布里渊型光纤陀螺关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤陀螺是光纤传感领域最重要的成就之一,从20世纪末至今的不断研制,在惯性技术领域已经确立了“优先选择”的地位。到目前为止,光纤陀螺主要经历了干涉型(IFOG)、皆振型(RFOG)和布里渊型(BFOG)三代的发展历程。其中,干涉型光纤陀螺技术日趋成熟,并且已经成功应用于各个领域,但温度问题与小型化是其高精度发展的障碍。作为第三代光纤陀螺的BFOG,具有结构简单、信号处理简单、灵敏度和分辨率高、动态范围大、体积小等各种优点,代表了光纤陀螺高精度和小型化的发展方向。随着近几年光纤通信领域相关技术的发展,窄带抽运源、特种光纤、新型高效耦合器等器件的出现给BFOG的发展带来了机遇,因此对这种新型光纤陀螺的研究具有重要的意义。论文的研究内容主要针对BFOG的几个关键问题而展开,论文的主要工作如下:
     首先对BFOG的工作原理及其灵敏度进行了分析。光纤中的受激布里渊散射效应是BFOG的物理基础,分析了光纤中的布里渊散射理论,推导了布里渊散射阈值功率与光纤的长度及损耗系数的关系,分析了受激布里渊增益谱型与泵浦波的关系,推导了理想状态与实际情况下BFOG的输出拍频公式,对BFOG的潜在精度与理论动态范围进行了研究并给出了定量计算结果,计算结果表明BFOG具有很高的潜在精度与理论动态范围。
     然后对布里渊光纤环形激光器的输出稳定性进行了研究。布里渊光纤环形激光器是BFOG的核心部分,激光器的输出稳定性直接影响到陀螺的性能。布里渊光纤环形激光器是有源谐振腔,激光器中的谐振特性及光强分析是研究BFOG的基础,对此,推导了光纤环形谐振腔的最佳谐振条件,得出临界耦合态的谐振腔腔内光强最大并且出射光强为零,具有最高的精细度。对布里渊光纤环形激光器中的光强进行了分析,在布里渊光纤环形激光器应用于BFOG中应控制入射泵浦光强在一阶及二阶阈值光强之间。针对影响布里渊光纤环形激光器输出稳定性的偏振和温度两个主要因素进行了深入的研究。理论分析了泵浦光与斯托克斯光偏振态的关系对布里渊增益系数的影响。在激光器腔内泵浦光及布里渊激光两本征偏振态同时谐振,两本征偏振态之间的相位差随温度等环境的波动发生变化从而产生偏振串扰,对此,提出了采用保偏光纤偏振主轴90°旋转熔接及单偏振单模光纤构建光纤环形谐振腔来消除偏振串扰,并进行了实验验证。分析了温度对布里渊频移、阈值光功率、增益系数、激光模式跳变及光路程长的影响,通过计算得出温度对布里渊频移的影响大小约为1.2MHz/℃,影响布里渊阈值光功率温度系数的主要因素是光纤环形腔的参数,布里渊阈值光功率的温度系数约为一961×10-6/℃,温度引起光路程长的变化会给陀螺带入标定因数误差及零偏不稳定。
     之后研究了BFOG中的主要光学噪声误差,BFOG中存在的主要光学噪声包括瑞利背向散射噪声、磁场Faraday效应及光克尔效应。对泵浦光及布里渊激光的背向散射光对陀螺的影响机理分别进行了研究,计算结果表明背向散射光在光纤环形腔内得到谐振加强,其光强大小约为主光强的百分之一;泵浦光的背向散射光强会增大光纤环形腔的损耗,降低了激光器的精细度,增高了激发布里渊激光的阈值光功率;布里渊激光的背向散射光会与相向传播的激光发生耦合,导致陀螺低转速下拍频输出为零的闭锁现象。从光纤中的Faraday效应入手,分析了BFOG中的Faraday效应误差,建立起了磁场Faraday效应引起的陀螺误差模型,得出陀螺中磁场Faraday效应误差存在的原因是光纤中圆双折射的存在,分析指出了减小Faraday效应误差一方面是增大光纤的双折射△β,即采用高双折射光纤,另一方面是降低光纤的扭转率;对此,理论分析了采用高双折射保偏光纤抑制BFOG中的Faraday效应误差的有效性。建立起了综合考虑光功率差及偏振态因素的光克尔效应误差模型,详细分析了BFOG中产生光克尔效应误差的原因,提出并设计了调制频率为自由光谱范围整数倍占空比为50%的方波信号对泵浦光源进行强度调制消除光克尔效应误差。
     最后针对BFOG转动时泵浦光的失谐给BFOG带来的影响,开展了BFOG中泵浦光稳频方案的研究。推导了失谐对陀螺动态范围的限制与引起光克尔效应误差大小,针对单光路稳频方案不能完全解决泵浦光失谐对BFOG的影响,提出并设计了双光路稳频方案,对CCW光路泵浦光采用三角波相位调制实现方波频率调制,在CCW光路泵浦光稳频后由陀螺的转速引起的拍频大小即为CW光路泵浦光的失谐频差大小,通过反馈控制实现对CW光路泵浦光的稳频,可以解决泵浦光失谐对BFOG的影响:对BFOG稳频系统进行了整体设计,对光路系统主要光学器件进行了分析及选取,对光纤环形腔腔长选择及缠绕方法进行了设计,设计了稳频与信号检测电路,并对稳频系统进行了测试。
The fiber optical gyroscope (FOG) is one of the most important achievements in fiber optic sensor field, through the continuous development of the last years, it has been to establish a "preferred" status in the field of inertial technology. So far, The FOG mainly through three generations which were the interferometer (IFOG), resonant (RFOG) and Brillouin type (BFOG).Among them, the IFOG technology has been matures and successfully applied to various fields, but the temperature and the miniaturization were the obstacle to the development of high accuracy. As the third generation FOG-BFOG, due to the simple structure, simple signal processing, high sensitivity, large dynamic range, small size and other advantages, it was on behalf of the development of high precision and miniaturization. In recent years, with the development of optical communication and related technologies, the appearance of narrowband pump source, specialty optical fiber, new high coupler devices bring a new development opportunity to BFOG, and it is of great significance to study this new FOG. In this research paper, it mainly focuses on several key technologies in the implementation process for BFOG. The main thesis works are as follows:
     Firstly, the work principle and sensitivity analysis was studied. Optical fiber stimulated Brillouin scattering effect is the physical basis of BFOG, the fiber Brillouin scattering and Brillouin scattering threshold with fiber length and fiber loss were analyzed, the relationship between stimulated Brillouin gain spectrum and pump wave type was studied, the beat frequency formula in theory and considering actual case of BFOG were derived, the potential accuracy and dynamic range of BFOG has been theoretical analyzed and calculated.
     Then, the output stability of Brillouin fiber ring laser light was studied. The Brillouin fiber ring laser is the core of BFOG and the gyro performance was directly affected by the laser frequency stability. Brillouin fiber ring laser cavity is an active cavity, the stability of laser in resonant cavity was the basis of light intensity analysis. The best conditions for resonance was derived, and it was obtained that the light intensity in resonator cavity was maximum and the emitted light intensity is zero when the resonator cavity is critical coupling state, and then the fineness is the highest. The relationship between the pump light intensity and stokes light intensity was analyzed in Brillouin fiber ring laser, and obtained that the incident pump light intensity should be controlled between the first-order and the second-order threshold intensity. The two major factors were polarization and temperature which affect the output stability of Brillouin fiber ring laser were studied in detail. The relationship between the pump light and stokes light polarization and the Brillouin gain coefficient was theoretical analyzed, the two eigenstates polarization of pump light and Brillouin laser light were resonance in Brillouin resonant cavity at the same time, and the phase difference between the two eigenstates polarization fluctuated due to temperature and other environmental change which resulting in polarization crosstalk. The polarization axis90°rotation and single-polarization single-mode fiber ring resonator to build fiber ring cavity to eliminate the polarization fluctuation were analyzed and verified by experimentally. The temperature on the Brillouin frequency shift, threshold optical power, gain coefficient, the laser mode hopping and optical path length were analyzed and calculated. It can be obtained by calculating that the Brillouin frequency shift by temperature was about1.2MHz/℃, the fiber ring cavity parameters was the mainly factors which affect Brillouin threshold optical power, and the Brillouin threshold optical power temperature coefficient is about-961×10-6/℃, The change of optical path length caused by temperature change will result in scale factor error and gyro bias instability.
     Thirdly, the mainly optical noise errors in BFOG were studied, the mainly optical noise in BFOG including Rayleigh backscattering, magnetic field Faraday Effect and optical Kerr effect. The backscattering mechanism of pump light and Brillouin laser were studied, the results show that the backscatter light intensity in the fiber ring cavity was resonant enhanced and is about1%of the main light intensity. The backscattering light from pump light will increase the fiber ring loss, and result in the stimulated Brillouin laser threshold increasing. The backscattering light from Brillouin laser light was coupled with the opposite transmitted laser light, and resulting in locking phenomenon. The Faraday Effect in BFOG was analyzed, and the gyro error model was established; and obtained that the error caused by Faraday Effect exists in BFOG was due to the presence of circular birefringence in fiber. There were two ways to reduce the Faraday effect error, one is to use high birefringence fiber, the other is to reduce the twist rate in fiber, the use of polarization maintaining fiber with high birefringence suppress Faraday effect error was theoretical analyzed. The optical Kerr effect error model which considering the light power difference and polarization factors was established, the causes of Kerr effect error in gyroscope was analyzed in detail, then the pump light intensity modulated to eliminate optical Kerr effect was proposed and designed.
     Finally, the influence of pump light detuning on BFOG was discussed, the pump light frequency stabilization scheme in BFOG was proposed. The expression of the maximum detuning which limited the dynamic range were derived and calculated. Due to the single frequency stabilization can't solve the influence of pump light detuning on BFOG absolutely, then the dual light path frequency stabilization was proposed and designed. The triangle wave phase modulation was used to achieve square wave frequency modulation in CCW direction of the pump light, and the beat frequency signal of rotation speed is equal to the frequency difference caused by the CW pump laser detuning. The overall system of BFOG was designed, the optical system was analyzed and the main optical devices were analyzed and selected, the signal detection and frequency stabilization circuit were designed, then the system was tested.
引文
[1]V.Vali and R.W.Shorthill. Fiber Ring Interferometer. Applied Optics.1976, Vol.15: 1099-11 OOP
    [2]胡卫东.光纤陀螺发展评述.红外技术.2001,Vo1.18(5):29-33页
    [3]单英,延凤平,简水生.光纤陀螺及其发展动态.传感器技术.1999,Vol.18(5):1-3页
    [4]高秀花译.选用陀螺仪一动调陀螺,激光陀螺,光纤陀螺的比较.惯导与仪表.1995,4:16-21页
    [5]盛钟延,季杭峰,周柯江.光纤陀螺的最新进展.红外与激光工程.1995,28(3):59-63页
    [6]孙丽,王德钊.光纤陀螺的最新进展.航天控制.2003,3:77-80页
    [7]刘兰芳,陈刚.光纤陀螺仪基本原理与分类.现代防御技术.2007,4(6):33-37页
    [8]张桂才.光纤陀螺原理与技术.第一版.国防工业出版社,2008:11-15页
    [9]董永康,吕志伟,吕月兰,何伟明,布里渊光纤环形激光器及其应用[J]激光技术,2004,28(5):498-502页
    [10]周海波,刘建业.光纤陀螺仪的发展现状.传感器技术.2005,24(6):1-3页
    [11]徐宇新.光纤陀螺技术趋势一Honeywell公司展望.导航控制.2003,2(4):30-32页
    [12]伊小素译.从研发样机到以惯导级光纤陀螺为基础的惯性导航系统:Photonetics-Ixsea公司的经验.导航与控制译文集.2004,(1):1-4页
    [13]G A. Sanders, B. Szafraniec, R. Y. Liu, et al. Fiber optic gyros for space, marine, and aviation applications. in Fiber Optic Gyros:20th Anniversary Conf. Proc. SPIE,1996, 2837:61-71P
    [14]刘德君.日本光纤陀螺发展概况.舰船光学.1999,(2):16-22页
    [15]李园晴.光纤陀螺发展及其在制导武器中的应用.科技经济市场.2008(7):13-14页
    [16]P. J. Thomas, H. M. van Driel and D. I. A. Stegeman. Possibility of using an optical fiber Brillouin ring laser for inertial sensing. Appl. Opt.1980,19:1906-1908P
    [17]S. P. Smith, F.Zarinetchi and S.Ezekiel. Narrow-linewidth stimulated Brillouin fiber laser and applicationas. Opt. Lett.1991,16:393-395P
    [18]S. Huang, K. Toyama, P. A. Nicati et al.. Brillouin fiber optic gyro with push-pull phase modulator and synthetic heterodyne detection. SPIE,1992,1795:48-59P
    [19]章燕申.高精度导航系统.中国宇航出版社,2005
    [20]Michael Raab, Thomas Quast. Two-color Brillouin ring laser gyro with gyro-compassing capability. Opt. Lett.1994,19(18):1492-1494P
    [21]Y. Tanaka. S. Yamasaki. K. Hotate. Brillouin fiber optic gyro with directional sensitivity. IEEE Photonics technology letters.1996,8(10):1367-1369P
    [22]延凤平,单英.受激布里渊散射光纤陀螺中光偏振特性的研究.中国激光,2001,28(10):913-917页
    [23]延凤平,单英,简水生.受激布里渊散射光纤陀螺温度效应的理论分析.压电与声光.2001,23(2):97-99页
    [24]单英,延凤平,简水生.受激布里渊散射光纤陀螺中光偏振特度的研究.压电与声光.2000,22(2):75-80页
    [25]延凤平,单英,简水生.受激布里渊散射光纤陀螺中光纤光源的阈值光功率研究.中国激光.2000,27(9):790-794页
    [26]延凤平,单英,简水生.受激布里渊散射光纤陀螺中受激布里渊散射效应的机理研究.光电子激光.2000,11(1):32-35页
    [27]Fengping YAN, Jianbo WU, Weiwei XUE, Lili ZHAO, Shuisheng JIAN. Experimental investigation of the stimulated Brillouin scattering fiber optic gyros. SPIE. Vol,5279: 675-678P
    [28]崇学庆.四频差动布里渊光纤陀螺方案及其光源稳频技术研究.哈尔滨工程大学硕士论文.2007
    [29]董永康,吕志伟,吕月兰等.布里渊光纤环形激光器及其应用.激光技术.2004,28(5):498-502页
    [30]裴金成,杨熙春,朱汝德等.受激布里渊光纤陀螺.光纤光学.2006,43(11):53-60页
    [31]程光煦.拉曼布里渊散射一原理及应用.科学出版社,2001
    [32]R. D. Stokes. Stimulated Brillouin scattering:its generation and applications in optical fiber. Phd dissertation of the Standford University.1982:24-25P
    [33]Michael Andrew Davis. Stimulated Brillouin scattering in single mode optical fiber. College of William and Mary. Phd dissertation.1997P
    [34]沈一春,宋牟平等.单模光纤中受激布里渊散射阈值研究.中国激光.2005,32(4):97-500页
    [35]Valeri I Kovalev and Robert G. Harrison. Means for easy and accurate measurement of the stimulated Brillouin scattering gain coefficient in optical fiber. Optics Letters.2008, 33(21):2434-2436P
    [36]张辉,万生鹏,王玉枝.受激布里渊光纤环形激光器及其阈值分析.现代电子技术.2009,14:127-129页
    [37]冯杰.光纤中的受激布里渊散射效应研究.电子科技大学硕士论文.2009:12-13页
    [38]裴金成,杨熙春,朱汝德等.受激布里渊光纤陀螺.光纤光学.2006,43(11):53-60页
    [39]王京献.激光陀螺抖动偏频技术研究.西北工业大学硕士学位论文.1999年
    [40]杨培根,龚智炳.光电惯性技术.兵器工业出版社,1999
    [41]李佳程.被动式谐振腔光纤陀螺研究.上海交通大学博士论文.2000
    [42]Alexis Debut, Stephane Randoux. experimental and theoretical study of linewidth narrowing in brilouin fiber ring lasers. Optical Society of America,2001,18(4): 556-566P
    [43]祝曙光,徐安士等.双环谐振型光纤陀螺的特性分析.北京大学学报.2004,40(3):367-371页
    [44]刘平.谐振式光纤陀螺环形谐振器的特性研究.长春理工大学,2008,8-9页
    [45]马新宇,潘珍吾,丁衡高.谐振式光纤陀螺中全保偏环形谐振腔的研究.清华大学学报.1999,Vol39(2),68-70页
    [46]房丹,光纤环形谐振器的技术研究.长春理工大学硕士论文.2009:17-18页
    [47]单英.受激布里渊散射光纤陀螺偏振特性及信号处理机理的研究.北方交通大学硕士学位论文.2000:23-25页
    [48]Pierre-Alain Nicati, K.Toyama and H.J.Shaw. Journal of lightwave Technology. Vol.13, No.7,1995:1445-1451P
    [49]Keiichiro Toyama. brillouin fiber-optic gyroscope and digital integating gyrascope. Stanford University, Phd.1996:21P
    [50]A.Kung, L.Thevenaz, P.A.Robert. Polarizationan analysis of Brillouin scattering in a circularly birefringent fiber ring resonator. J.Lightwave Technol,1997,15 (6):977-982P
    [51]K. Iwatsuki, K. Hotate. Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring resonator gyro. Appl. Opt.1986,25(15):2606-2612 P
    [52]Kazuo Hotate.Polarization Problem and Counter-measures in Passive/active Resonator Fiber Optic Gyros. SPIE 1994,2292:227-239P
    [53]K. Hotate, Y. Tanaka. Analysis of state of polarization of stimulated brillouin scattering in an optical fiber ring-resonator. Journal of lightwave technology.1995,13(3): 384-390P
    [54]Koichi Takiguchi, Kazuo Hotate. Evaluation of the Output Error in an Optical Passive Ring-Resonator Gyro with a 90° Polarization-Axis Rotation in the Polarization-Maintaining Fiber Resonator. IEEE photonics technology letters.1991, 3(1):88-90P
    [55]Yosuke Tanaka, Kazuo Hotate. Analysis of fiber Brillouin ring laser composed of single polarization single mode fiber. journal of lightwave technology.1997,15(5): 838-844P
    [56]T. Kurashima, T. Horiguchi, M. Tateda. Thermal effects on the Brillouin frequency shift in jacketed optical sillica fibers. Appi. Opt.1990,29(15):2219-2222P
    [57]张硕.外差检测布里渊分布型光纤温度和应变传感及信号处理技术研究.华北电力大学硕士论文.2009:8页
    [58]万生鹏,何兴道.温度对布里渊光纤陀螺的影响.中国激光.2010,37(1):162-165页
    [59]李绪友,何周,张勇,洪伟.受激布里渊光纤陀螺拍频稳定性.中国惯性技术学报.2010(6):338-342页
    [60]Ulrich. R. Fiber optic rotation sensing with low drift. Optics Letters.1980,5:173-175P
    [61]徐宏杰.光纤激光陀螺F-P腔选模掺铒环形激光器的研究.北京理工大学博士论文.2002,72-75页
    [62]苏觉.激光型光纤传感器在电流测量和光纤激光陀螺中的应用.中国科技大学博士论文.2009,72-73页
    [63]张旭琳,徐平.谐振式光学陀螺环形谐振腔内背向反射研究.光学学报.2009,29(8):2302-2307页
    [64]Burns W et al. Optical fiber rotation sensing. Academic Press INC.1994:153-156P
    [65]于怀勇,张春熹等.硅基微光学谐振式陀螺瑞利背向散射噪声分析.光学学报.2009,29(3):799-804页
    [66]李绪友,何周.菲涅耳反射光强抑制及光隔离器测试系统设计.中国惯性技术学报.2010(2):225-229页
    [67]Jamesm. Mackintosh, Brian Culshaw. Analysis and observation of coupling ratio dependence of Rayleigh backscattering noise in a fiber optic gyroscope. Journal of Lightwave Technology.1989,7(9):1323-1328P
    [68]Stephen Paul Smith. Studies of stimulated brillouin scattering in optical fibers and applications. Phd dissertation of the Massachusetts Institute of Technology.1993: 61-62P
    [69]苏觉.激光型光纤传感器在电流测量和光纤激光陀螺中的应用.中国科技大学博士论文.2009,88-91页
    [70]K.Iwatsuki, K.Hotate, and M.Higashiguchi. Effect of Raylight backscattering in an optical passive ring-resonator gyro. Appl.Opt.1984,23 (21):3916-3924P
    [71]Meyer, R.E., S.Ezekiel, D.W.Stone. Passive fiber-optic ring resonator for rotarion sensing. Opt.Lett.1983,8:644-646P
    [72]Masanobu Takahshi, Shuichi Tai, Kazuo Kyuma. Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope. Journal of Lightwave Technol.,1990,8(5):811-816P
    [73]K.Hotate, K.Takiguchi, A.Hirose. Adjustment free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro. IEEE Photon.Technol.Lett.1990,2:75-77P
    [74]张桂才.光纤陀螺原理与技术.国防工业出版社,2008:123-138页
    [75]张桂才,杨清生,林锡源.光纤陀螺的矩阵光学模型及其在误差分析中的应用.光子学报.1996,25(Z1):125-132页
    [76]李坚,宁提纲,延凤平,简水生.干涉型光纤陀螺中磁光Faday效应的研究.光电子·激光.2007,18(4):400-403页
    [77]Lefevre H C.The fiber-optic Gyroscope[M],Artech House,1993:252-257P
    [78]张登伟,牟旭东,舒晓武,刘承.单模光纤环轴向磁场问题的理论研究.传感技术学报.2005,18(3):672-675页
    [79]K. Hotate and M. Murakami. Drift of an optical passive ring resonator gyro caused by the Faraday effect. Optical Fiber Sensors.1988,2:405-408P
    [80]Kazuo Hotate, Kunio Tabe. Drift of an optical fiber gyroscope caused by the Faraday effect:Influence of the earth magnetic field. Applied Optics.1986,25(7):1086-1092P
    [81]王夏霄,宋凝芳,张春熹,马宗峰.光纤陀螺磁敏感性的试验研究.北京航空航天大学学报.2005,31(10):1116-1120页
    [82]杨建强,廖丹,朱勇.四频差动激光陀螺减小磁效应的新方法.量子电子学报.2010,27(5):535-541页
    [83]延凤平,简水生. SBS-FOG中克尔效应的理论分析.光电子·激光.2001,12(4):344-346页
    [84]Ralhp.Alan.Bergh. all fiber gyroscope with optical kerr effect compensation. Stanford University, Phd.1983:85-90P
    [85]Ke Yun, Jing Li. Simple and highly accuate technique for time delay measurement in optical fibers by free-running laser configuration. Optics Letters,2008,13(15): 1732-1734P
    [86]John E. Mcelhenny, Randha K. Pattnaik. Unique characteristic features of stimulated Brilloin scattering in small-core photonic crystal fibers. Opt. Soc.2008,25(4): 582-593P
    [87]Anthony L. Franz, Rajarshi Roy. Effect of multiple time delays on intensity fluctuation dynamics in fiber ring lasers. Physical Review.2008,12(08):1-19P
    [88]S.Huang, L.Thkvenaz, K. Toyama, B. Y. Kim, and H. J. Shaw. Optical kerr efect in fiber optic Brillouin ring laser gyroscopes. IEEE photonics technology letters.1993, 5(3):365-367P
    [89]N. D. Nguyen, L. N. Binh. Genaration of bound solitons in actively phase modulation mode-locked fiber ring resonators. Optics Communications.2008,4(15):2012-2022P
    [90]李艳,徐宏杰,张春熙.光纤陀螺光纤环的热致非互异性研究.光学技术.2006,32(5):770-772页
    [91]李绪友,杨汉瑞,杨建华,郑秋丽.光纤耦合器稳定性分析及对光纤陀螺的影响.中国惯性技术学报.2010,18(2):111-115页
    [92]刘新宇.熔锥型单模光纤耦合器的传感特性研究.广州:暨南大学,2006.
    [93]杨学礼,王学锋,张蔚.单模光纤耦合器的偏振温度特性研究.光子学报.2009,38(4):841-848页
    [94]Shengpeng Wan, Xingdao He, Jizhou Sun.Analysis of Kerr effect induced by temperature in Brillouin fiber-optical gyroscope.Optics Communications,2010, Vol(283):84-86P
    [95]Thevenaz, Luc; Foaleng Mafang, Stella; Lin, Jie Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors. Proceedings ofSPIE,2011,7753-7758P
    [96]Zornoza, Ander; Olier, David; Sagues, Mikel; Loayssa, Alayn. Brillouin spectral scanning using the wavelength dependence of the frequency shift. IEEE Sensors Journal,2011,11(2),382-383 P
    [97]Gao, W.; Lu, Z.W.; He, W.M.; Dong, Y.K.; Hasi, W.L.J. Characteristics of amplified spectrum of a weak frequency-detuned signal in a Brillouin amplifier. Laser and Particle Beams.2009,27(4):465-470P
    [98]Gross, Michael C; Clark, Thomas R.; Dennis, Michael L. Narrow linewidth microwave frequency generation by dual wavelength brillouin fiber laser. Lasers and Electro Optics Society Annual Meeting.2008,151-152P
    [99]K. Toyama, P. A. Nicati, H.J. Shaw. Technique of Reducing the Kerr Effect an Extending the Dynamic Range in a Brillouin Fiber Optic Gyroscope.United States Patent. July 16,1996, Patent No.5537671
    [100]Ahmad, H; Shahi, S; Harun, S.W. Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser. Laser Physics,2010,20(3):716-719P
    [101]Steinhausser, B.; Brignon, A.; Huignard, J.P.; Lallier, E.; Georges, P. High energy, single-mode, narrow-linewidth fiber laser source with stimulated brillouin scattering multimode to single mode beam converter. Fiber and Integrated Optics,2008,27(5): 407-421P
    [102]R. A. Bergh, B. Culshaw, C. C. Cutler, H. C. Lefevre, and H. J. Shaw. Source statistics and the Kerr effect in fiber-optic gyroscopes. Optics Letters.1982,7(11):563-565P
    [103]R. A. Bergh, H. C. Lefevre, and H. J. Shaw. Compensation of the optical Kerr effect in fiber-optic gyroscopes. Optics Letters.1982,7(6):282-284P
    [104]Keiichiro Toyama. Brillouin fiber-optic gyroscope and digital integating gyrascope. Stanford University, Phd.1996:83-85P
    [105]Fengping YAN, Jianbo WU, Weiwei XUE, Lili ZHAO, Shuisheng JIAN. Experimental investigation of the stimulated Brillouin scattering fiber optic gyros. SPIE.2004, Vol, 5279:675-678P
    [106]张勇.布里渊光纤陀螺有源腔关键技术研究.哈尔滨工程大学博士论文.2009:39-50页
    [107]李佳程,张炎华,张睿.频率调制在谐振腔光纤陀螺中的应用.上海交通大学学报.2000,34(2):226-228页
    [108]谭新洪,杜建邦.激光陀螺数字式稳频方法的研究.计量学报.Vo1.23(3),2002:216-218页
    [109]M.Moratzky, S.Schroter, E.Geinitz. Stabilized Brillouin fiber ring laser (BFRL) using low loss fused single-mode resonator couplers for application in distributed fiber sensor systems. SPIE Vol.3098:336-345P
    [110]Biorklund G..C. Frequency-modulation spectroscopy:A new method for measuring weak absorptions and dispersions. Optics Letters. Vol.5,No.1,1980:15-17P
    [111]Y. Ohtsuka. Optical coherence effect on a fiber sensing Fabry-Perot interferometer. Appl. OPt.,1982,21,4316-4320P
    [112]李牡铖.三角波调制的谐振式光纤陀螺数字检测系统设计.浙江大学硕士学位论文.2008,11-13页
    [113]李如春,崔忠升,马慧莲.双频率调制光纤陀螺中阶梯波实现的研究.传感技术学报.2004,1:143-145页
    [114]G. F. Lima, K. D. A. Saboia Optical short pulse switching characteristics of ring resonators. Optical Fiber Technology.2008,4(14):79-83P
    [115]胡国绛,黄超译.G.P.AGRAWAL.非线性光纤光学.天津大学出版社,1992:287-314页
    [116]Valeri I Kovalev and Robert G Harrison. Means for easy and accurate measurement of the stimulated Brillouin scattering gain coefficient in optical fiber. Optics Letters.2008, 33(21):2434-2436P
    [117]马慧莲,金仲和,丁纯,王跃林.激光器线宽对光纤环形谐振腔谐振特性的影响.中国激光.2003,30(8):731-734页
    [118]M. R. Shirazi, S. W. Harun, M. Biglary, and H. Ahmad. Linear cavity Brillouin laser with improved characteristics. Optics Letters.2008,33(8):770-772P
    [119]葛翠艳.Y波导对光纤陀螺性能的影响研究.哈尔滨工程大学硕士论文.2010:37-39页
    [120]Ahmad, H.; Parvizi, R.; Shahabuddin, N.S.; Yusoff, Z.; Harun, S.W. Effect of gain medium on the performance of Brillouin fiber laser. Microwave and Optical Technology Letters.2010,52(9):2158-2160P
    [121]Shangyuan Huang. Winding technique for decreasing the pump power requirement of a brillouin fiber optic gyroscope. American petents.1995, NO.5406370
    [122]Ahmad, H.; Shirazi, M.R.; Biglary, M.; Harun, S.W. Linear cavity brillouin fiber laser using a fiber Bragg grating. Microwave and Optical Technology Letters.2008,50,(2): 265-266P
    [123]Bawaaneh, M.S.; Alrusan, R.I.Enhanced convective amplification of stimulated brillouin scattering of laser radiation in inhomogeneous magnetized plasma. Transactions on Plasma Science.2011,39(3):826-830P
    [124]Xuyou Li, Zhou He, Chen Zhang, Gang Wang; Research on modulation stability and compensation method of Y waveguide in fiber optic gyroscope. Proceedings of 9th International Conference on Electronic Measurement and Instruments. Beijing, China, August,2009:1316-1321P
    [125]杨志怀,马慧莲,金仲和.谐振式光纤陀螺数字锁相放大器设计.浙江大学学报(工学版).2008,42(4):622-626页
    [126]张景超.光纤光学式甲烷气体传感器的设计与实验研究.燕山大学博士论文.2006:67-70页
    [127]钟鸣.双SLD光学相干层析成像技术研究.南京航空航天大学硕士论文.2008:29-31页
    [128]张文,金世龙.激光陀螺光路稳定技术的研究.中国惯性技术学报.2006,14(1):72-76页
    [129]刘卫东,刘延冰,刘建国.检测微弱光信号的PIN光电检测电路的设计.电测与仪表.1999,36(4):28-31页
    [130]杨桂东,马慧莲,张旭琳.一种应用于谐振式微型光学陀螺的高频锁相放大器的设计.传感技术学报.2005,18(4):863-866页
    [131]张晞,张春熹,杜新政.光纤陀螺中的数字锁相放大器设计.中国惯性技术学报,2001,9(4)70-73页.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700