基于布里渊放大的激光串行组束中若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重复频率、高功率、大能量激光可以广泛地应用于军事、科研和工业等领域。通常单束激光器的输出能量是从单个激活介质中得到的,因此增加单个激光器的输出能量受到单个激活介质体积、热效应等很多限制。为了克服这些限制,人们发展了激光组束技术。本文提出了基于布里渊放大的激光串行组束方案,针对方案中强信号共线和非共线布里渊放大、波矢失配对布里渊放大的影响、组束的结构设计等几个关键问题进行了研究。
     首先从受激布里渊散射(SBS)一维瞬态耦合波方程出发,给出了共线情况下布里渊放大的一般数学计算模型,并推导了波矢失配对布里渊放大的影响,给出了波矢失配影响布里渊放大的数学模型。在此基础上建立了非共线布里渊放大和波矢失配影响布里渊放大的一般数学计算模型。
     第二,对强信号布里渊放大进行了研究。先从实验和理论两方面对共线强信号布里渊放大进行了研究。研究发现,在不计介质吸收损耗的情况下,强信号布里渊放大受非聚焦后向散射的影响比较大,采用较短的介质池可以提高非聚焦后向散射的能量阈值,采用大口径、长脉宽的激光光束也可以提高非聚焦后向散射的能量阈值。在考虑介质的吸收损耗并且不考虑非聚焦后向散射的情况下,介质吸收损耗对强信号布里渊放大影响很大,通过缩短池长和选用吸收系数小的介质可以大大降低介质的吸收损耗对强信号布里渊放大的影响。研究结果表明,强信号布里渊放大高效实现的约束条件为:系统整体增益接近而不超过布里渊阈值(~25)。在系统整体增益值较为接近布里渊阈值,Stokes光能量为抽运光能量10倍以上时,能量提取效率超过85%。其次从实验和理论两方面对非共线情况下的强信号布里渊放大进行了研究,获得了Stokes光与抽运光交叉角对布里渊放大影响的规律。在Stokes光和抽运光的夹角为5°(~87mrad)时,能量提取效率和抽运光能量抽空率都随Stokes光能量的增加而增加。在抽运光与Stokes光能量都较大时,能量提取效率可达80%以上。Stokes光与抽运光的双光束耦合效率可达90%以上。
     第三,研究了波矢失配对布里渊放大的影响,进行了理论分析和实验验证。结果表明:在两束光相互作用长度不变,系统整体增益接近而不超过布里渊散射阈值的前提下,波矢失配角的容许度为400mrad以内。
     第四,实验实现了二束激光的组束。总的能量提取效率随着Stokes光能量的增加而增加,二束光与Stokes光的光束耦合效率亦随着Stokes光能量的增加而增加,在实验范围内最大可超过80%。当抽运光束能量分别为47.1mJ和41.5mJ,Stokes光能量为88.0mJ时,总的能量提取效率为61.3%,实现光束合成效率为80.7%。
     最后对串行激光组束方案的组束结构进行了设计和仿真计算,并分析了系统损耗对组束的影响。分别设计了基于共线结构和非共线结构的串行激光组束方案。对共线和非共线结构的设计方案进行了仿真,给出了供结构设计查询用的数据图表,并依据数据图表给出了几种组束方案的仿真结果和布局图,组束效率可达80%以上。研究表明:基于共线结构的组束方案可以使激光束之间具有较长的相互作用长度,适合于激光单光束能量较小时的应用;基于非共线结构的组束方案需要较大的光束口径来保证光束之间有足够的相互作用区域,适合于激光单光束能量较大时的应用。由光学元器件引入的系统损耗对组束方案中结构单元的效率影响很大,在选用吸收系数较小的介质,并且组束激光子光束能量确定的情况下,系统损耗决定了可组激光光束数的上限。
     通过本论文的研究,解决了基于布里渊放大串行激光组束方案中的若干关键技术问题,证明了方案的可行性。本文提出的方案获取的输出激光束在物理上是单束光,具有良好的相干性,光强空间分布匀滑;且不需要特殊光学元器件及控制器件,造价低,且结构相对简单,可操作性强;是一种完全相干组束方案。为激光组束的发展提出了新的技术路线。
Lasers of high repetition rate, high power and high energy have been found wide applications in defense, scientific research and industry, etc. The traditional way of achieving high energy is such that a laser uses a single active medium to produce a single high energy beam. This approach suffers from several restrictions, which include the volage of single active medium, thermooptic effects, etc., that limit the maximum energy achievable from a single beam laser.
     In order to walk around these restrictions, the technique of laser beam combination was developed and researched over the past decades. The scheme of serial laser beam combination based on Brillouin amplification was presented in this dissertation, and the main problems including strong signal Brillouin amplification, influence of wave-vector mismatch on the Brillouin amplification and the structural design of beam combination were investigated in detail Firstly, a general mathematical model of collinear Brillouin amplification was constructed from the classic one-dimension transient coupled-wave equation of stimulated Brillouin scattering (SBS). The equation for simulating the influence of wave vector mismatch on the Brillouin amplification was derived. Based on the equations, a general mathematical model of non-collinear Brillouin amplification and the influence of wave vector mismatch on the Brillouin amplification were established.
     Sceondly, strong signal Brillouin amplification was investigated. Preliminary theoretical analysis of the feasibility was performed, and results show that theoretically it is feasible to achieve collinear strong signal Brillouin amplification. Then the detailed investigation of strong signal Brillouin amplification was carried out both theoretically and experimentally. The results show that the influence of non-focus backward scattering on strong signal Brillouin amplification is significant when the medium absorption loss is not considered. Choosing shorter cell can increase the energy threshold. Also, the study on variation of laser pulse-width shows that choosing the laser beam with larger beam diameter and longer pulse-width will increase the energy threshold. When the non-focus backward scattering is not considered, the influence of medium absorption loss on strong signal Brillouin amplification was significant. It can be reduced by choosing the medium with small absorption coefficient and short medium cell. Therefore, it is important to choose a set of optimized working parameters in the applications of beam combination. Experimental study shows that when the value of total system gain is close to the gain of Brillouin threshold Gth (~25) and the Stokes beam energy is higher than 10 times of pump beam energy, the energy extraction efficiency is higher than 85%. Next, the non-collinear strong signal Brillouin amplification was analyzed in detail both experimentally and theoretically. Using the scheme that there was 50(~87mrad)-cross angle between Stokes beam and pump beam, the energy extraction efficiency and the depletion ratio of pump energy was found both increase with the increasing of the Stokes beam energy. The energy extraction efficiency can reach greater than 80% and the depletion ratio of pump energy greater than 90% when the energy of Stokes beam and pump beam are both larger. Then the influence of cross-angle between Stokes beam and pump beam on Brillouin amplification was studied.
     The above results show that the constraint condition of strong signal Brillouin amplification is efficiently realized is: the value of total system gain reaches but not exceeds the gain of Billouin threshold.
     Thirdly, the influence of wave vector mismatch on Brillouin amplification was analyzed theoretically using the mathematical model, and experimental verification was performed. The results show that when the interaction length between two beams is long enough, the tolerancethe of wave vector mismatch angle is smaller than 400 mrad.
     Fourth, the beam combination scheme consisted of two laser beams was studied. It was found that the energy extraction efficiency increased with the increasing of Stokes beam energy, and the coupling efficiency also increased. In the experiment, up to >80% coupling efficiency was observed. Using 47.1mJ and 41.5mJ pump beams and 88.0mJ Stokes beam, the total energy extraction efficiency of 61.3% was observed and the coupling rates of laser beams was 80.7%.
     Finally, the constructions of serial laser beam combination were designed, and the influence of system loss on beam combination was analyzed. The scheme of beam combination based on collinear construction and non-collinear construction were designed respectively. The designed schemes of collinear and non-collinear were simulated and the data plots and tables for the scheme design were given. Based on the data plots and tables, the simulation results and layout of corresponding schemes of beam combination were presented. The coupling rates of beam combination reaches to more than 80%. The results of investigation Show that the scheme of beam combination based on collinear construction is suitable to apply when the energy of single laser beam is small, since the interaction length between two beams is longer in it; while the scheme of beam combination based on non-collinear construction is suitable to apply when the energy of single laser beam is larger, since the larger caliber of beam is needed. The system loss due to the optical elements has large influence on the efficiency of construction unit, under the condition of medium with small absorption coefficient and confirmed energy of single laser beam, the number upper limit of laser beams that can be combined is decided by the system loss. In order to meet the need of scale in serial laser beam combination, the combined scheme of beam combination is designed based on the collinear construction module and non-collinear construction module.
     Through the investigation of this dissertation, some key problems of serial beam combination based on Brillouin amplification are solved, and the feasibility of the scheme is proved. The laser beam obtained from this scheme has such characteristics including single beam in physical domain, smooth space distribution of intensity, needlessness of special optical elements and control equipments, low cost, simple construction, and strong maneuverability. This scheme provides a novel technique route for the development of laser beam combination.
引文
1 N. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov. Inversion of wavefront in SMBS of a depolaeized pump. JETP Lett. 1978, 28: 197-201
    2 N. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, A. B. Mironov, S. I. Mikhailov, M. G. Smirnov, Influence of Certain Radiation Parameters on Wavefront Reversal of a Pump Wave in a Brillouin Mirror. Sov. J. Quantum Electron. 1979, 9: 455-458
    3 V. I. Bespalov, A. A. Betin, G. A. Pasmanik and A. A. Shilov. Observation of transient field oscillations in the radiation of stimulated Mandel’shtam-Brillouin scattering. JETP Lett. 1980, 31:630-633
    4 M. V. Vasil'ev, A. L. Gyulameryan, A. V. Mamaev, V. V. Ragulskii, P. M. Semenon, V. G. Sidoro vich. Recording of phase fluctuation of stimulated scattered light. JETP. Lett, 1980, 31: 634-638
    5 N. G. Basov, I. G. Zubarev, A. B. Mironov. Phase fluctuation of the Stokes wave produced as a result of stimulated scattering of light. JETP Lett. 1980, 31: 645-649
    6丁迎春,吕志伟,赵晓彦,程永康.受激布里渊散射相位共轭组束的研究现状和发展前景.激光与光电子学进展. 2000, 37(5): 7-12
    7 N. G. Basov, I. G. Zubarev, A. B. Mironov, S. I. Mikhailov and A. Y. Okulov. Laser interferometer with wavefront-resersing mirrors. Sov. Phys. JETP. 1980, 52: 847-851
    8 M. Valley, G. Lombardi, R. Aprahamian. Beam combination by stimulated Brillouin scattering. J. Opt. Soc. Am. B. 1986, 3(10): 1492-1497
    9 H. Becht. Experimental investigation on phase locking of two Nd:YAG laser beams by stimulated Brillouin scattering. J. Opt. Soc. Am. B. 1998, 15(6): 1678-1684
    10 D. A. Rockwell, C. R. Giuliano. Coherent coupling of laser gain media using phase conjugation. Opt. Lett. 1986, 11(3): 147-149
    11 A. F. Vasil’ev, A. A. Mak, V. M. Mit’kin, V. A. Serebryakov, and V. E. Yashin. Correction of Thermally Induced Optical Abberations and CoherentPhasing of Beams during Stimulated Brillouin Scattering. Sov. Phys. Tech. Phys. 1986, 31: 191-193
    12 K. V. Gratsianov, A. F. Kornev, V. V. Lyubimov, A. A. Mak, G. G. Pankov, A. I. Stepanov. Investigation of an amplifier with a composite active element and a stimulated Brillouin scattering mirror. Sov. J. Quantum Electron. 1986, 16: 1544-1546
    13 D. S. Sumida, D. C. Jones, D. A. Rockwell. An 8.2 J phase-conjugation solid-state laser coherently combining eight parallel amplifiers. IEEE J. Quantum Electronics. 1994, 30(11): 2617-2627
    14 J. Falk, M. Kanefsky. Limits to efficiency of beam combination by stimulated Brillouin scattering. Opt. Lett. 1988, 13(1): 39-41
    15 S. Sternklar, D. Chomsky, S. Jackel, A. Zigler. Misalignment sensitivity of beam combination by stimulated Brillouin scattering. Opt. Lett. 1990, 15(9): 469-451
    16 Raijun Chu, Xuelei Hua,R. Mehringer,P. Suni,M. Kanefsky,J. Falk. A statistical description of stimulated Brillouin scattering beam combination efficiency. IEEE J. Quantum Electronics. 1992, 28(6): 1582-1593
    17 D. L. Carroll, R. Johnson, S. J. Pfeifer, R. H. Moyer. Experimental investigation of stimulated Brillouin scattering beam combination. J. Opt. Soc. Am. B. 1992, 9(12): 2214-2224
    18 N. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, and S. I. Mikhailov. Control of the Characteristics of Reversing Mirrors in the Amplification Regime. Sov. J. Quantum Electron. 1981, 11(10): 1335-1337
    19 T. R. Loree, D. E. Watkins, T. M. Johnson, N. A. Kurnit, A. Fisher. Phase locking two beams by means of seeded Brillouin scattering. Opt. Lett. 1987, 12: 178-180
    20 R. H. Moyer, M. Valley, M. Cimolino. Beam combination though SBS. J. Opt. Soc. Am. B. 1988, 5: 2473-248
    21 Hong Jin Kong, Yun Sup Skin, Hyogun Kim. Beam combination characteristics in an array laser using stimulated Brillouin scattering phase conjugate mirrors considering partial coherency between the beams. Fusion Engineering and Design. 1999, 44: 407-417
    22 Hong Jin Kong, Seong Ku Lee, Dong Won Lee. Beam combined laser fusiondriver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser and Particle Beams. 2005, 23: 55-59
    23 Hong Jin Kong, Seong Ku Lee, Dong Won Lee, Guo Hong. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation. Appl. Phys. Lett. 2005, 86 051111: 1-3
    24 Seong Ku Lee, Dong Won Lee, Doo Hyun Baek, Kong Hong Jin. Independent phase control of Stokes waves for beam combination. Proceeding of SPIE. 2005, 5627: 128-135
    25 Seong Ku Lee, Dong Won Lee, Hong Jin Kong, Phase control of backward stimulated Brillouin scattering wave by a self-generated density modulation, Proceedings of SPIE - The International Society for Optical Engineering, Advanced Laser Technologies 2004. 2005, 5850: 384-391
    26 Hong Jin Kong, Seong Ku Lee, Dong Won Lee. Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser and Particle Beams. 2005, 23: 107-111
    27 Hubert Becht. Vector phase conjugation for beam combining in a pulsed Nd:YAG laser system. Proceeding of SPIE. 1998, 3263: 11-19
    28王之桐.多束激光相位共轭偏振合成技术的实验研究.激光与红外. 2003, 33(6): 430-432.
    29 Blake.C.Rodgers, Timothy.H.Russell, Won.B.Roh. Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber. Opt.lett. 1999, 24(16): 1124-1126
    30 Blake.C.Rodgers, Timothy.H.Russell, Won.B.Roh. Coherent and Incoherent beam cobining and cleanup via wtimulated Brillouin scattering in multimode optical fiber. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest. 1999, v3: 1026-1027
    31 Timothy H. Russell, Won B.Roh. Incoherent laser beam combining via stimulated Brillouin scattering in multimode fibers. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2000, v2: 593-594
    32唐前进,胡企铨.布里渊增强四波混频组束研究进展.激光与光电子学进展. 2006, 43(1): 40-45
    33 N. F. Andreev, E. A. Khazanov, S. V. Kuznetsov, Pasmanik, German A., Shklovsky, E. I.; Sidorin, V. S. Locked phase conjugation for two-beam coupling of pulse repetition rate solid-state lasers. IEEE. J.Q.E. 1991, 27(1): 135-141
    34 N. F. Andreev, O. V. Kulagin, G. A. Pasmanik, E A Khazanov. Four-channel pulse-periodic Nd: YAG laser with diffranction-limited output radiation. Sov. Quant. Electron.1997, 27(7): 565-569
    35 N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, A. Scott, and P. Soan. A two-channel repetitively pulsed Nd:YAG laser operating at 25Hz with Diffraction-limited Beam Quality. IEEE. J.Q.E. 1999, 35(1): 110-114
    36 Dubinskii M., Ferry M.J., Goff J.R., Merkle L.D., Wood G.L., Pasmanik G., Shilov A., Spiro A. Highly scalable high repetition rate Nd:YAG laser based on coherent beam coupling. OSA Trends in Optics and Photonics Series, v 88, Conference on Lasers and Electro-Optics (CLEO), Postconference Digest, 2003, 1867-1869
    37 Mark W. Bowers, Robert W. Boyd, Allen K. Hankla. Brillouin-enhanced four-wave- mixing vector phase-conjugate mirror with beam-combining capability. Opt. Lett. 1997, 22(6): 360-362
    38 Mark W. Bowers, Robert W. Boyd. Phase locking via Brillouin-enhanced four-wave- mixing phase conjugation. IEEE J.Q.E. 1998, 34(4): 634-644
    39 Dane C B, Hackel L A. Coherent beam combiner for a high power laser. U.S. patent, 6385228, 2002
    40 K. H. No, R. W. Herrick, C. Leung, R. Reinhart, and J. L. Levy. One dimensional scaling of 100 ridge waveguide amplifiers. IEEE Photon.Technol. Lett. 1994, 6(9): 1062–1066.
    41 K. H. No, R. W. Herrick, C. Leung, R. Reinhart, and J. L. Levy. Two dimensional scaling of ridge waveguide amplifiers. Proceeding of SPIE. 1994, 2148: 80–90.
    42 D. R. Neal, S. D. Tucker, R. Morgan, et al. Multi-segment coherent beam combining. Proceeding of SPIE. 1995, 2534: 80-93
    43 J. S. Osinski, D. Mehuys, D. F. Welch, R. G. Waarts, J. S. Major, K. M. Dzurko, and R. J. Lang. Phased array of high-power, coherent, monolithicflared amplifier master oscillator power amplifiers. Appl. Phys. Lett. 1995, 66: 556–558
    44 L. Bartelt-Berger, U. Brauch, A. Giesen, and H. Opower. Power-scalable system of phase-locked single-mode diode lasers. Appl. Opt., 1999, 38: 5752–5760
    45梅遂生.向100kW进军的固体激光器—浅析国外高能固体激光技术发展现状与趋势.激光与光电子学进展. 2005, 42(10): 2-8
    46 J. Anderegg, S. Brosnan, M. Weber, H. Komine, and M. Wickham. 8-W coherently phased 4-element fiber array. Proceeding of SPIE. 2003, 4974: 1–6
    47 S. J. Augst, T. Y. Fan, and A. Sanchez, Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers. Opt. Lett. 2004, 29: 474–476
    48 J. Anderegg, S. Brosnan, E. Cheung, et al. Coherently Coupled High Power Fiber Arrays. Proceeding of SPIE. 2006, 6102: 61020U-1
    49 Gregory D. Goodno. 19-kW phase-locked MOPA Laser array. Military & Aerospace Electronics Europe April, 2006.
    50 E. M. Philipp-Rutz, Spatially coherent radiation from an array of GaAs lasers, Appl. Phys. Lett. 1975, 26: 475–477
    51 J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Coherent laser addition using binary phase gratings. Appl. Opt. 1987, 26: 4391–4399
    52 J. R. Leger, M. L. Scott, and W. B. Veldkamp, Coherent addition of AlGaAs lasers using microlenses and diffractive coupling. Appl. Phys. Lett., 1988, 52: 1771–1773
    53 C. J. Corcoran and R. H. Rediker. Operation of five individual diode lasers as a coherent ensemble by fiber coupling into an external cavity. Appl. Phys. Lett. 1991, 59: 759–761
    54 L. A. Newman, R. A. Hart, J. T. Kennedy, A. J. Cantor, A. J. DeMaria, and W. B. Bridges. High power coupled (CO2) waveguide laser array. Appl. Phys. Lett. 1986, 48: 1701–1703
    55 O. R. Kachurin, F. V. Lebedev, and A. P. Napartovich. Properties of an array of phase-locked (CO2) lasers. Sov. J. Quantum Electron. (USA), 1988, 15: 1128–1131
    56 Sanders Steve, Waarts Robert, Nam Derek, Welch David, Scifres Don, Ehlert John C., Cassarly William J., Finlan J. Michael, Flood Kevin M.. High power coherent two-dimensional semiconductor laser array. Appl. Phys. Lett. 1994, 64: 1478–1480
    57 Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari. A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity. IEEE J. Quantum Electron. 2000, 36(5): 607–614
    58王克俊,李强,郭渭荣,赵鹏飞,左铁钏.二极管激光阵列在Talbot外腔中同相模的选择.强激光与粒子束. 2006, 18(2): 177-180
    59 Bing He, Qihong Lou. Beam combination of Yb-Doped double-clad fiber lasers in an external cavity. Proceeding of SPIE. 2005, 6019: 601947-1
    60 Bing He, Qihong Lou, Jun Zhou, Dong Jingxing, Wei Yunrong, Xue Dong, Qi Yunfeng, Su Zhoupin, Li Libo, Zhang Fangpe. High power coherent beam combination from two fiber lasers. Optics Express. 2006, 14(7): 2721-2726
    61楼祺洪,何兵,周军,董景星,魏运荣,薛冬,漆云凤,朱键强,王之江.相位锁定双包层光纤激光器阵列获得18.3W的相干输出,中国激光, 2006, 2: 229
    62 D. G. Youmans. Phase locking of adjacent channel leaky waveguide CO2 lasers. Appl. Phys. Lett. 1984, 44:. 365–367
    63 D. R. Scifres, R. D. Burnham, and W. Streifer. Phase-locked semiconductor laser array, Appl. Phys. Lett. 1978, 33: 1015–1017
    64 L. J. Mawst, D. Botez, C. Zmudzinski, M. Jansen, C. Tu, T. J. Roth, and J. Yun. Resonant self-aligned-stripe antiguided diode laser array. Appl. Phys. Lett. 1992, 60: 668–670
    65 M. Oka, H. Masuda, Y. Kaneda, and S. Kubota. Laser-diode-pumped phase-locked Nd:YAG laser arrays. IEEE J. Quantum Electron. 1992, 28(4): 1142–1147
    66 S. Menard, M. Vampouille, A. Desfarges-Berthelemot, V. Kermene, B. Colombeau, and C. Froehly. Highly efficient phase locking of four diode pumped Nd:YAG laser beams. Opt. Commun. 1999, 160: 344–353
    67 V.A.Kozlov, J. Hernández-Cordero, T.F.Morse. All-fiber coherent beam combining of fiber lasers. Opt.Lett. 1999, 24(24): 1814-1816
    68 T.B.Simpson, A.Gavrielides, P.Peterson. Coherent intracavity coupling offiber lasers. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2001, 1: 62-63
    69 Akira Shirakawa, Tomoharu Saitou, Tomoki Sekiguchi, Ueda Ken-Ichi. Coherent addition of fiber lasers by use of a fiber coupler. Optics Express. 2002, 10(21):1167-1172
    70 A. Shirakawa, K. Matsuo, and K. Ueda. Power summation and bandwidth narrowing in coherently-coupled fiber laser array. presented at the Conference on Lasers and Electro-Optics, Optical Society of America, Washington, DC, 2004
    71 David Sabourdy, Vincent Kermène, Agnès Desfarges-Berthelemot, Laurent Lefort, Alain Barthélémy, P. Even and D. Pureur. Efficient coherent combining of widely tunable fiber lasers. Optics Express. 2003, 11(2): 87-97
    72 M. L. Minden, H. Bruesselbach, J. L. Rogers, M. S. Mangir, D. C. Jones, G. J. Dunning, D. L. Hammon, A. J. Solis, and L. Vaughan. Self-organized coherence in fiber laser arrays. Proceeding of SPIE. 2004, 5335: 89–97
    73 A. A. Ishaaya, N. Davidson, L. Shimshi, and A. A. Friesem. Intracavity coherent addition of Gaussian beam distributions using a planar interferometric coupler. Appl. Phys. Lett. 2004, 85: 2187–2189
    74 A. A. Ishaaya, L. Shimshi, N. Davidson, and A. A. Freisem. Coherent addition of spatially incoherent light beams. Opt. Express. 2004: 4929–4934
    75 L. Liu, Y. Zhou, F. Kong, and Y. C. Chen. Phase locking in a fiber laser array with varying path lengths. Appl. Phys. Lett. 2004, 85: 4837–4839
    76 C.C.Cook, T.Y.Fan, M. M. Fejer, H. Injeyan, and U. Keller. Spectral beam combining of Yb-doped fiber lasers in an external cavity, in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, 1999, 26:163-166
    77 Daneu V., Sanchez A., Fan T.Y., Choi, H.K., Turner, G.W., Cook, C.C.. Spectral beam combining of a broad-stripe diode laser. Opt.Lett. 2000, 25 (6): 405-407
    78 Fan T. Y., Sanchez A., Daneu V., Aggarwal, R.L., Buchter, S.C.; Goyal, A.; Cook, C.C.. Laser beam combining for power and brightness scaling. IEEE Aerospace Conference Proceedings. 2000, 3: 49-54
    79 E.J. Bochove, C.A. Denman. Analytical and numerical resonator anlalysis of spectral beam combining of Yb Fiber lasers. Proceeding of SPIE. 2000, 3930:222-233
    80 Erik J.Bochove. Spectral beam combining model for fiber lasers. Proceeding of SPIE, 2001, 4270: 95-104
    81 Erik J.Bochove. Theory of spectral beam combining of fiber lasers. IEEE J.Quantum Electronics, 2002, 38(5): 432-445
    82 Erik J.Bochove. Spectral beam combining of fiber lasers: tolerances, lens design, and microlens array inclusion. Proceeding of SPIE. 2002, 4629: 31-38
    83 S.J.August, A.K. Goyal, R.L.Aggarwal, T. Y. Fanl., A.Sanchez. Wavelength beam combining of Ytterblum fiber lasers in a MOPA configuration. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest. 2002: 594-595
    84 S.J.August, A.K. Goyal, R.L.Aggarwal, T. Y. Fan, A.Sanchez. Wavelength beam combining of laser arrays. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS. 2003, 2: 869-870
    85 S.J.August, A.K. Goyal, R.L.Aggarwal, T. Y. Fan, A.Sanchez. Wavelength beam combining of ytterbium fiber lasers. Opt. Lett. 2003, 23(5): 331-333
    86 Steve Tidwell, Steve Roman, Don Jander. Spectral beam combining of diode laser bars to achieve efficient, near diffraction limited, output power. Proceeding of SPIE. 2003, 4973: 42-46
    87 Thomas H Loftus, Anping Liu, Paul R. Hoffman, Alison Thomas, Marc Norsen, Charles E. Hamiltona and Eric Honea. 258W of Spectrally Beam Combined Power with Near-Diffraction Limited Beam Quality. Proceeding of SPIE. 2006, 6102: 61020S-1
    88 Thomas H Loftus, Anping Liu, Paul R. Hoffman, Alison M. Thomas, Marc Norsen, Rob Royse, and Eric Honea. 522W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality. Optics Letters, 2007, 32(4): 349-351
    89 Igor V. Ciapurin, Leonid B. Glebov, Larissa N. Glebova, Vadim I. Smirnov, Eugeniu V. Rotari. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating. Proceeding of SPIE. 2003, 4974: 209-219
    90 Salet Paul, Lucas-Leclin Gaelle, Roger Gerard, Georges Patrick, Bousselet Philippe, Simonneau Christian, Bayart Dominique, Michel Nicolas, Auzanneau Sophie-Charlotte, Calligaro Michel, Parillaud Olivier, LecomteMichel, Krakowski Michel. Spectral beam combining of a single-mode 980-nm laser array for pumping of Erbium-Doped Fiber Amplifiers. IEEE Photonics Technology letters, 2005, 17(4): 738-740
    91 Salet P., Lucas-Leclin G., Roger G., Georges P., Bousselet P., Simonneau C., Bayart D., Michel N., Auzanneau S.-C., Calligaro M., Parillaud O., Lecomte M., Krakowski M. Quantum Electronics and Laser Science Conference (QELS), v 2, 2005 Quantum Electronics and Laser Science Conference (QELS), 2005: 1313-1315
    92 R?ser F., Klingebiel S., Liem A., Schreiber T., Hofer S., Limpert J., Peschel T., Eberhardt R., Tunnermann A.. Spectral beam combining of fiber lasers. Proceeding of SPIE. 2006, 6102: 61020T-1
    93 Chann B.,Huang R.K., Missaggia L.J., Harris C.T., Liau Z.L., Goyal A.K., Donnelly J.P., Fan T.Y., Sanchez-Rubio A., Turner G.W.. Wavelength beam combining of Slab-Coupled Optical Waveguide Laser (SCOWL) arrays. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, v 2, 2004 IEEE LEOS Annual Meeting Conference Proceedings, LEOS 2004, 2004: 871-872
    94 B. Chann, R. K. Huang, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P. Donnelly, T. Y. Fan, A. Sanchez-Rubio, and G. W. Turner. Near-diffraction-limited diode laser arrays by wavelength beam combining. Opt. Lett. 2005, 30(16): 2104-2106
    95 B. Chann, R. K. Huang, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P.Donnelly, T.Y. Fan, A. Sanchez-Rubio, and G.W. Turner. High-Power Near-Diffraction-Limited Wavelength-Beam-Combined Diode Arrays. Conference on Lasers and Electro-Optics (CLEO) 2005: CMX7
    96 R. K. Huang, B. Chann, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P. Donnelly,T. Y. Fan, A. Sanchez-Rubio, and G. W. Turner. High-power, high-brightness wavelength-beam-combined diode arrays. Conference on Lasers and Electro-Optics (CLEO) 2006 paper: CFG2
    97 B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin and V. S. Ban. Efficient, high-brightness wavelength-beam combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating. Optics Letters, 2006, 31(9): 1253-1255
    98 B. Chann, A. K. Goyal, A. Sanchez-Rubio, T.Y. Fan, B. L. Volodin and V. S. Ban. High-Brightness Wavelength-Beam-Combined Diode Laser Stacks Using a Volume Bragg Grating (VBG). Conference on Lasers and Electro-Optics (CLEO) 2006 paper: CMD6
    99 Ciapurin, Igor V., Glebov, Leonid B., Smirnov, Vadim I. Spectral combining of high-power fiber laser beams using Bragg grating in PTR glass. Proceedings of SPIE - The International Society for Optical Engineering, , Fiber Lasers: Technology, Systems, and Applications, 2004, 5335: 116-124
    100 Gopinath, Juliet T, Chann, Bien, Fan, T Y, Antonio Sanchez-Rubio. High-Brightness Wavelength-Beam-Combined Eyesafe Diode Laser Stacks. Conference on Lasers and Electro-Optics (CLEO) 2007: CThEE1
    101 Yushi Kaneda, Li Fan, Ta-Chen Hsu, Nasser Peyghambarian, Mahmoud Fallahi, Armis R. Zakharian, J?rg Hader, Jerome V. Moloney, Wolfgang Stoltz, Stephan Koch, Robert Bedford, Armen Sevian, and Leonid Glebov. High brightness spectral beam combination of high-power vertical-external-cavity suface-emmitting lasers. IEEE Photonics Technology letters. 2006, 18(17): 1795-1797
    102 Smith M.J., Trainor Daniel W., Duzy Carolyn. Shallow angle beam combining using a broad-band XeF laser. IEEE Journal of Quantum Electronics. 1990, 26(5): 942-949
    103 Digman Jessica, Hollins Richard. Beam combination in Raman amplifiers. IEEE Nonlinear Optics: Materials, Fundamentals and Applications - Conference Proceedings. 1994: 370-372
    104 Nathan B. Terry, Kevin T. Engel, Thomas G. Alley, Timothy H. Russell. Use of a continuous wave Raman fiber laser in graded-index multimode fiber for SRS beam combination. Optics Express. 2007, 15(2): 602-607
    105 Ding Y., Pogany P., Spenger M., Eichler H.J., Diez S., Ludwig R., Weber H.G.. Beam combination of parallel semiconductor laser amplifiers by photorefractive coupling. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 1996 :106-107
    106张平,高岚筠,吴震.多光束相干合成的研究.华中理工大学学报. 1997, 25(2): 65-69
    107 Mark A. Culpepper. Coherent combination of fiber laser beams. Proceedingof SPIE. 2002, vol.4629: 99-108
    108 Ferdinand Banmmer. A new concept for a high brilliance high power diode laser. IEEE 2003: 159
    109 Shahriar M.S., Weathers W., Riccobono J. Holographic beam combiner. SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings. 1999, 2: 612-615
    110 Shahriar M.S., Riccobono J., Kleinschmit M., Shen J.T.. Coherent and incoherent beam combination using thick holographic substrates. Optics Communications. 2003, 220(1-3): 75-83
    111 H. N. Yum, P. R. Hemmer, A. Heifetz. Demonstration of a multiwave coherent holographic beam combiner in a polymeric substrate. Optics letters. 2005, 30(22): 3012-3014
    112 Moore, Gerald T. Binary coherent beam combination with mirror pairs, Applied Optics, 2002, 41(30): 6399-6409
    113 Anatoliy Khizhnyak, Vladimir Markov. Intra-Cavity Fiber Array Beam Combining. Proceeding of SPIE. 2005, 5709: 175-183
    114 V. I. Kovalev, R. G. Harrison. Coherent beam combining of fiber amplifier array output through spectral self-phase conjugation via SBS. Proceeding of SPIE. 2006. 6102: 61021B-1
    115 K. Nicklaus, M. Hoefer, D. Hoffmann, J. Luttmann, R. Wester, R. Poprawe. MOPA with kW average power and multi MW peak power: experimental results, theoretical modeling and scaling limits. Proceeding of SPIE. 2006, 6100: 610016-1
    116 T. M. Shay. Theory of electronically phased coherent beam combination without a reference beam. Optics Express. 2006, 14(25): 12188-12195
    117 T. M. Shay, Vincent Benham, Lt. Justin Spring, Capt. Benjamin Ward, F. Ghebremichael, Mark A. Culpepper, Anthony D. Sanchez, J. T. Baker, Sgt. D. Pilkington and Richard Berdine. Self-Referenced Locking of Optical Coherence by Single-detector Electronic-Frequency Tagging. Proceeding of SPIE, 2006, 6102: 61020V-1
    118李红艳,任向军.光束合成技术研究及其应用.激光与光电子学进展. 2002, 39(7): 22-25
    119楼祺洪,周军,王之江.光纤激光作为激光武器的能力分析.激光技术,2003, 27(3): 161~165
    120 T. Y. Fan, A.Sanchez. Coherent (phased array) and wavelength (spectral) beam combining compared. Proceeding of SPIE, 2005, 5709: 157-164
    121 T. Y. Fan. Laser beam combining for high-power high-radiance sources. IEEE Jounal of Selected topics in Quantum Electronics, 2005, 11(3): 567-577
    122丁迎春,吕志伟,何伟明.受激布里渊散射相位共轭激光组束规律.强激光与粒子束, 2002, 14(3): 353-356
    123 R. Fedosejevs, I. V.Tomov, D. C. D. Mcken, A. A. Offenberger. Experimental study of an SF6 Brillouin amplifier pumped by KrF laser radiation. Appl. Phys. Lett. 1984, 45(4): 340-342
    124 E. J. Miller, D. Skeldon, R. W. Boyd. Spatial evolution of laser beam profiles in an SBS amplifier. Appl Opt. 1989, 28(1): 92-96
    125 S. Sternklar, S. Jackel, D. Chomsky, A. Zigler. Coherent beam and image amplification by Brillouin two-beam coupling in CS2. Opt Lett. 1990, 15(11): 616-618
    126 A. M Scott, A. M Watkins, P. Tapster. Gain and noise characteristics of a Brillouin amplifier and their dependence on the spatial structure of the pump beam. J. Opt. Soc. Am. B.1990, 7(6): 929-935
    127 K. D. Ridley, A. M. Scott. High reflectivity phase conjugation using Brillouin preamplification. Opt. Lett. 1990, 15: 777-779
    128 D. C. Jone, K. D. Ridley, G. Cook, A. M. Scott. Fidelity of Brillouin amplification with Gaussian input beams. Proceeding of SPIE. 1991, 1500: 46-52
    129 A. A. Offenberger, D. C. Thompson, R. Fedosejevs, B. Harwood, J. Santiago, and H. R. Manjunath. Experimental and Modeling Studies of a Brillouin Amplifier. IEEE J. Quantum Electron. 1993, 29(1): 207-216
    130 Y. Glick, S. Sternklar. Reducing the noise in Brillouin amplification by mode-selective phase conjuation. Optcs Letters. 1992, 17(12): 862-864
    131 Y. Glick, S. Sternklar. Angular field of view for Brillouin amplification. The proceeding of SPIE, Vol. 1972, 8th meeting on Otpical Engineering in Israel, 1992: 27-34
    132 Y. Glick, S. Sternklar. Angular bandwidth for Brillouin amplification. J. Opt. Soc. Am. B. 1994, 11(9): 1539-1543
    133 Y. Glick, S. Sternklar. 1010 Amplification and phase conjugation with high efficiency achieved by overcoming noise limitations in Brillouin two-beam coupling. J. Opt. Soc. Am. B. 1995, 12(6): 1074-1082
    134 O. Vrublevskaya, V. Girdauskas A. Dement’ev. Influence of phase modulation on efficiency and quality of amplified pulses in nonstationary SBS. Lithuanian Physics J. 1999, 39(4): 210-220
    135丁迎春,吕志伟,何伟明.种子光与抽运光能量比对布里渊放大的影响.物理学报, 2002, 51(12): 2767-2771
    136 Bel’dyugin I M, Efimkov V F, Mikhailov S I et al..Amplification of weak stokes signals in the transient regime of stimulated brillouin scattering. J. Russian Laser Research. 2005, 26(1): 1-12
    137高玮,吕志伟,何伟明,朱成禹,董永康.水中微弱光散射布里渊频谱选择性光放大研究.物理学报, 2007, 56(5): 2693-2698
    138 Raijun Chu, Morton Kanefsky, Joel Falk. Numerical study of transient stimulated Brillouin scattering. J. Appl.Phys. 1992, 71(10): 4653-4658
    139范畸康,吴存恺,毛少卿.非线性光学,江苏科学技术出版社,电子工业出版社, 1989: 141-144
    140陈军.光学位相共轭及其应用.科学出版社, 1999:112-131
    141 Robert W. Boyd. Nonlinear optics. The institute of Optics University of Rochester, Rochester, New York, Academic Press. INC. 1992: 304-334
    142 S. T. Amimoto, R. W E Gross, L. Garman-DuVall, T. W Good, and J. D. Piranian. Stimulated-Brillouin-scattering properties of SnCl4. Optics Letters. 1991, 16(18): 1382-1384
    143 Yoshida Hidetsugu, Kmetik Villiam, Fujita Hisanori, Nakatsuka Masahiro, Yamanaka Tatsuhiko, Yoshida Kunio. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Applied Optics. 1997, 36(16): 3739-3744
    144梁铨廷.物理光学.机械工业出版社. 1993: 77-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700