Na掺杂ZnO性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种宽禁带直接带隙半导体,其禁带宽度为3.37eV。由于ZnO的高激子束缚能(60meV)而备受关注。同时,由于ZnO单晶及薄膜制备工艺的不断完善,使得ZnO在各个领域都有广泛的应用,如发光二极管、透明导电薄膜、紫外探测器及气敏材料等。由于ZnO掺杂的不对称性,使得n型ZnO非常容易通过本征缺陷或故意掺杂获得,但是,至目前为止,高质量稳定的p型ZnO的制备仍然比较困难。ZnO中的p型掺杂剂通常为I族及V族元素,其中,Na作为有效p型掺杂而受到广泛关注。理论计算显示Na掺杂可以在ZnO中形成浅受主能级,同时由于Na与Zn的离子半径相近,形成的受主掺杂Na_Zn引起的晶格畸变较小。在实验方面,Na掺杂ZnO相关的报道越来越多,也不乏p型ZnO及ZnO基同质结的实现。叶志镇教授课题组是最早开展Na掺杂ZnO研究的课题组之一,并取得了相当的成果。本文的工作在此基础上开展,通过PLD、热扩散及离子注入等方法对Na掺杂ZnO的制备和性质进行研究。本论文工作主要包含以下内容:
     1.采用PLD工艺,在石英衬底上制备了多层结构的Naδ掺杂p型ZnO薄膜。实验中以NaF陶瓷靶材为Na源,研究了衬底温度及氧气压强对Na δ掺杂ZnO薄膜电学性能的影响。并获得了最佳的p型Na掺杂ZnO薄膜,其载流子浓度为7.9x10~(17)cm~(-3),电阻率为29.8Ωcm,霍尔迁移率为0.263cm2/Vs。此方面的工作为p型ZnO薄膜掺杂提供了新的思路。
     2.以本征ZnO薄膜为衬底,通过热扩散制备了Na掺杂p型ZnO薄膜。其中,如1所述,Na源层通过PLD法获得。在此基础上,获得最佳的p型Na掺杂ZnO薄膜的载流子浓度为1.94×10~(15) cm~(-3),电阻率7.54Ωcm,霍尔迁移率为7.54cm2/Vs。通过霍尔及XPS结果分析,热扩散温度及时间是影响Na掺杂ZnO薄膜电学性能的主要因素。同时,我们制备的ZnO基同质结显示出良好的整流效应,进一步证实了通过热扩散方法掺杂的ZnO薄膜确实为p型ZnO。
     3.通过三重Na离子注入,在ZnO单晶中实现了厚度约300nm的均匀Na掺杂ZnO层。低温PL显示,经过850℃,6min的快速热处理后,ZnO中位于3.352eV(I_10)的发光峰得到显著增强,我们认为其与Na受主相关。同时,我们制备的ZnO基同质结显示出良好的整流效应,证实了通过此方法制备的薄膜为p型ZnO薄膜。此外,我们还研究了单次Na离子注入对单晶ZnO影响。
     4.我们采用离子注入工艺制备了Na掺杂的ZnO纳米阵列,并研究了退火温度对其光学性能的影响。实验发现通过在600-800℃下的退火处理可对ZnO中的辐射缺陷进行有效修复。同时,经过800℃退火后,ZnO薄膜的低温PL谱中显示了位于3.352eV(I10)的发光峰,其与Na受主NaZn目关。此外,随着退火温度的升高,I6-8发光峰强度下降,而I3发光峰强度升高,说明更多的中性施主在高温下产生了电离。
     5.经过Ne离子注入的ZnO纳米阵列的光致发光谱中具有精细结构的紫光发光峰。其精细结构间隔为72meV,对应于ZnO中纵光学声子能量。通过拟合计算获得的黄昆因子为1.98,其电子声子耦合能量低于绿光发光带而高于DAP。激活能为160meV,我们以为,这与离子注入过程中引入的受主缺陷相关。
ZnO is an attractive wide-band-gap semiconductor with a direct band gap of3.37eV at room temperature. The large exciton binding energy (60meV) and well-developed bulk, film growth processes promise its optoelectronic applications, such as light emitting diodes (LEDs), transparent conductive layer, photodetector and gas sensor. Due to the asymmetric doping limitations, n-type ZnO can be easily obtained via intrinsic or extrinisic dopants, whereas it has thus-far proven very difficult to obtain high quality and stable p-type ZnO. Recently, Na has been considered as an effective p type dopant in ZnO. There has been many reports on p-type Na-doped ZnO using various methods. Theoretical studies indicate that Na doping produces shallow acceptor state and small relaxation for Nazn.Moreover, p-type ZnO thin film and ZnO-based p-n homoj unction fabricated by various methods prove Na as an effective p-type dopant in ZnO. In this thesis we focus on growth and characterization of Na doped p type ZnO obtained by pulsed laser deposition (PLD), diffusion and ion implantation methods. The thesis includes:
     1. Na δ-doped p-type ZnO thin films were fabricated on quartz substrates with the structure of ZnO/Na (δ-layer) multi-layers by PLD. NaF ceramic target was used as Na source. The effects of oxygen pressure and substrate temperature on the electrical properties of δ-doped ZnO thin films were discussed. An optimized result with a resistivity of29.8Ωcm, Hall mobility of0.263cm2/Vs, and hole concentration of7.9×1017cm-3was achieved, and electrically stable over several months. The work is of interest for developing a novel method to realize p-type ZnO thin films doping with Na.
     2. Na-diffused p-type ZnO thin films have been realized via pulsed laser deposition using NaF ceramic target followed by rapid thermal process in nitrogen. An optimized result with a resistivity of426.7Ω·cm, Hall mobility of7.54cm2/Vs, and hole concentration of1.94×1015cm-3was achieved, and electrically stable over several months. Hall-effect measurements supported by X-ray photoelectron spectroscopy indicated that diffusion temperature and diffusion time played a key role in optimizing the p-type conduction of Na-diffused ZnO thin films. Furthermore, ZnO-based p-n homoj unction was obtained by fabrication of a Na-diffused p-type ZnO layer on an undoped n-type ZnO layer.
     3. Three-folder Na+ion implantation is applied to form a plant region of Na doped ZnO. Low temperature PL shows that a well-resolved bound exciton line at3.352eV with a linewidth of~8meV emerges from the850℃,6min annealed sample and is likely related to the formation of NaZn acceptor. ZnO-based p-n homojunction was obtained by three-folder Na+implanted layer. Also one time Na+implanted single crystal ZnO was studied.
     4. The effects of annealing temperature on excitonic emissions from Na+ion implanted ZnO nanorods are studied and annealing at between600and800℃can effectively repair the implantation as evidenced by the enhanced excitonic emissions. A well-resolved bound exciton line at3.352eV with a linewidth of~2meV emerges from the800℃annealed sample and is likely related to the formation of NaZn acceptor. When the annealing temperature is increased, the intensity of the I6-8line decreases while that of I3increases, suggesting enhanced ionization of neutral donors at elevated temperature.
     5. Unusual vibronic fine structures of the~3.0eV violet emission from ion-implanted ZnO nanorods has been investigated by photoluminescence (PL). A set of equally separated peaks with energy spacing of72meV, which corresponds to the longitudinal optical (LO) phonon energy of ZnO, were well resolved in the low temperature PL spectra. The overall emission band can be perfectly described by LO phonon-assisted transition with the Huang-Rhys factor of1.98, indicating intermediate electron-phonon coupling. The thermal quenching of PL gives rise to activation energy of~160meV, which is attributed to the energy level of acceptor-like defects introduced by implantation.
引文
[1]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc. A Comprehensive Review of ZnO Materials and Devices [J]. J Appl Phys, 2005,98(4).
    [2]A. Ashrafi, and C. Jagadish. Review of Zincblende ZnO:Stability of Metastable ZnO Phases [J]. J Appl Phys,2007,102(7).
    [3]A. A. Ashrafi, A. Ueta, H. Kumano, and I. Suemune. Role of Zns Buffer Layers in Growth of Zincblende ZnO on Gaas Substrates by Metalorganic Molecular-Beam Epitaxy [J]. J Cryst Growth,2000,221(435-439).
    [4]F. Z. Aoumeur, K. Benkabou, and B. Belgoumene. Structural and Dynamical Properties of ZnO in Zinc-Blende and Rocksalt Phases [J]. Physica B,2003,337(1-4):292-297.
    [5]X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, and A. Y. Kuznetsov. Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet Detectors [J]. Adv Mater,2009,21(45): 4625-4630.
    [6]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner. Recent Progress in Processing and Properties of ZnO [J]. Prog Mater Sci,2005,50(3):293-340.
    [7]A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow. Semiempirical Tight-Binding Band Structures of Wurtzite Semiconductors:Aln, Cds, Cdse, Zns, and ZnO [J]. Physical review B, Condensed matter,1983,28(2):935-945.
    [8]C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt.65 Years of ZnO Research-Old and Very Recent Results [J]. physica status solidi (b),2010,247(6):1424-1447.
    [9]C. Klingshirn. ZnO:From Basics Towards Applications [J]. physica status solidi (b),2007, 244(9):3027-3073.
    [10]B. Gil. Oscillator Strengths of a, B, and C Excitons in ZnO Films [J]. Physical Review B, 2001,64(20):201310.
    [11]D. Thomas. The Exciton Spectrum of Zinc Oxide [J]. Journal of Physics and Chemistry of Solids,1960,15(1):86-96.
    [12]B. Meyer, H. Alves, D. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straβburg, and M. Dworzak. Bound Exciton and Donor-Acceptor Pair Recombinations in ZnO [J]. physica status solidi (b),2004,241(2):231-260.
    [13]D. Hamby, D. Lucca, J. K. Lee, and M. Nastasi. Photoluminescence of He-Implanted ZnO [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2006,242(1):663-666.
    [14]X. Ming, F. Lu, J. Yin, M. Chen, S. Zhang, J. Zhao, X. Liu, and Y. Ma. Waveguide Effect in ZnO Crystal by He+ Ions Implantation:Analysis of Optical Confinement from Implant Induced Lattice Damage [J]. Optics Communications,2011.
    [15]N. Garces, L. Wang, L. Bai, N. Giles, L. Halliburton, and G. Cantwell. Role of Copper in the Green Luminescence from ZnO Crystals [J]. Applied Physics Letters,2002,81(4): 622-624.
    [16]R. Dingle. Luminescent Transitions Associated with Divalent Copper Impurities and the Green Emission from Semiconducting Zinc Oxide [J]. Physical Review Letters,1969, 23(11):579-581.
    [17]R. Chen, Y. Tay, J. Ye, Y. Zhao, G. Xing, T. Wu, and H. Sun. Investigation of Structured Green-Band Emission and Electron-Phonon Interactions in Vertically Aligned ZnO Nanowires [J]. J Phys Chem,2010,100(114):17889-17893.
    [18]D. Reynolds, D. Look, and B. Jogai. Fine Structure on the Green Band in ZnO [J]. J Appl Phys,2001,89(11):6189-6191.
    [19]M. Wagner, G. Callsen, J. Reparaz, J. H. Schulze, R. Kirste, M. Cobet, I. Ostapenko, S. Rodt, C. Nenstiel, and M. Kaiser. Bound Excitons in ZnO:Structural Defect Complexes Versus Shallow Impurity Centers [J]. Physical Review B,2011,84(3):035313.
    [20]E. Tomzig, and R. Helbig. Band-Edge Emission in ZnO [J]. Journal of Luminescence,1976, 14(3):403-415.
    [21]C. Morhain, M. Teisseire-Doninelli, S. Vezian, C. Deparis, P. Lorenzini, F. Raymond, J. Guion, and G. Neu. Near Band Edge Emission of Mbe Grown ZnO Epilayers: Identification of Donor Impurities and O2 Annealing Effects [J]. physica status solidi (b), 2004,241(3):631-634.
    [22]S. Muller, D. Stichtenoth, M. Uhrmacher, H. Hofsass, C. Ronning, and J. Roder. Unambiguous Identification of the PL I9 Line in Zinc Oxide [J]. Applied Physics Letters, 2007,90(1):012107-012103.
    [23]S. Lin, J. Lu, Z. Ye, H. He, X. Gu, L. Chen, J. Huang, and B. Zhao. p-type Behavior in Na-Doped ZnO Films and ZnO Homojunction Light-Emitting Diodes [J]. Solid State Communications,2008,148(1):25-28.
    [24]W. Liu, F. Xiu, K. Sun, Y. H. Xie, K. L. Wang, Y. Wang, J. Zou, Z. Yang, and J. Liu. Na-Doped p-Type ZnO Microwires [J]. Journal of the American Chemical Society,2010, 132(8):2498-2499.
    [25]H. Liu, Q. Lu, H. He, K. Wu, S. Li, J. Huang, Y. Lu, X. Pan, Z. Ye, and P. K. Chu. Effects of Annealing Temperature on Excitonic Emissions from Na-Implanted ZnO Nanorods [J]. Materials Letters,2012.
    [26]P. Yu, Z. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa. Room-Temperature Gain Spectra and Lasing in Microcrystalline ZnO Thin Films [J]. J Cryst Growth,1998,184(601-604).
    [27]D. Bagnall, Y. Chen, M. Shen, Z. Zhu, T. Goto, and T. Yao. Room Temperature Excitonic Stimulated Emission from Zinc Oxide Epilayers Grown by Plasma-Assisted Mbe [J]. J Cryst Growth,1998,184(605-609).
    [28]曾昱嘉.ZnO薄膜P型掺杂的研究及ZnO纳米点的可控生长[D];浙江大学,2008.
    [29]A. Janotti, and C. G. Van de Walle. Native Point Defects in ZnO [J]. Physical Review B, 2007,76(16):165202.
    [30]F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow. Introduction and Recovery of Point Defects in Electron-Irradiated ZnO [J]. Physical Review B,2005,72(8):085206.
    [31]A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle. First-Principles Study of Native Point Defects in ZnO [J]. Physical Review B,2000,61(22):15019-15027.
    [32]M. G. Wardle, J. P. Goss, and P. R. Briddon. Theory of Fe, Co, Ni, Cu, and Their Complexes with Hydrogen in ZnO [J]. Physical Review B,2005,72(15):155108.
    [33]F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka. Energetics of Native Defects in ZnO [J]. J Appl Phys,2001,90(824).
    [34]S. Zhang, S. H. Wei, and A. Zunger. Intrinsic N-Type Versus p-type Doping Asymmetry and the Defect Physics of ZnO [J]. Physical Review B,2001,63(7):075205.
    [35]F. A. Selim, M. H. Weber, D. Solodovnikov, and K. G. Lynn. Nature of Native Defects in ZnO [J]. Physical Review Letters,2007,99(8):085502.
    [36]D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund. Evidence for Native-Defect Donors in N-Type ZnO [J]. Physical Review Letters,2005, 95(22):225502.
    [37]K. Vanheusden, C. Seager, W. Warren, D. Tallant, and J. Voigt. Correlation between Photoluminescence and Oxygen Vacancies in ZnO Phosphors [J]. Applied Physics Letters, 1996,68(403).
    [38]A. Janotti, and C. G. Van de Walle. Oxygen Vacancies in ZnO [J]. Applied Physics Letters, 2005,87(122102).
    [39]D. Thomas, and J. Lander. Hydrogen as a Donor in Zinc Oxide [J]. the Journal of Chemical Physics,1956,25(1136).
    [40]C. G. Van de Walle. Hydrogen as a Cause of Doping in Zinc Oxide [J]. Physical Review Letters,2000,85(5):1012-1015.
    [41]C. G. Van de Walle, and J. Neugebauer. Universal Alignment of Hydrogen Levels in Semiconductors, Insulators and Solutions [J]. Nature,2003,423(6940):626-628.
    [42]C. Kilic, and A. Zunger. N-Type Doping of Oxides by Hydrogen [J]. Applied Physics Letters,2002,81(73).
    [43]S. Cox, E. Davis, S. Cottrell, P. King, J. Lord, J. Gil, H. Alberto, R. Vilao, J. Piroto Duarte, and N. Ayres de Campos. Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide [J]. Physical Review Letters,2001,86(12):2601-2604.
    [44]B. Theys, V. Sallet, F. Jomard, A. Lusson, J. F. Rommeluere, and Z. Teukam. Effects of Intentionally Introduced Hydrogen on the Electrical Properties of ZnO Layers Grown by Metalorganic Chemical Vapor Deposition [J]. J Appl Phys,2002,91(3922).
    [45]Y. Li, T. C. Kaspar, T. Droubay, A. G. Joly, P. Nachimuthu, Z. Zhu, V. Shutthanandan, and S. A. Chambers. A Study of H and D Doped ZnO Epitaxial Films Grown by Pulsed Laser Deposition [J]. J Appl Phys,2008,104(5):053711-053717.
    [46]D. Look. Donors and Acceptors in Bulk ZnO Grown by the Hydrothermal, Vapor-Phase, and Melt Processes, F,2006 [C]. Cambridge Univ Press.
    [47]B. Sang, A. Yamada, and M. Konagai. Growth of Boron-Doped ZnO Thin Films by Atomic Layer Deposition [J]. Solar energy materials and solar cells,1997,49(1-4):19-26.
    [48]R. B. H. Tahar, and N. B. H. Tahar. Boron-Doped Zinc Oxide Thin Films Prepared by Sol-Gel Technique [J]. Journal of materials science,2005,40(19):5285-5289.
    [49]B. Lokhande, P. Patil, and M. Uplane. Studies on Structural, Optical and Electrical Properties of Boron Doped Zinc Oxide Films Prepared by Spray Pyrolysis Technique [J]. Physica B:Condensed Matter,2001,302(59-63).
    [50]T. Minami. Present Status of Transparent Conducting Oxide Thin-Film Development for Indium-Tin-Oxide (Ito) Substitutes [J]. Thin Solid Films,2008,516(17):5822-5828.
    [51]K. C. Park, D. Y. Ma, and K. H. Kim. The Physical Properties of Al-Doped Zinc Oxide Films Prepared by Rf Magnetron Sputtering [J]. Thin Solid Films,1997,305(1-2):201-209.
    [52]H. Agura, H. Okinaka, S. Hoki, T. Aoki, A. Suzuki, T. Matsushita, and M. Okuda. Low-Resistive and Transparent Azo Films Prepared by Pld in Magnetic Field [J]. IEEJ Transactions on Electronics, Information and Systems,2003,123(1916-1920).
    [53]O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, and T. Makino. Moisture-Resistant ZnO Transparent Conductive Films with Ga Heavy Doping [J]. Applied Physics Letters,2006,89(091904).
    [54]Q. B. Ma, Z. Z. Ye, H. P. He, S. H. Hu, J. R. Wang, L. P. Zhu, Y. Z. Zhang, and B. H. Zhao. Structural, Electrical, and Optical Properties of Transparent Conductive ZnO:Ga Films Prepared by Dc Reactive Magnetron Sputtering [J]. J Cryst Growth,2007,304(1):64-68.
    [55]W. Yen, Y. Lin, P. Yao, J. Ke, and Y. Chen. Growth Characteristics and Properties of ZnO: Ga Thin Films Prepared by Pulsed Dc Magnetron Sputtering [J]. Applied Surface Science, 2010,256(11):3432-3437.
    [56]L. Gong, J. Lu, and Z. Ye. Transparent and Conductive Ga-Doped ZnO Films Grown by Rf Magnetron Sputtering on Polycarbonate Substrates [J]. Solar energy materials and solar cells,2010,94(6):937-941.
    [57]Y. Kim, J. Jeong, K. Lee, B. Cheong, T. Y. Seong, and W. Kim. Effect of Composition and Deposition Temperature on the Characteristics of Ga Doped ZnO Thin Films [J]. Applied Surface Science,2010,257(1):109-115.
    [58]S. M. Park, T. Ikegami, and K. Ebihara. Effects of Substrate Temperature on the Properties of Ga-Doped ZnO by Pulsed Laser Deposition [J]. Thin Solid Films,2006,513(1):90-94.
    [59]Z. Liu, F. Shan, Y. Li, B. Shin, and Y. Yu. Epitaxial Growth and Properties of Ga-Doped ZnO Films Grown by Pulsed Laser Deposition [J]. J Cryst Growth,2003,259(1):130-136.
    [60]K. Cheong, N. Muti, and S. R. Ramanan. Electrical and Optical Studies of ZnO:Ga Thin Films Fabricated Via the Sol-Gel Technique [J]. Thin Solid Films,2002,410(1):142-146.
    [61]A. Kaul, O. Y. Gorbenko, A. Botev, and L. Burova. Mocvd of Pure and Ga-Doped Epitaxial ZnO [J]. Superlattice Microst,2005,38(4):272-282.
    [62]Z. Z. Ye, and J. F. Tang. Transparent Conducting Indium Doped ZnO Films by Dc Reactive S-Gun Magnetron Sputtering [J]. Applied optics,1989,28(14):2817-2819.
    [63]S. Shinde, P. Shinde, C. Bhosale, and K. Rajpure. Optoelectronic Properties of Sprayed Transparent and Conducting Indium Doped Zinc Oxide Thin Films [J]. Journal of Physics D:Applied Physics,2008,41(105109).
    [64]S. Kohiki, M. Nishitani, and T. Wada. Enhanced Electrical Conductivity of Zinc Oxide Thin Films by Ion Implantation of Gallium, Aluminum, and Boron Atoms [J]. J Appl Phys,1994, 75(4):2069-2072.
    [65]P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, and R. Martins. Effect of Different Dopant Elements on the Properties of ZnO Thin Films [J]. Vacuum,2002,64(3): 281-285.
    [66]M. Kasuga, and S. Ogawa. Electronic Properties of Vapor-Grown Heteroepitaxial ZnO Film on Sapphire [J]. JAPAN J APPL PHYS,1983,22(5):794-798.
    [67]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu. Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition [J]. Japanese journal of applied physics,1997,36(11A):L1453-L1455.
    [68]T. Butkhuzi, A. Bureyev, A. Georgobiani, N. Kekelidze, and T. Khulordava. Optical and Electrical Properties of Radical Beam Gettering Epitaxy Grown N-and p-type ZnO Single Crystals [J]. J Cryst Growth,1992,117(1):366-369.
    [69]S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. Ucer, and R. Williams. Production and Properties of p-n Junctions in Reactively Sputtered ZnO [J]. Physica B:Condensed Matter,2001,308(1197-1200).
    [70]G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. Ucer, and R. Williams. Control of P-and N-Type Conductivity in Sputter Deposition of Undoped ZnO [J]. Applied Physics Letters,2002,80(7):1195-1197.
    [71]Y. Zeng, Z. Ye, W. Xu, J. Lu, H. He, L. Zhu, B. Zhao, Y. Che, and S. Zhang. p-type Behavior in Nominally Undoped ZnO Thin Films by Oxygen Plasma Growth [J]. Applied Physics Letters,2006,88(262103).
    [72]P. Ding, X. Pan, J. Huang, H. He, B. Lu, H. Zhang, and Z. Ye. p-type Non-Polar M-Plane ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy [J]. J Cryst Growth,2011,
    [73]P. Ding, X. Pan, J. Huang, B. Lu, H. Zhang, W. Chen, and Z. Ye. Growth of p-type a-Plane ZnO Thin Films on R-Plane Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy [J]. Materials Letters,2012,71(18-20).
    [74]J. Qiu, J. M. Depuydt, H. Cheng, and M. A. Haase. Heavily Doped P-Znse-N Grown by Mplecular-Beam Epitaxy [J]. Applied Physics Letters,1991,59(23):2992-2994.
    [75]D. B. Laks, C. G. Vandewalle, G. F. Neumark, P. E. Blochl, and S. T. Pantelides. Native Defects and Self-Compensation in Znse [J]. Physical Review B,1992,45(19): 10965-10978.
    [76]K. Ohkawa, T. Karasawa, and T. Mitsuyu. Doping of Nitrogen Accpetors into Znse Using a Radical Beam During Mbe Growth [J]. J Cryst Growth,1991,111(1-4):797-801.
    [77]C. Morhain, E. Tournie, G. Neu, C. Ongaretto, and J. P. Faurie. Spectroscopy of Donor-Acceptor Pairs in Nitrogen-Doped Znse [J]. Physical Review B,1996,54(7): 4714-4721.
    [78]E. Tournie, C. Morhain, G. Neu, and J. P. Faurie. Self-Compensation in Nitrogen-Doped Znse [J]. Physical Review B,1997,56(4):R1657-R1660.
    [79]J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, and J. Huang. p-type ZnO Films Deposited by Dc Reactive Magnetron Sputtering at Different Ammonia Concentrations [J]. Materials Letters, 2003,57(22-23):3311-3314.
    [80]J. Wang, G. Du, B. Zhao, X. Yang, Y. Zhang, Y. Ma, D. Liu, Y. Chang, H. Wang, and H. Yang. Epitaxial Growth of NH3-Doped ZnO Thin Films on< 022-4> Oriented Sapphire Substrates [J]. J Cryst Growth,2003,255(3):293-297.
    [81]Z. Ji, C. Yang, K. Liu, and Z. Ye. Fabrication and Characterization of p-Type ZnO Films by Pyrolysis of Zinc-Acetate-Ammonia Solution [J]. J Cryst Growth,2003,253(1):239-242.
    [82]M.-H. Du, S. Limpijumnong, and S. B. Zhang. Hydrogen-Mediated Nitrogen Clustering in Dilute Iii-V Nitrides [J]. Physical Review Letters,2006,97(7):075503.
    [83]D. Look, D. Reynolds, C. Litton, R. Jones, D. Eason, and G. Cantwell. Characterization of Homoepitaxial p-type ZnO Grown by Molecular Beam Epitaxy [J]. Applied Physics Letters, 2002,81(1830).
    [84]T. M. Barnes, K. Olson, and C. A. Wolden. On the Formation and Stability of p-type Conductivity in Nitrogen-Doped Zinc Oxide [J]. Applied Physics Letters,2005, 86(112112).
    [85]X. L. Guo, H. Tabata, and T. Kawai. Epitaxial Growth and Optoelectronic Properties of Nitrogen-Doped ZnO Films on (11ZD) Al2O3 Substrate [J]. J Cryst Growth,2002, 237(544-547).
    [86]Y. Sato, and S. Sato. Preparation and Some Properties of Nitrogen-Mixed ZnO Thin Films [J]. Thin Solid Films,1996,281(445-448).
    [87]M. Futsuhara, K. Yoshioka, and O. Takai. Optical Properties of Zinc Oxynitride Thin Films [J]. Thin Solid Films,1998,317(1):322-325.
    [88]Y. Wang, S. Lau, X. Zhang, H. Lee, H. Hng, and B. Tay. Observations of Nitrogen-Related Photoluminescence Bands from Nitrogen-Doped ZnO Films [J]. J Cryst Growth,2003, 252(1):265-269.
    [89]N. Garces, N. Giles, L. Halliburton, G. Cantwell, D. Eason, D. Reynolds, and D. Look. Production of Nitrogen Acceptors in ZnO by Thermal Annealing [J]. Applied Physics Letters,2002,80(1334).
    [90]E.-C. Lee, Y. S. Kim, Y. G. Jin, and K. J. Chang. Compensation Mechanism for N Acceptors in ZnO [J]. Physical Review B,2001,64(8):085120.
    [91]Y. Yan, S. B. Zhang, and S. T. Pantelides. Control of Doping by Impurity Chemical Potentials:Predictions for p-type ZnO [J]. Physical Review Letters,2001,86(25): 5723-5726.
    [92]X. Li, Y. Yan, T. Gessert, C. DeHart, C. Perkins, D. Young, and T. Coutts. p-Type ZnO Thin Films Formed by CVD Reaction of Diethylzinc and NO Gas [J]. Electrochemical and solid-state letters,2003,6(C56).
    [93]X. Li, Y. Yan, T. Gessert, C. Perkins, D. Young, C. DeHart, M. Young, and T. Courts. Chemical Vapor Deposition-Formed p-type ZnO Thin Films [J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2003,21(4):1342-1346.
    [94]H. Liang, Y. Lu, D. Shen, Y. Liu, J. Yan, C. Shan, B. Li, Z. Zhang, J. Zhang, and X. Fan. p-type ZnO Thin Films Prepared by Plasma Molecular Beam Epitaxy Using Radical No [J]. physica status solidi (a),2005,202(6):1060-1065.
    [95]W. Xu, Z. Ye, T. Zhou, B. Zhao, L. Zhu, and J. Huang. Low-Pressure Mocvd Growth of p-type ZnO Thin Films by Using NO as the Dopant Source [J]. J Cryst Growth,2004, 265(1):133-136.
    [96]C. C. Lin, S. Y. Chen, S. Y. Cheng, and H. Y. Lee. Properties of Nitrogen-Implanted p-type ZnO Films Grown on Si3N4/Si by Radio-Frequency Magnetron Sputtering [J]. Applied Physics Letters,2004,84(24):5040-5042.
    [97]A. Georgobiani, A. Gruzintsev, V. Volkov, M. Vorobiev, V. Demin, and V. Dravin. p-type ZnO:N Obtained by Ion Implantation of Nitrogen with Post-Implantation Annealing in Oxygen Radicals [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2003,514(1):117-121.
    [98]J. Kennedy, D. Carder, A. Markwitz, and R. Reeves. Properties of Nitrogen Implanted and Electron Beam Annealed Bulk ZnO [J]. J Appl Phys,2010,107(10):103518-103515.
    [99]B. Li, Y. Liu, Z. Zhi, D. Shen, Y. Lu, J. Zhang, X. Fan, R. Mu, and D. O. Henderson. Optical Properties and Electrical Characterization of p-type ZnO Thin Films Prepared by Thermally OxidingZn3n2 Thin Films [J]. Journal of materials research,2003,18(1):8-13.
    [100]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, and Y. Segawa. Repeated Temperature Modulation Epitaxy for p-type Doping and Light-Emitting Diode Based on ZnO [J]. Nature Materials,2004,4(1):42-46.
    [101]V. Avrutin, D. J. Silversmith, and H. Morkoc. Doping Asymmetry Problem in ZnO:Current Status and Outlook [J]. Proceedings of the IEEE,2010,98(7):1269-1280.
    [102]C. Park, S. Zhang, and S. H. Wei. Origin of p-type Doping Difficulty in ZnO:The Impurity Perspective [J]. Physical Review B,2002,66(7):073202.
    [103]F. Reuss, C. Kirchner, T. Gruber, R. Kling, S. Maschek, W. Limmer, A. Waag, and P. Ziemann. Optical Investigations on the Annealing Behavior of Gallium-and Nitrogen-Implanted ZnO [J]. J Appl Phys,2004,95(3385).
    [104]L. Wang, and N. Giles. Determination of the Ionization Energy of Nitrogen Acceptors in Zinc Oxide Using Photoluminescence Spectroscopy [J]. Applied Physics Letters,2004, 84(3049).
    [105]B. Claflin, D. Look, S. Park, and G. Cantwell. Persistent N-Type Photoconductivity in p-type ZnO [J]. J Cryst Growth,2006,287(1):16-22.
    [106]J. Lu, Q. Liang, Y. Zhang, Z. Ye, and S. Fujita. Improved p-type Conductivity and Acceptor States in N-doped ZnO Thin Films [J]. Journal of Physics D:Applied Physics,2007, 40(317)7.
    [107]W. Liu, S. Gu, J. Ye, S. Zhu, Y. Wu, Z. Shan, R. Zhang, Y. Zheng, S. Choy, and G. Lo. High Temperature Dehydrogenation for Realization of Nitrogen-Doped p-type ZnO [J]. J Cryst Growth,2008,310(15):3448-3452.
    [108]Z. Xiao, Y. Liu, B. Li, J. Zhang, D. Zhao, Y. Lu, D. Shen, and X. Fan. Electrical Transport Properties in Nitrogen-Doped p-type ZnO Thin Film [J]. Semiconductor science and technology,2006,21(1522).
    [109]黄贵洋.ZnO 中掺杂与扩散性质的第一原理研究[D];清华大学,2009.
    [110]胡军.ZnO 材料中的缺陷和掺杂的理论研究[D];合肥:中国科技大学,2009.
    [111]K. H. Bang, D. K. Hwang, M. C. Park, Y. D. Ko, I. Yun, and J. M. Myoung. Formation of p-type ZnO Film on Inp Substrate by Phosphor Doping [J]. Applied Surface Science,2003, 210(3-4):177-182.
    [112]S. Jang, J. J. Chen, B. Kang, F. Ren, D. Norton, S. Pearton, J. Lopata, and W. Hobson. Formation of Pn Homojunctions in N-ZnO Bulk Single Crystals by Diffusion from a Znp Source [J]. Applied Physics Letters,2005,87(222113).
    [113]R. Ding, H. Zhu, and Y. Wang. Realization of Phosphorus-Doped p-type ZnO Thin Films Via Diffusion and Thermal Activation [J]. Materials Letters,2008,62(3):498-500.
    [114]K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park. Realization of p-type ZnO Thin Films Via Phosphorus Doping and Thermal Activation of the Dopant [J]. Applied Physics Letters,2003,83(63).
    [115]D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. Look, and Y. Park. Study of the Photoluminescence of Phosphorus-Doped p-type ZnO Thin Films Grown by Radio-Frequency Magnetron Sputtering [J]. Applied Physics Letters,2005, 86(151917).
    [116]J. H. Yang, H. S. Kim, J. H. Lim, D. K. Hwang, J. Y. Oh, and S. J. Park. The Effect of Ar/O Sputtering Gas on the Phosphorus-Doped p-type ZnO Thin Films [J]. Journal of the Electrochemical Society,2006,153(G242).
    [117]F. Chen, Z. Ye, W. Xu, B. Zhao, L. Zhu, and J. Lv. Fabrication of p-type ZnO Thin Films Via Mocvd Method by Using Phosphorus as Dopant Source [J]. J Cryst Growth,2005,281(2): 458-462.
    [118]X. Pan, J. Jiang, Y. Zeng, H. He, L. Zhu, Z. Ye, B. Zhao, and X. Pan. Electrical and Optical Properties of Phosphorus-Doped p-type ZnO Films Grown by Metalorganic Chemical Vapor Deposition [J]. J Appl Phys,2008,103(2):023708-023704.
    [119]F. Xiu, Z. Yang, L. Mandalapu, J. Liu, and W. Beyermann. p-type ZnO Films with Solid-Source Phosphorus Doping by Molecular-Beam Epitaxy [J]. Applied Physics Letters, 2006,88(5):052106-052103.
    [120]A. Allenic, W. Guo, Y. Chen, M. B. Katz, G. Zhao, Y. Che, Z. Hu, B. Liu, S. Zhang, and X. Pan. Amphoteric Phosphorus Doping for Stable p-type ZnO [J]. Adv Mater,2007,19(20): 3333-3337.
    [121]W. J. Lee, J. Kang, and K. Chang. Defect Properties and p-type Doping Efficiency in Phosphorus-Doped ZnO [J]. Physical Review B,2006,73(2):024117.
    [122]Y. Ryu, S. Zhu, D. Look, J. Wrobel, H. Jeong, and H. White. Synthesis of p-type ZnO Films [J]. J Cryst Growth,2000,216(330):334.
    [123]C. Morhain, M. Teisseire, S. Vezian, F. Vigue, F. Raymond, P. Lorenzini, J. Guion, G. Neu, and J. P. Faurie. Spectroscopy of Excitons, Bound Excitons and Impurities in H-ZnO Epilayers [J]. physica status solidi (b),2002,229(2):881-885.
    [124]M. Ryu, S. Lee, M. Jang, G. Panin, and T. Kang. Postgrowth Annealing Effect on Structural and Optical Properties of ZnO Films Grown on Gaas Substrates by the Radio Frequency Magnetron Sputtering Technique [J]. J Appl Phys,2002,92(1):154-158.
    [125]H. S. Kang, G. H. Kim, D. L. Kim, H. W. Chang, B. D. Ahn, and S. Y. Lee. Investigation on the p-type Formation Mechanism of Arsenic Doped p-type ZnO Thin Film [J]. Applied Physics Letters,2006,89(18):181103-181103.
    [126]D. Look, G. Renlund, R. Burgener, and J. Sizelove. As-Doped p-type ZnO Produced by an Evaporation/Sputtering Process [J]. Applied Physics Letters,2004,85(22):5269-5271.
    [127]Y. Ryu, T. Lee, and H. White. Properties of Arsenic-Doped p-type ZnO Grown by Hybrid Beam Deposition [J]. Applied Physics Letters,2003,83(1):87-89.
    [128]C. Yuen, S. Yu, E. Leong, S. Lau, K. Pita, H. Yang, and T. Chen. Room Temperature Deposition of p-type Arsenic Doped ZnO Polycrystalline Films by Laser-Assist Filtered Cathodic Vacuum Arc Technique [J]. J Appl Phys,2007,101(9):094905-094907.
    [129]T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, and Y. Hatanaka. p-type ZnO Layer Formation by Excimer Laser Doping [J]. physica status solidi (b),2002,229(2): 911-914.
    [130]F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, J. Liu, and W. Beyermann. High-Mobility Sb-Doped p-type ZnO by Molecular-Beam Epitaxy [J]. Applied Physics Letters,2005, 87(15):152101-152103.
    [131]L. Mandalapu, F. Xiu, Z. Yang, D. Zhao, and J. Liu. p-type Behavior from Sb-Doped ZnO Heterojunction Photodiodes [J]. Applied Physics Letters,2006,88(11):112108-112103.
    [132]L. Mandalapu, Z. Yang, F. Xiu, D. Zhao, and J. Liu. Homojunction Photodiodes Based on Sb-Doped p-type ZnO for Ultraviolet Detection [J]. Applied Physics Letters,2006, 88(092103).
    [133]F. Xiu, Z. Yang, L. Mandalapu, D. Zhao, and J. Liu. Photoluminescence Study of Sb-Doped p-type ZnO Films by Molecular-Beam Epitaxy [J]. Applied Physics Letters,2005,87(25): 252102-252103.
    [134]W. Guo, A. Allenic, Y. Chen, X. Pan, Y. Che, Z. Hu, and B. Liu. Microstructure and Properties of Epitaxial Antimony-Doped p-type ZnO Films Fabricated by Pulsed Laser Deposition [J]. Applied Physics Letters,2007,90(24):242108-242103.
    [135]X. Pan, W. Guo, Z. Ye, B. Liu, Y. Che, H. He, and X. Pan. Optical Properties of Antimony-Doped p-type ZnO Films Fabricated by Pulsed Laser Deposition [J]. J Appl Phys, 2009,105(11):13516-113514.
    [136]X. Pan, Z. Ye, J. Li, X. Gu, Y. Zeng, H. He, L. Zhu, and Y. Che. Fabrication of Sb-Doped p-type ZnO Thin Films by Pulsed Laser Deposition [J]. Applied Surface Science,2007, 253(11):5067-5069.
    [137]潘新花.Sb掺杂制备p-ZnO及si衬底znl-Xmgxo外延薄膜和znmgo/ZnO量子阱的研究[D];浙江大学,2010.
    [138]O. Lopatiuk-Tirpak, W. Schoenfeld, L. Chernyak, F. Xiu, J. Liu, S. Jang, F. Ren, S. Pearton, A. Osinsky, and P. Chow. Carrier Concentration Dependence of Acceptor Activation Energy in p-type ZnO [J]. Applied Physics Letters,2006,88(20):202110-202113.
    [139]J. Lander. Reactions of Lithium as a Donor and an Acceptor in ZnO [J]. Journal of Physics and Chemistry of Solids,1960,15(3):324-334.
    [140]R. Cox, D. Block, A. Herve, R. Picard, C. Santier, and R. Helbig. Exchange Broadened, Optically Detected Esr Spectra for Luminescent Donor-Acceptor Pairs in Li Doped ZnO [J]. Solid State Communications,1978,25(2):77-80.
    [141]Y. Zeng, Z. Ye, W. Xu, D. Li, J. Lu, L. Zhu, and B. Zhao. Dopant Source Choice for Formation of p-type ZnO:Li Acceptor [J]. Applied Physics Letters,2006,88(6): 062107-062103.
    [142]Y. Zeng, Z. Ye, J. Lu, W. Xu, L. Zhu, B. Zhao, and S. Limpijumnong. Identification of Acceptor States in Li-Doped p-type ZnO Thin Films [J]. Applied Physics Letters,2006, 89(4):042106-042103.
    [143]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, and Y. L. Hu. Realization of p-type ZnO Films Via Monodoping of Li Acceptor [J]. J Cryst Growth,2005, 283(1):180-184.
    [144]L. Chen, H. He, Z. Ye, Y. Zeng, J. Lu, B. Zhao, and L. Zhu. Influence of Post-Anneal ing Temperature on Properties of ZnO:Li Thin Films [J]. Chemical physics letters,2006, 420(4):358-361.
    [145]J. Lu, Y. Zhang, Z. Ye, Y. Zeng, H. He, L. Zhu, J. Huang, L. Wang, J. Yuan, and B. Zhao. Control of P-and N-Type Conductivities in Li-Doped ZnO Thin Films [J]. Applied Physics Letters,2006,89(11):112113.
    [146]D. Y. Wang, J. Zhou, and G. Z. Liu. Effect of Li-Doped Concentration on the Structure, Optical and Electrical Properties of p-type ZnO Thin Films Prepared by Sol-Gel Method [J]. Journal of Alloys and Compounds,2009,481(1):802-805.
    [147]L. Yang, Z. Ye, L. Zhu, Y. Zeng, Y. Lu, and B. Zhao. Fabrication of p-type ZnO Thin Films Via Dc Reactive Magnetron Sputtering by Using Na as the Dopant Source [J]. Journal of electronic materials,2007,36(4):498-501.
    [148]S. Lin, Z. Ye, J. Lu, H. He, L. Chen, X. Gu, J. Huang, L. Zhu, and B. Zhao. Na Doping Concentration Tuned Conductivity of ZnO Films Via Pulsed Laser Deposition and Electroluminescence from ZnO Homojunction on Silicon Substrate [J]. Journal of Physics D:Applied Physics,2008,41(15):155114.
    [149]S. Lin, H. He, Y. Lu, and Z. Ye. Mechanism of Na-Doped p-type ZnO Films:Suppressing Na Interstitials by Codoping with H and Na of Appropriate Concentrations [J]. J Appl Phys, 2009,106(9):093505-093508.
    [150]叶志镇,林时胜,何海平,顾修全,陈凌翔,吕建国,黄靖云,朱丽萍,汪雷,and张银珠.Na掺杂P型ZnO和ZnO/Znmgo多量子阱结构基Led的制备与室温电注入发射紫蓝光[J].
    [151]J. J. Lai, Y. J. Lin, Y. H. Chen, H. C. Chang, C. J. Liu, Y. Y. Zou, Y. T. Shih, and M. C. Wang. Effects of Na Content on the Luminescence Behavior, Conduction Type, and Crystal Structure of Na-Doped ZnO Films [J]. J Appl Phys,2011,110(1):013704-3.
    [152]W. Jun, and Y. Yintang. Deposition of K-Doped P Type ZnO Thin Films on (0001) Al2O3 Substrates [J]. Materials Letters,2008,62(12):1899-1901.
    [153]Y. Yan, M. Al-Jassim, and S. H. Wei. Doping of ZnO by Group-Ib Elements [J]. Applied Physics Letters,2006,89(18):181912-181913.
    [154]K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins, J. Turner, and M. Al-Jassim. Synthesis of Band-Gap-Reduced p-type ZnO Films by Cu Incorporation [J]. J Appl Phys, 2007,102(2):023516-023517.
    [155]J. Kim, D. Byun, S. Ie, D. Park, W. Choi, J. W. Choi, and B. Angadi. Cu-Doped ZnO-Based p-n Hetero-Junction Light Emitting Diode [J]. Semiconductor science and technology,2008, 23(9):095004.
    [156]H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y. Lee. Structural, Electrical, and Optical Properties of p-type ZnO Thin Films with Ag Dopant [J]. Applied Physics Letters,2006,88(20):202103-202108.
    [157]B. D. Ahn, H. S. Kang, J. H. Kim, G. H. Kim, H. W. Chang, and S. Y. Lee. Synthesis and Analysis of Ag-Doped ZnO [J]. J Appl Phys,2006,100(9):093701-093706.
    [158]I. S. Kim, E. K. Jeong, D. Y. Kim, M. Kumar, and S. Y. Choi. Investigation of p-type Behavior in Ag-Doped ZnO Thin Films by E-Beam Evaporation [J]. Applied Surface Science,2009,255(7):4011-4014.
    [159]曹铃.脉冲激光沉积法生长掺杂ZnO基薄膜及其相关器件研究[D];浙江大学,2012.
    [160]T. Yamamoto, and H. Katayama-Yoshida. Solution Using a Codoping Method to Unipolarity for the Fabrication of p-type ZnO [J]. Japanese journal of applied physics,1999, 38(L166-L169).
    [161]T. Yamamoto, and H. Katayama-Yoshida. Physics and Control of Valence States in ZnO by Codoping Method [J]. Physica B:Condensed Matter,2001,302(155-162).
    [162]L. Wang, and A. Zunger. Cluster-Doping Approach for Wide-Gap Semiconductors:The Case of p-type ZnO [J]. Physical Review Letters,2003,90(25):256401.
    [163]Y. Sui, B. Yao, Z. Hua, G. Xing, X. Huang, T. Yang, L. Gao, T. Zhao, H. Pan, and H. Zhu. Fabrication and Properties of B-N Codoped p-type ZnO Thin Films [J]. Journal of Physics D:Applied Physics,2009,42(6):065101.
    [164]J. Lu, Z. Ye, F. Zhuge, Y. Zeng, B. Zhao, and L. Zhu. p-type Conduction in N-Al Co-Doped ZnO Thin Films [J]. Applied Physics Letters,2004,85(15):3134-3135.
    [165]J. Lu, L. Zhu, Z. Ye, Y. Zeng, F. Zhuge, B. Zhao, and D. Ma. Improved N-Al Codoped p-type ZnO Thin Films by Introduction of a Homo-Buffer Layer [J]. J Cryst Growth,2005, 274(3):425-429.
    [166]Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J. Y. Huang. Preparation of p-type ZnO Films by Al+N-Codoping Method [J]. J Cryst Growth,2004, 265(1):127-132.
    [167]F. Zhu-Ge, Z. Z. Ye, L. P. Zhu, J. G. Lu, B. H. Zhao, J. Y. Huang, Z. H. Zhang, L. Wang, and Z. G. Ji. Electrical and Optical Properties of Al-N Co-Doped p-type Zinc Oxide Films [J]. J Cryst Growth,2004,268(1):163-168.
    [168]G. Yuan, Z. Ye, L. Zhu, Y. Zeng, J. Huang, Q. Qian, and J. Lu. p-type Conduction in Al-N Co-Doped ZnO Films [J]. Materials Letters,2004,58(29):3741-3744.
    [169]M. Joseph, H. Tabata, and T. Kawai. p-type Electrical Conduction in ZnO Thin Films by Ga and N Codoping [J]. Jpn J Appl Phys, Part,1999,2(38):L2505.
    [170]A. Singh, R. Mehra, A. Wakahara, and A. Yoshida. p-type Conduction in Codoped ZnO Thin Films [J]. J Appl Phys,2003,93(1):396-399.
    [171]M. Joseph, H. Tabata, H. Saeki, K. Ueda, and T. Kawai. Fabrication of the Low-Resistive p-type ZnO by Codoping Method [J]. Physica B:Condensed Matter,2001,302(140-148).
    [172]M. Kumar, T. H. Kim, S. S. Kim, and B. T. Lee. Growth of Epitaxial p-type ZnO Thin Films by Codoping of Ga and N [J]. Applied Physics Letters,2006,89(11):112103.
    [173]L. Chen, J. Lu, Z. Ye, Y. Lin, B. Zhao, Y. Ye, J. Li, and L. Zhu. p-type Behavior in in-N Codoped ZnO Thin Films [J]. Applied Physics Letters,2005,87(25):252103-252106.
    [174]Y. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, and Y. Hayashi. Low Resistivity P-ZnO Films Fabricated by Sol-Gel Spin Coating [J]. Applied Physics Letters,2006,88(25): 251113-251116.
    [175]J. Bian, X. Li, X. Gao, W. Yu, and L. Chen. Deposition and Electrical Properties of N-in Codoped p-type ZnO Films by Ultrasonic Spray Pyrolysis [J]. Applied Physics Letters, 2004,84(4):541-543.
    [176]J. Lu, Y. Zhang, Z. Ye, L. Zhu, L. Wang, B. Zhao, and Q. Liang. Low-Resistivity, Stable p-type ZnO Thin Films Realized Using a Li-N Dual-Acceptor Doping Method [J]. Applied Physics Letters,2006,88(22):222113-222114.
    [177]X. Wang, B. Yao, Z. Wei, D. Sheng, Z. Zhang, B. Li, Y. Lu, D. Zhao, J. Zhang, and X. Fan. Acceptor Formation Mechanisms Determination from Electrical and Optical Properties of p-type ZnO Doped with Lithium and Nitrogen [J]. Journal of Physics D:Applied Physics, 2006,39(21):4568.
    [178]B. Zhang, B. Yao, Y. Li, Z. Zhang. B. Li, C. Shan, D. Zhao, and D. Shen. Investigation on the Formation Mechanism of p-type Li-N Dual-Doped ZnO [J]. Applied Physics Letters, 2010,97(222101).
    [179]B. Zhang, B. Yao, Y. Li, A. Liu, Z. Zhang, B. Li, G. Xing, T. Wu, X. Qin, and D. Zhao. Evidence of Cation Vacancy Induced Room Temperature Ferromagnetism in Li-N Codoped ZnO Thin Films [J]. Applied Physics Letters,2011,99(18):182503.
    [180]T. Zhao, T. Yang, B. Yao, C. Cong, Y. Sui, G. Xing, Y. Sun, S. Su, H. Zhu, and D. Shen. Growth Ambient Dependent Electrical Properties of Lithium and Nitrogen Dual-Doped ZnO Films Prepared by Radio-Frequency Magnetron Sputtering [J]. Thin Solid Films,2010, 518(12):3289-3292.
    [181]W. Bin, Z. Yue, M. Jiahua, and S. Wenbin. Ag-N Dual-Accept Doping for the Fabrication of p-type ZnO [J]. Applied Physics A:Materials Science & Processing,2009,94(4):715-718.
    [182]R. Swapna, and S. Kumar. Deposition of the Low Resistive Ag-N Dual Acceptor Doped p-type ZnO Thin Films [J]. Ceramics International,2012.
    [183]T. Vlasenflin, and M. Tanaka. p-type Conduction in ZnO Dual-Acceptor-Doped with Nitrogen and Phosphorus [J]. Solid State Communications,2007,142(5):292-294.
    [184]A. Krtschil, A. Dadgar, N. Oleynik, J. Biasing, A. Diez, and A. Krost. Local p-type Conductivity in Zinc Oxide Dual-Doped with Nitrogen and Arsenic [J]. Applied Physics Letters,2005,87(26):262105-262105-262103.
    [185]吕建国.ZnO 半导体光电材料的制备及其性能的研究[D];浙江大学,2005.
    [186]F. Brech, and L. Cross. Optical Microemission Stimulated by a Ruby Laser [J]. Appl Spectrosc,1962,16(2):59.
    [187]H. M. Smith, and A. Turner. Vacuum Deposited Thin Films Using a Ruby Laser [J]. Applied optics,1965,4(1):147-148.
    [188]A. L. Turkevich, E. J. Franzgrote, and J. H. Patterson. Chemical Analysis of the Moon at the Surveyor V Landing Site [J]. Science,1967,158(3801):635-637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700