Ceder, D. Morgan, C. G. Van de Walle. First-principles study of native point defects in ZnO. Physical Review B,2000,61(22):15019-15027.
    [55]S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer, R. T. Williams. Production and properties of p-n junctions in reactively sputtered ZnO. Physica B-Condensed Matter,2001,308:1197-1200.
    [56]G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer, R. T. Williams. Control of p-and n-type conductivity in sputter deposition of undoped ZnO. Applied Physics Letters,2002,80(7):1195-1197.
    [57]傅.贾.林碧霞,廖桂红.非掺杂ZnO薄膜中紫外与绿色发光中心.物理学报,2001,50:2208.
    [58]C. G. Van de Walle. Hydrogen as a cause of doping in zinc oxide. Physical Review Letters,2000,85(5):1012-1015.
    [59]S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilao, J. P. Duarte, N. A. de Campos, A. Weidinger, R. L. Lichti, S. J. C. Irvine. Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Physical Review Letters,2001,86(12):2601-2604.
    [60]D. M. Hofmann, A. Hofstaetter, F. Leiter, H. J. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, P. G. Baranov. Hydrogen:A relevant shallow donor in zinc oxide. Physical Review Letters,2002,88(4).
    [61]D. C. Reynolds, C. W. Litton, T. C. Collins, J. E. Hoelscher, J. Nause. Observation of donor-acceptor pair spectra in the photoluminescence of H-and Zn-implanted ZnO single crystals. Applied Physics Letters,2006,88(14).
    [62]E. V. Lavrov, J. Weber, F. Borrnert, C. G. Van de Walle, R. Helbig. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Physical Review B,2002,66(16).
    [63]X. N. Li, B. Keyes, S. Asher, S. B. Zhang, S. H. Wei, T. J. Coutts, S. Limpijumnong, C. G. Van de Walle. Hydrogen passivation effect in nitrogen-doped ZnO thin films. Applied Physics Letters,2005,86(12).
    [64]缪燕MOCVD法生长磷掺杂p型ZnO薄膜及其性质研究.浙江大学硕士论文,2006.
    [65]E. V. Lavrov. Infrared absorption spectroscopy of hydrogen-related defects in ZnO. Physica B-Condensed Matter,2003,340:195-200.
    [66]L. Y. Chen, W. H. Chen, J. J. Wang, F. C. N. Hong, Y. K. Su. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. Applied Physics Letters,2004,85(23):5628-5630.
    [67]G. A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, J. Weber. Hydrogen local modes and shallow donors in ZnO. Physical Review B,2005, 72(19):195211-1-8.
    [68]G. A. Shi, M. Stavola, W. B. Fowler. Identification of an OH-Li center in ZnO: Infrared absorption spectroscopy and density functional theory. Physical Review B, 2006,73(8).
    [69]Y. Marfaing. Phenomenological analysis of codoping role of statistical fluctuations. Physica Status Solidi B-Basic Research,2002,229(1):229-238.
    [70]A. Kobayashi, O. F. Sankey, J. D. Dow. DEEP ENERGY-LEVELS OF DEFECTS IN THE WURTZITE SEMICONDUCTORS ALN, CDS, CDSE, ZNS, AND ZNO. Physical Review B,1983,28(2):946-956.
    [71]M. Kasuga, S. Ogawa. ELECTRONIC-PROPERTIES OF VAPOR-GROWN HETEROEPITAXIAL ZNO FILM ON SAPPHIRE. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1983,22(5):794-798.
    [72]R. E. Service. Materials science-Will UV lasers beat the blues? Science,1997, 276(5314):895-895.
    [73]C. H. Park, S. B. Zhang, S. H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective. Physical Review B,2002,66(7).
    [74]M. G. Wardle, J. P. Goss, P. R. Briddon. Theory of Li in ZnO:A limitation for Li-based p-type doping. Physical Review B,2005,71(15).
    [75]E. C. Lee, K. J. Chang. Possible p-type doping with group-I elements in ZnO. Physical Review B,2004,70(11).
    [76]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, Y. L. Hu. Realization of p-type ZnO films via monodoping of Li acceptor. Journal of Crystal Growth,2005,283(1-2):180-184.
    [77]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, B. H. Zhao. Dopant source choice for formation of p-type ZnO:Li acceptor. Applied Physics Letters, 2006,88(6):062107-1-3.
    [78]Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, B. H. Zhao, S. Limpijumnong. Identification of acceptor states in Li-doped p-type ZnO thin films. Applied Physics Letters,2006,89(4).
    [79]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng, H. P. He, L. P. Zhu, J. Y. Huang, L. Wang, J. Yuan, B. H. Zhao, X. H. Li. Control of p-and n-type conductivities in Li-doped ZnO thin films. Applied Physics Letters,2006,89(11).
    [80]Y. Z. Zhang, H. P. He. Z. Z. Ye, H. H. Huang, J. G. Lu, M. Qiu, B. H. Zhao, L. P. Zhu, J. Y. Huang. Preparation and photoluminescent properties of p-type Li-doped ZnMgO thin films. Materials Letters,2008,62(8-9):1418-1420.
    [81]Y. T. Yang, J. Wu, Y. R. Cai, R. X. Ding, J. X. Song, L. C. Shi. First principles investigation on conductivity mechanism of p-type K:ZnO. Acta Physica Sinica, 2008,57(11):7151-7156.
    [82]E. Mollwo, G. Muller, P. Wagner. ENERGY POSITION OF CU ACCEPTOR LEVEL IN ZNO MONOCRYSTALS. Solid State Communications,1973, 13(8):1283-1287.
    [83]F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, W. P. Beyermann. p-Type ZnO films with solid-source phosphorus doping by molecular-beam epitaxy. Applied Physics Letters,2006,88(5):052106-1-3.
    [84]H. S. Kang, B. Du Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, S. Y. Lee. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Applied Physics Letters,2006,88(20).
    [85]K.-S. Ahn, T. Deutsch, Y. Yan, C.-S. Jiang, C. L. Perkins, J. Turner, M. Al-Jassim. Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. Journal of Applied Physics,2007,102(2).
    [86]L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, B. H. Zhao. Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source. Journal of Electronic Materials,2007,36(4):498-501.
    [87]S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, B. H. Zhao, p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Communications,2008,148(1-2):25-28.
    [88]S. S. Lin, Z. Z. Ye, J. G. Lu, H. P. He, L. X. Chen, X. Q. Gu, J. Y. Huang, L. P. Zhu, B. H. Zhao. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate. Journal of Physics D-Applied Physics,2008,41(15).
    [89]Z. Ye, S. Lin, H. He, X. Gu, L. Chen, J. Lii, J. Huang, L. Zhu, L. Wang, Y. Zhang,X.Li,林时胜,何海平,顾修全,陈凌翔,吕建国,黄靖云,朱丽萍,汪雷,张银珠,李先杭Room Temperature Blue-UV Electroluminescence from ZnO Light-Emitting Diodes Involving Na-Doped p-Type ZnO and ZnO/ZnMgO Multi-Quantum Wells. Chinese Journal of Semiconductors,2008,29(8):1433-1435.
    [90]Z. Ye, L. Zhang, J. Huang, Y. Zhang, L. Zhu, B. Lu, J. Lu, L. Wang, Y. Jin, J. Jiang, Y. Xue, J. Zhang, S. Lin, D. Yang. Room-temperature electroluminescence of p-Zn_xMg_(1-x)O:Na/n-ZnO p-n junction light emitting diode. Journal of Semiconductors,2009,30(8):1-3.
    [91]S. Limpijumnong, S. B. Zhang, S. H. Wei, C. H. Park. Doping by large-size-mismatched impurities:The microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Physical Review Letters,2004,92(15).
    [92]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu. Growth of p-type zinc oxide films by chemical vapor deposition. Japanese Journal of Applied Physics Part 2-Letters,1997,36(11A):L1453-L1455.
    [93]Y. F. Yan, S. B. Zhang, S. T. Pantelides. Control of doping by impurity chemical potentials:Predictions for p-type ZnO. Physical Review Letters,2001, 86(25):5723-5726.
    [94]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials,2005,4(1):42-46.
    [95]W. Z. Xu, Z. Z. Ye, T. Zhou, B. H. Zhao, L. P. Zhu, J. Y. Huang. Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source. Journal of Crystal Growth,2004,265(1-2):133-136.
    [96]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters,2006,88(17).
    [97]T. Aoki, Y. Hatanaka, D. C. Look. ZnO diode fabricated by excimer-laser doping. Applied Physics Letters,2000,76(22):3257-3258.
    [98]V. Vaithianathan, B. T. Lee, S. S. Kim. Pulsed-laser-deposited p-type ZnO films with phosphorus doping. Journal of Applied Physics,2005,98(4):043519.
    [99]F. G. Chen, Z. Z. Ye, W. Z. Xu, B. H. Zhao, L. P. Zhu, J. G. Lv. Fabrication of p-type ZnO thin films via MOCVD method by using phosphorus as dopant source. Journal of Crystal Growth,2005,281(2-4):458-462.
    [100]Y. Miao, Z. Ye, W. Xu, F. Chen, X. Zhou, B. Zhao, L. Zhu, J. Lu. p-Type conduction in phosphorus-doped ZnO thin films by MOCVD and thermal activation of the dopant. Applied Surface Science,2006,252(22):7953-7956.
    [101]Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White. Synthesis of p-type ZnO films. Journal of Crystal Growth,2000,216(1-4):330-334.
    [102]Y. R. Ryu, T. S. Lee, H. W. White. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Applied Physics Letters,2003,83(1):87-89.
    [103]D. C. Look, G. M. Renlund, R. H. Burgener, J. R. Sizelove. As-doped p-type ZnO produced by an evaporation/sputtering process. Applied Physics Letters,2004, 85(22):5269-5271.
    [104]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, W. P. Beyermann. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Applied Physics Letters,2005,87(15):152101.
    [105]Z. Z. Ye, J. G. Lu, H. H. Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, J. Y. Huang. Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering. Journal of Crystal Growth,2003,253(1-4):258-264.
    [106]J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka. Roles of hydrogen and nitrogen in p-type doping of ZnO. Chemical Physics Letters,2007, 441(1-3):68-71.
    [107]Y. Zhang, J. Lu, L. Chen, Z. Ye. Properties of N-doped ZnO thin films in annealing process. Solid State Communications,2007,143(11-12):562-565.
    [108]L. G. Wang, A. Zunger. Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO. Physical Review Letters,2003,90(25):256401.
    [109]Y. Yan, J. Li, S.-H. Wei, M. M. Al-Jassim. Possible approach to overcome the doping asymmetry in wideband gap semiconductors. Physical Review Letters, 2007,98(13):135506.
    [110]Z. Z. Ye, Z. G. Fei, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, J. Y. Huang. Preparation of p-type ZnO films by Al plus N-codoping method. Journal of Crystal Growth,2004,265(1-2):127-132.
    [111]J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, L. P. Zhu. p-type conduction in N-Al co-doped ZnO thin films. Applied Physics Letters,2004, 85(15):3134-3135.
    [112]F. Zhuge, L. P. Zhu, Z. Z. Ye, D. W. Ma, J. G. Lu, J. Y. Huang, F. Z. Wang, Z. G. Ji, S. B. Zhang. ZnO p-n homojunctions and ohmic contacts to Al-N-co-doped p-type ZnO. Applied Physics Letters,2005,87(9):092103.
    [113]G. D. Yuan, Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, C. L. Perkins, S. B. Zhang. Control of conduction type in Al-and N-codoped ZnO thin films. Applied Physics Letters,2005,86(20):202106.
    [114]J. M. Bian, W. F. Liu, H. W. Liang, L. Z. Hu, J. C. Sun, Y. M. Luo, G. T. Du. Room temperature electroluminescence from the n-ZnMgO/ZnO/p-ZnMgO heterojunction device grown by ultrasonic spray pyrolysis. Chemical Physics Letters,2006,430(1-3):183-187.
    [115]H. He, Z. Fei, Z. Ye, L. Zhu, B. Zhao, J. Huang. Defect-related vibrational and photoluminescence spectroscopy of a codoped ZnO:Al:N film. Journal of Physics D-Applied Physics,2006,39(11):2339-2342.
    [116]X. H. Pan, Z. Z. Ye, H. S. Li, Y. J. Zeng, X. Q. Gu, L. P. Zhu, B. H. Zhao, Y. Che. Fabrication of p-type ZnMgO films via pulsed laser deposition method by using Li as dopant source. Applied Surface Science,2007,253(14):6060-6062.
    [117]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, Q. L. Liang. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method. Applied Physics Letters,2006,88(22):222114.
    [118]X. H. Wang, B. Yao, Z. P. Wei, D. Z. Sheng, Z. Z. Zhang, B. H. Li, Y. M. Lu, D. X. Zhao, J. Y. Zhang, X. W. Fan, L. X. Guan, C. X. Cong. Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen. Journal of Physics D-Applied Physics,2006, 39(21):4568-4571.
    [119]Y. Z. Zhang, J. G. Lu, Z. Z. Ye, H. P. He, L. P. Zhu, B. H. Zhao, L. Wang. Effects of growth temperature on Li-N dual-doped p-type ZnO thin films prepared by pulsed laser deposition. Applied Surface Science,2008,254(7):1993-1996.
    [120]A. Krtschil, A. Dadgar, N. Oleynik, J. Biasing, A. Diez, A. Krost. Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic. Applied Physics Letters,2005,87(26):262105.
    [121]T. H. Vlasenflin, M. Tanaka. p-type conduction in ZnO dual-acceptor-doped with nitrogen and phosphorus. Solid State Communications,2007,142(5):292-294.
    [122]Z. Z. Ye, J. F. Tang. Transparent Conducting Indium Doped ZnO Films by Dc Reactive S-Gun Magnetron Sputtering. Applied Optics,1989,28(14):2817-2819.
    [123]N. Ito, Y. Sato, P. K. Song, A. Kaijio, K. Inoue, Y. Shigesato. Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films,2006, 496(1):99-103.
    [124]M. A. Lucio-Lopez, A. Maldonado, R. Castanedo-Perez, G. Torres-Delgado, M. D. Olvera. Thickness dependence of ZnO:In thin films doped with different indium compounds and deposited by chemical spray. Solar Energy Materials and Solar Cells,2006,90(15):2362-2376.
    [125]E. J. Luna-Arredondo, A. Maldonado, R. Asomoza, D. R. Acosta, M. A. Melendez-Lira, M. D. L. Olvera. Indium-doped ZnO thin films deposited by the sol-gel technique. Thin Solid Films,2005,490(2):132-136.
    [126]S. Ilican, Y. Caglar, M. Caglar, B. Demirci. Polycrystalline indium-doped ZnO thin films:preparation and characterization. Journal of Optoelectronics and Advanced Materials,2008,10(10):2592-2598.
    [127]T. Minami, H. Nanto, S. Takata. Highly Conductive and Transparent Aluminum Doped Zinc-Oxide Thin-Films Prepared by Rf Magnetron Sputtering. Japanese Journal of Applied Physics Part 2-Letters,1984,23(5):L280-L282.
    [128]T. Minami, H. Nanto, S. Takata. Highly Conductive and Transparent ZnO Thin-Films Prepared by Rf Magnetron Sputtering in an Applied External Dc Magnetic-Field. Thin Solid Films,1985,124(1):43-47.
    [129]杜记龙.p型Zn0薄膜的制备与研究.苏州大学硕士论文,2010.
    [130]Z. A. Wang, J. B. Chu, H. B. Zhu, Z. Sun, Y. W. Chen, S. M. Huang. Growth of ZnO:Al films by RF sputtering at room temperature for solar cell applications. Solid-State Electronics,2009,53(11):1149-1153.
    [131]J. Behrends, A. Schnegg, M. Fehr, A. Lambertz, S. Haas, F. Finger, B. Rech, K. Lips. Electrical detection of electron spin resonance in microcrystalline silicon pin solar cells. Philosophical Magazine,2009,89(28-30):2655-2676.
    [132]O. Lupan, S. Shishiyanu, V. Ursaki, H. Khallaf, L. Chow, T. Shishiyanu, V. Sontea, E. Monaico, S. Railean. Synthesis of nanostructured Al-doped zinc oxide films on Si for solar cells applications. Solar Energy Materials and Solar Cells,2009, 93(8):1417-1422.
    [133]H. Zhu, E. Bunte, J. Hupkes, H. Siekmann, S. M. Huang. Aluminium doped zinc oxide sputtered from rotatable dual magnetrons for thin film silicon solar cells. Thin Solid Films,2009,517(10):3161-3166.
    [134]R. L. Hoffman. ZnO-channel thin-film transistors:Channel mobility. Journal of Applied Physics,2004,95(10):5813-5819.
    [135]Q.-B. Ma, Z.-Z. Ye, H.-P. He, S.-H. Hu, J.-R. Wang, L.-P. Zhu, Y.-Z. Zhang, B.-H. Zhao. Structural, electrical, and optical properties of transparent conductive ZnO: Ga films prepared by DC reactive magnetron sputtering. Journal of Crystal Growth,2007,304(1):64-68.
    [136]Q.-B. Ma, Z.-Z. Ye, H.-P. He, L.-P. Zhu, J.-R. Wang, B.-H. Zhao. Influence of Ar/O-2 ratio on the properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. Materials Letters,2007, 61(11-12):2460-2463.
    [137]X. H. Yu, J. Ma, F. Ji, Y. H. Wang, X. J. Zhang, C. F. Cheng, H. L. Ma. Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature. Applied Surface Science,2005,239(2):222-226.
    [138]M. Nakagawa, H. Mitsudo. ANOMALOUS TEMPERATURE-DEPENDENCE OF THE ELECTRICAL-CONDUCTIVITY OF ZINC-OXIDE THIN-FILMS. Surface Science,1986,175(1):157-176.
    [139]S. Matsushima, D. Ikeda, K. Kobayashi, G. Okada. NO2 GAS-SENSING PROPERTIES OF GA-DOPED ZNO THIN-FILM. Sensors and Actuators B-Chemical,1993,14(1-3):621-622.
    [140]B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov, R. A. Rabadanov. HIGHLY CONDUCTIVE AND TRANSPARENT GA-DOPED EPITAXIAL ZNO FILMS ON SAPPHIRE BY CVD. Thin Solid Films,1995, 260(1):19-20.
    [141]M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura. Properties of Ga-doped ZnO films. Journal of Non-Crystalline Solids,1997,218:323-328.
    [142]V. Bhosle, A. Tiwari, J. Narayan. Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Applied Physics Letters,2006,88(3):032106.
    [143]A. Tiburcio-Silver, A. Sanchez-Juarez, A. Avila-Garcia. Properties of gallium-doped ZnO deposited onto glass by spray pyrolysis. Solar Energy Materials and Solar Cells,1998,55(1-2):3-10.
    [144]M. Hiramatsu, K. Imaeda, N. Horio, M. Nawata. Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films,1998,16(2):669-673.
    [145]V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G. V. Lashkarev, B. G. Svensson, R. Yakimova. Structural and morphological properties of ZnO:Ga thin films. Thin Solid Films,2006,515(2):472-476.
    [146]H. Hirasawa, M. Yoshida, S. Nakamura, Y. Suzuki, S. Okada, K. Kondo. ZnO:Ga conducting-films grown by DC arc-discharge ionplating. Solar Energy Materials and Solar Cells,2001,67(1-4):231-236.
    [147]V. Assuncao, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, R. Martins. New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering. Thin Solid Films,2003,442(1-2):102-106.
    [148]V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, R. Martins. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films,2003,427(1-2):401-405.
    [149]K. Iwata, T. Sakemi, A. Yamada, P. Fons, K. Awai, T. Yamamoto, M. Matsubara, H. Tampo, S. Niki. Growth and electrical properties of ZnO thin films deposited by novel ion plating method. Thin Solid Films,2003,445(2):274-277.
    [150]X. H. Yu, J. Ma, F. Ji, Y. H. Wang, C. F. Cheng, H. L. Ma. Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering. Applied Surface Science,2005,245(1-4):310-315.
    [151]S. M. Park, T. Ikegami, K. Ebihara, P. K. Shin. Structure and properties of transparent conductive doped ZnO films by pulsed laser deposition. Applied Surface Science,2006,253(3):1522-1527.
    [152]E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira, R. F. P. Martins. Fully transparent ZnO thin-film transistor produced at room temperature. Advanced Materials,2005, 17(5):590-594.
    [153]J. H. Kim, B. Du Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, S. Y. Lee. Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes. Thin Solid Films,2008, 516(7):1529-1532.
    [154]S. Chang, Y. W. Song, S. Lee, S. Y. Lee, B. K. Ju. Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure. Applied Physics Letters,2008,92(19):192104-1-3.
    [155]H. Wu, D. Lin, W. Pan. Fabrication, assembly, and electrical characterization of CuO nanofibers. Applied Physics Letters,2006,89(13):133125.
    [156]B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. Yu, D. Wang. Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition. Nano Letters,2007,7(2):323-328.
    [157]G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, S. T. Lee. p-type ZnO nanowire arrays. Nano Letters,2008, 8(8):2591-2597.
    [158]W. Liu, F. Xiu, K. Sun, Y.-H. Xie, K. L. Wang, Y. Wang, J. Zou, Z. Yang, J. Liu. Na-Doped p-Type ZnO Microwires. Journal of the American Chemical Society, 2010,132(8):2498-2499.
    [159]G. Wang, S. Chu, N. Zhan, Y. Lin, L. Chernyak, J. Liu. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection. Applied Physics Letters,2011,98(4):041107.
    [160]H. He, S. Lin, G. Yuan, L. Zhang, W. Zhang, L. Luo, Y. Cao, Z. Ye, S. T. Lee. Single-Crystalline Sodium-Doped p-Type ZnO and ZnMgO Nanowires via Combination of Thin-Film and Nano Techniques. The Journal of Physical Chemistry C,2011,115(39):19018-19022.
    [161]B. Claflin, D. C. Look, S. J. Park, G. Cantwell. Persistent n-type photoconductivity in p-type ZnO. Journal of Crystal Growth,2006,287(1):16-22.
    [162]Y. J. Zeng, Z. Z. Ye, Y. F. Lu, J. G. Lu, W. Z. Xu, L. P. Zhu, B. H. Zhao, Y. Che. Investigation on ultraviolet photoconductivity in p-type ZnO thin films. Chemical Physics Letters,2007,441 (1-3):115-118.
    [163]曾昱嘉.ZnO薄膜p型掺杂的研究及ZnO纳米点的可控生长.浙江大学博士论文,2008.
    [164]J. Reemts, A. Kittel. Persistent photoconductivity in highly porous ZnO films. Journal of Applied Physics,2007,101 (1):013709.
    [165]A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A.I. Belogorokhov, E. A. Kozhukhova, A. V. Markov, A. Osinsky, J. W. Dong, S. J. Pearton. Persistent photoconductivity in p-type ZnO(N) grown by molecular beam epitaxy. Applied Physics Letters,2007,90(13):132103.
    [166]S. Dhara, P. K. Giri. Stable p-type conductivity and enhanced photoconductivity from nitrogen-doped annealed ZnO thin film. Thin Solid Films,2012, 520(15):5000-5006.
    [167]朱颖.Na相关掺杂及N掺杂p型ZnO薄膜的制备和性能研究.浙江大学硕士论文,2010.
    [168]仇明侠.Li掺杂p型Zn1-xMgxO薄膜及ZnO和ZnMgO纳米材料的研究.[博士学位论文],2008:35.
    [169]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社,2008:134.
    [170]B. Lojek. Early history ofrapid thermal processing.1999.
    [171]M. L. D. Camm. Temperature uniformity during impulse anneal.8th International Conference On Advanced Thermal Processing of Semiconductors RTP'2000, 2000.
    [172]G. M. Brace Peuse, Mark Yam, etc al. Advances in RTP temperature measurement and control. Presented at Materials Research Society Symposium,1998.
    [173]赫秋艳,乔治,张建峰等.快速热退火对大直径CZSi单晶中原生缺陷的影响.人工晶体学报,2004,33(5):747-750.
    [174]肖清华,屠海.低温注入硅片中的锗在快速热处理后的再分布.半导体学报,2004,25(11):1437-1441.
    [175]冯团辉,卢景宵,张宇翔等.利用快速热退火法制备多晶硅薄膜.人工晶体学报,2005,3(2).
    [176]张宇翔.太阳能电池用多晶硅薄膜的制备研究.博士学位论文,2005.
    [177]D. C. Look. Two-layer Hall-effect model with arbitrary surface-donor profiles: application to ZnO. Journal of Applied Physics,2008,104(6):063718.
    [178]Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, C. J. Youn. ZnO devices:Photodiodes and p-type field-effect transistors. Applied Physics Letters, 2005,87(15):153504.
    [179]M. X. Qiu, Z. Z. Ye, H. P. He, Y. Z. Zhang, X. Q. Gu, L. P. Zhu, B. H. Zhao. Effect of Mg content on structural, electrical, and optical properties of Li-doped Znl-xMgxO thin films. Applied Physics Letters,2007,90(18):182116.
    [180]季振国.半导体物理.浙江大学出版社,2005.
    [181]P. Nunes, E. Fortunato, R. Martins. Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films,2001,383(1-2):277-280.
    [182]D. C. Reynolds, D. C. Look, B. Jogai, R. L. Jones, C. W. Litton, W. Harsch, G. Cantwell. Optical properties of ZnO crystals containing internal strains. Journal of Luminescence,1999,82(2):173-176.
    [183]姜丽莉.快速退火对AZO透明导电薄膜特性的影响.山东大学硕士论文,2010.
    [184]范瑞瑛,范正修.薄膜应力分析及一些测量结果.光学仪器,2001,23(5-6):84-96.
    [185]X. U. Yan-dong, L. I. Qing-shan, M. Yan-feng, Z. Xia, Y. U. Ye-mei, L. I. Xin-kun, D. Xu-li,李清山,蒙延峰,张霞,于业梅,李新坤,丁旭丽.Influences of Annealing Treatment on Structure and Optical Properties of ZnS Films. Chinese Journal of Luminescence,2009,30(5):634-639.
    [186]H. R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki. The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation. Materials Research Bulletin,2007,42(3):487-496.
    [187]C. Krug, E. B. O. da Rosa, R. M. C. de Almeida, J. Morais, I. J. R. Baumvol, T. D. M. Salgado, F. C. Stedile. Atomic transport and chemical stability during annealing of ultrathin Al2O3 films on Si. Physical Review Letters,2000, 85(19):4120-4123.
    [188]G. J. Fang, D. J. Li, B. L. Yao. Effect of vacuum annealing on the properties of transparent conductive AZO thin films prepared by DC magnetron sputtering. Physica Status Solidi a-Applied Research,2002,193(1):139-152.
    [189]M. Fujita, N. Kawamoto, T. Tatsumi, K. Yamagishi, Y. Horikoshi. Molecular beam epitaxial growth of ZnO on Si substrate using ozone as an oxygen source. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2003,42(1):67-70.
    [190]S. A. Studenikin, N. Golego, M. Cocivera. Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. Journal of Applied Physics,2000,87(5):2413-2421.
    [191]S. Takata, T. Minani. H. Nanto. DC EL IN ANNEALED THIN-FILM OF SPUTTERED ZNO. Japanese Journal of Applied Physics,1981,20(9):1759-1760.
    [192]S. K. Kim, S. Y. Jeong, C. R. Cho. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing. Applied Physics Letters,2003, 82(4):562-564.
    [193]K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Applied Physics Letters,2003,83(1):63-65.
    [194]H. Tampo, H. Shibata, P. Fons, A. Yamada, K. Matsubara, K. Iwata, K. Tamura, H. Takasu, S. Niki. The effects of thermal treatments on the electrical properties of phosphorus doped ZnO layers grown by MBE. Journal of Crystal Growth,2005, 278(1-4):268-272.
    [195]V. Vaithianathan, B. T. Lee, S. S. Kim. Growth of phosphorus doped ZnO thin films by pulsed laser deposition. Physica Status Solidi a-Applications and Materials Science,2004,201(12):2837-2840.
    [196]P. Wang, N. F. Chen, Z. G. Yin. P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering. Applied Physics Letters,2006, 88(15):152102.
    [197]K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, B. Luo, F. Ren, D. C. Look, J. M. Zavada. Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO. Applied Physics Letters,2003,82(3):385-387.
    [198]C. H. Choi, S. H. Kim. Effects of post-annealing temperature on structural, optical, and electrical properties of ZnO and Znl-xMgxO films by reactive RF magnetron sputtering. Journal of Crystal Growth,2005,283(1-2):170-179.
    [199]N. Y. Garces, N. C. Giles, L. E. Halliburton, G. Cantwell, D. B. Eason, D. C. Reynolds, D. C. Look. Production of nitrogen acceptors in ZnO by thermal annealing. Applied Physics Letters,2002,80(8):1334-1336.
    [200]O. Agyeman, C. N. Xu, W. S. Shi, X. G. Zheng, M. Suzuki. Strong ultraviolet and green emissions at room temperature from annealed ZnO thin films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002,41(2A):666-669.
    [201]K. Ogata, K. Sakurai, S. Fujita, K. Matsushige. Effects of thermal annealing of ZnO layers grown by MBE. Journal of Crystal Growth,2000,214:312-315.
    [202]G. T. Du, J. Z. Wang, X. Q. Wang, X. Y. Jiang, S. R. Yang, Y. Ma, W. Yan, D. S. Gao, X. Liu, H. Cao, J. Y. Xu, R. P. H. Chang. Influence of annealing on ZnO thin film grown by plasma-assisted MOCVD. Vacuum,2003,69(4):473-476.
    [203]B. Szyszka. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films,1999, 351(1-2):164-169.
    [204]H. Gomez, A. Maldonado, M. Olvera, D. R. Acosta. Gallium-doped ZnO thin films deposited by chemical spray. Solar Energy Materials and Solar Cells,2005, 87(1-4):107-116.
    [205]H. von Wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Lorenz, M. Grundmann, G. Brauer. Deep acceptor states in ZnO single crystals. Applied Physics Letters,2006,89(9):092122.
    [206]K. K. N. Simon M. Sze, editor. Physics of Semiconductor Devices:John Wiley & Sons; 2007.
    [207]Y. R. Ryu, T. S. Lee, J. H. Leem, H. W. White. Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO. Applied Physics Letters,2003,83(19):4032-4034.
    [208]S. Kim, B. S. Kang, F. Ren, Y. W. Heo, K. Ip, D. P. Norton, S. J. Pearton. Contacts to p-type ZnMgO. Applied Physics Letters,2004,84(11):1904-1906.
    [209]S. H. Kim, J. T. Maeng, C. J. Choi, J. H. Leem, M. S. Han, T. Y. Seong. Pt/indium tin oxide ohmic contacts to arsenic-doped p-type ZnO layers. Electrochemical and Solid State Letters,2005,8(7):G167-G169.
    [210]H. S. Yang, Y. Li, D. P. Norton, K. Ip, S. J. Pearton, S. Jang, F. Ren. Low-resistance ohmic contacts to p-ZnMgO grown by pulsed-laser deposition. Applied Physics Letters,2005,86(19):192103.
    [211]J. H. Lim, K. K. Kim, D. K. Hwang, H. S. Kim, J. Y. Oh, S. J. Park. Formation and effect of thermal annealing for low-resistance Ni/Au ohmic contact to phosphorous-doped p-type ZnO. Journal of the Electrochemical Society,2005, 152(3):G179-G181.
    [212]J.-M. Lee, K. K. Kim, H. Tampo, A. Yamada, S. Niki. Ohmic contact to phosphorous-doped ZnO using Pt/Ni/Au for p-n homojunction diode. Journal of the Electrochemical Society,2006,153(12):G1047-G1050.
    [213]L. J. Mandalapu, Z. Yang, J. L. Liu. Low-resistivity Au/Ni ohmic contacts to sb-doped p-type ZnO. Applied Physics Letters,2007,90(25).
    [214]Y. F. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, J. Y. Huang, B. H. Zhao. Formation Mechanisms of Low-Resistivity Ni/Pt Ohmic Contacts to Li-Doped p-Type ZnO. Electrochemical and Solid State Letters,2009,12(3):H60-H63.
    [215]J. Rechid, K. Heime. Concentric ring contacts used for the determination of contact resistances. Solid-State Electronics,2000,44(3):451-455.
    [216]H. H. Berger. MODELS FOR CONTACTS TO PLANAR DEVICES. Solid-State Electronics,1972,15(2):145-158.
    [217]S. Suzuki, T. Miyata, M. Ishii, T. Minami. Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering. Thin Solid Films,2003, 434(1-2):14-19.
    [218]M. Kon, P. K. Song, Y. Shigesato, P. Frach, S. Ohno, K. Suzuki. Impedance control of reactive sputtering process in mid-frequency mode with dual cathodes to deposit Al-doped ZnO films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2003,42(1):263-269.
    [219]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, H. Kiyoku. Ridge-geometry InGaN multi-quantum-well-structure laser diodes. Applied Physics Letters,1996,69(10):1477-1479.
    [220]H. Ohta, K. Kawamura, M. Orita, M. Hirano, N. Sarukura, H. Hosono. Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO. Applied Physics Letters,2000,77(4):475-477.
    [221]P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters,2003, 82(7):1117-1119.
    [222]K. Ellmer. Resistivity of polycrystalline zinc oxide films:current status and physical limit. Journal of Physics D-Applied Physics,2001,34(21):3097-3108.
    [223]T. Minami, H. Sato, H. Nanto, S. Takata. GROUP-Ⅲ IMPURITY DOPED ZINC-OXIDE THIN-FILMS PREPARED BY RF MAGNETRON SPUTTERING. Japanese Journal of Applied Physics Part 2-Letters,1985,24(10):L781-L784.
    [224]T. Minami. New n-type transparent conducting oxides. Mrs Bulletin,2000, 25(8):38-44.
    [225]S. J. Henley, M. N. R. Ashfold, D. Cherns. The growth of transparent conducting ZnO films by pulsed laser ablation. Surface & Coatings Technology,2004, 177:271-276 .
    [226]S.-M. Park, T. Ikegami, K. Ebihara. Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition. Thin Solid Films,2006, 513(1-2):90-94.
    [227]G.-D. Yuan, W.-J. Zhang, J.-S. Jie, X. Fan, J.-X. Tang, I. Shafiq, Z.-Z. Ye, C.-S. Lee, S.-T. Lee. Tunable n-type conductivity and transport properties of Ga-doped ZnO nanowire arrays. Advanced Materials,2008,20(1):168-173.
    [228]J. L. Zhao, X. W. Sun, H. Ryu, Y. B. Moon. Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition. Optical Materials,2011,33(6):768-772.
    [229]H. Ishii, K. Sugiyama, E. Ito, K. Seki. Energy level alignment and interfacial electronic structures at organic metal and organic organic interfaces. Advanced Materials,1999,11(8):605-625.
    [230]W. R. Salaneck, M. Logdlund, M. Fahlman, G. Greczynski, T. Kugler. The electronic structure of polymer-metal interfaces studied by ultraviolet photoelectron spectroscopy. Materials Science & Engineering R-Reports,2001, 34(3):121-146.
    [231]C. Yan, M. Zharnikov, A. Golzhauser, M. Grunze. Preparation and characterization of self-assembled monolayers on indium tin oxide. Langmuir, 2000,16(15):6208-6215.
    [232]S. Y. Kim, J. L. Lee, K. B. Kim, Y. H. Tak. Effect of ultraviolet-ozone treatment of indium-tin-oxide on electrical properties of organic light emitting diodes. Journal of Applied Physics,2004,95(5):2560-2563.
    [233]J. S. Kim, F. Cacialli, R. Friend. Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes. Thin Solid Films,2003,445(2):358-366.
    [234]M.-S. Kang, H. Ma, H.-L. Yip, A. K. Y. Jen. Direct surface functionalization of indium tin oxide via electrochemically induced assembly. Journal of Materials Chemistry,2007,17(33):3489-3492.
    [235]S. Bai, Z. Wu, X. Xu, Y. Jin, B. Sun, X. Guo, S. He, X. Wang, Z. Ye, H. Wei, X. Han, W. Ma. Inverted organic solar cells based on aqueous processed ZnO interlayers at low temperature. Applied Physics Letters,2012,100(20):203906.
    [236]S. Gan, Y. Liang, D. R. Baer. Atomic control of TiO2 (110) surface by oxygen plasma treatment. Surface Science,2000,459(3):L498-L502.
    [237]M. J. Liu, H. K. Kim. Ultraviolet detection with ultrathin ZnO epitaxial films treated with oxygen plasma. Applied Physics Letters,2004,84(2):173-175.
    [238]S. S. Lin, H. P. He, Y. F. Lu, Z. Z. Ye. Mechanism of Na-doped p-type ZnO films: Suppressing Na interstitials by codoping with H and Na of appropriate concentrations. Journal of Applied Physics,2009,106(9).
    [239]M. C. Michalski, J. Hardy, B. J. V. Saramago. On the surface free energy of PVC/EVA polymer blends:Comparison of different calculation methods. Journal of Colloid and Interface Science,1998,208(1):319-328.
    [240]J. S. Kim, R. H. Friend, F. Cacialli. Surface energy and polarity of treated indium-tin-oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. Journal of Applied Physics,1999,86(5):2774-2778.
    [241]J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao. Carrier concentration dependence of band gap shift in n-type ZnO:Al films. Journal of Applied Physics, 2007,101(8).
    [242]X.-R. Deng, H. Deng, M. Wei, J.-J. Chen. Preparation of highly transparent conductive Al-doped ZnO thin films and annealing effects on properties. Journal of Materials Science-Materials in Electronics,2012,23(2):413-417.
    [243]A. K. K. Ellmer, B. Rech. Transparent Conductive Zinc Oxide:Basics and Applications in Thin Film Solar Cells. Springer-Verlag Berlin Heidelberg,2008.
    [244]Z. Z. You. An investigation into the effects of oxygen plasma discharge on tin-doped indium oxide thin films. Journal of Electron Spectroscopy and Related Phenomena,2007,160(1-3):29-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700