LATF晶体的生长、性能及表面形貌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性光学晶体材料由于在高速光通信、光信息处理、光调制、光开关、频率转换和高密度光存储等领域的重要应用,成为科学研究的前沿领域。有机非线性光学晶体因其非线性系数大、响应速度快、光学损伤阈值高和易加工性而日益成为非线性光学晶体材料的热点。
     L-精氨酸磷酸盐(LAP)晶体是山东大学在国际上首创发明与研制,并受到了国内外高度重视和认同的一种很有希望的紫外有机非线性光学晶体。由于LAP晶体在强激光下具有其它晶体所无法比拟的高激光损伤阈值及高达90%以上的高转换效率,使得它在不断升级发展的强激光频率转换和相位共轭镜等方面表现出特别重要的潜在价值,引起了世界各国非线性光学研究者的广泛关注,相关研究得到了迅速发展和广泛开展。
     L-精氨酸三氟乙酸盐(LATF)晶体是本课题组继LAP晶体之后,在国际上首创的又一种具有高损伤阈值的非线性光学新晶体,它由天然碱性氨基酸之一的L-精氨酸(L-Arginine)分子和三氟乙酸(CF_3COOH)分子按等摩尔比合成。初步测试结果发现:LATF晶体属于单斜晶系,P2_1空间群,粉末倍频效应是KDP晶体的2.5倍,与LAP晶体接近,紫外截止波长为232nm,其比热是LAP晶体的2倍,在低重复频率的强激光作用下,LATF晶体具有比LAP(DLAP)晶体更高的激光损伤阈值。因此,LATF晶体可能是一种性能更优异、更富有潜在价值的新型非线性光学晶体材料。鉴于此,本论文针对LATF晶体的大尺寸单晶生长、结构、缺陷、表面形貌、生长机制及性能测试表征和品质鉴定工作进行了较深入的研究,主要内容包括:
     1.大尺寸LATF单晶生长的研究
     由于LATF晶体沿不同方向生长速度存在较大各向异性,c轴生长速度极其缓慢而b轴、a轴生长速度极其迅速,呈现出片状生长的特点,给晶体测试工作带来了较大困难。通过控制溶液组分,找到了阻止晶体片状生长的规律,并采用了一套连续籽晶优化技术,解决了大尺寸LATF优质单晶生长中的关键技术问题。在此基础上,对过饱和溶液成核过程进行了研究,包括测定亚稳区宽度和成核诱导期,计算固液界面张力、临界成核半径和临界成核自由能等成核特征参数,从而加强了生长条件的完善和控制,生长出了最大尺寸可达50×27×7mm~3、外形规则、高光学质量的LATF体块单晶,并对晶体形貌进行了分析。晶体沿[010]方向拉长,((?)01)、((?)00)和(001)晶面是晶体易显露的三个大面。
     2.LATF晶体结构与性能的研究
     利用X-射线衍射、红外拉曼光谱和核磁共振谱,确定并表征了晶体的结构。手性分子L-Arginine分子存在电荷转移结构,CF_3COOH分子的引入优化了L-Arginine分子的排列取向,即L-Arginine分子和CF_3COOH分子沿z轴方向有序排列,形成了晶体较强的非线性光学效应。通过核磁共振谱法发现晶体中L-Arginine分子与CF_3COOH分子之间存在氢键和静电作用,这种相互作用有可能会导致L-Arginine分子的构象发生转变。
     通过对晶体光学、热学和电学性能的系统研究,表明了LATF晶体是一种性能优异的新型非线性光学晶体材料。
     LATF晶体粉末倍频效应是KDP晶体的2.5倍,与LAP晶体接近;透光波段是232~2000nm,紫外截止波长是232nm,且随着溶剂极性的增强,晶体的吸收光谱将发生蓝移;采用V棱镜法测量了晶体的主轴折射率,拟合了折射率色散方程,绘制出了折射率色散曲线;从理论上数值模拟计算了晶体的位相匹配曲线,给出了有效非线性系数的计算公式,为下一步实验研究和测试工作提供理论指导;测定了晶体在激光波长1053nm,脉宽20ns和激光波长1064nm,脉宽20ps、1ns、10ns条件下的激光损伤阈值分别为2GW/cm~2和1064,19,3.5GW/cm~2,并探讨了影响晶体激光损伤阈值的本征因素和外部因素。在低重复频率的强激光作用下,晶体的损伤过程主要是激光的电场效应起作用,其损伤阈值与晶体的热学性能(如比热、热膨胀系数等)和机械性能有密切的联系。
     LATF晶体的熔点为217℃,热稳定性高于LAP晶体(140℃);室温下LATF晶体的比热(340.70J·K~(-1)·mol~(-1))比LAP晶体的比热(158.99J·K~(-1)·mol~(-1))大得多,且其热膨胀各向异性比LAP晶体小,因此在脉冲激光作用下,LATF晶体具有比LAP晶体更高的抗光伤潜力;通过热膨胀张量主轴化方法,绘制出了LATF晶体在(010)平面内热膨胀系数随方向的分布,其各向异性热膨胀特性要求晶体生长过程中应尽量减少温度的波动。
     测定了LATF晶体的介电常数和介电损耗随频率和温度的变化曲线,结果发现:介电常数随频率的增大而减小且在100kHz以上出现饱和,此现象主要是界面极化作用所致,即移动的电荷载体被其它的物理势垒所阻断,限制了物质局域性极化的发生;在特定频率下,晶体的介电常数随温度几乎不发生变化,突出了晶体内部较高的化学均匀性和稳定性;低频时的高介电损耗源自于分子偶极矩的空间电荷极化机制而高频时的低介电损耗则表明了晶体样品拥有较高的光学质量和稳定性。
     3.LATF晶体表面形貌与生长机理的研究
     利用原子力显微镜,对LATF晶体在不同生长条件下的表面形貌及微观生长机制进行了深入研究。LATF晶体{101}面的生长机制主要包括螺旋位错生长和二维成核生长两种机理,其中以二维成核生长为主,主要结论如下:
     (1)生长台阶可以分为三类:一类是基台阶,高度与(101)面面间距相当;另一类是聚并台阶和大台阶,高度与基台阶的高度成倍数关系,台阶的聚并不仅会造成一些不稳定粗糙台阶片段生成,同时还会影响到最终的界面形态演变,台阶聚并往往是由于溶液中杂质通过改变固液界面处吸附层特点进而影响到生长单元的叠加而引起的,但杂质对台阶运动的作用具有选择性,若生长组分供给充足,受到杂质影响不明显则能够表现出非常直的台阶流;最后一类是没有完全聚并而仍保持基台阶性质的“准聚并台阶”,其产生可以采用Chernov的台阶运动波理论来定性解释,台阶间距越大,台阶生长速度越快,因此台阶密度最小的区域台阶推进速度最快,逐渐追及前面的基台阶群导致台阶密度增大。
     平行于b轴直台阶列的普遍存在是晶体生长的一个重要特征,是由晶体结构决定的本征生长现象,其形成与晶体的微观基元及其在晶体中的排列方式密切相关。b轴方向上存在着较大的极化场和结合力,使得b轴成为晶体快速生长的方向,一旦有临界晶核形成,生长基元便会迅速地沿b轴堆积形成微观直线台阶,而后靠台阶列的切向移动逐层生长铺满整个晶面。
     (2)螺位错生长丘的形状多数呈椭圆状,但当不同区域生长条件的变化促使螺位错周围的相变驱动力差异较小时,会形成长方形的生长丘,即沿不同方向运动的台阶生长速率的各向异性得到了充分体现。b轴方向是晶体的快速生长方向,存在较强的偶极引力作用。沿b轴伸长的长方形生长丘说明了晶体生长既受到生长条件的影响,也要受到晶体结构的制约。螺位错推出的生长台阶一般具有不同的台阶高度和台阶间距,但少数情况下,台阶运动存在伯格效应,吸附的结晶分子在台阶表面扩散协调后同步向前运动,表现出生长台阶的稳定性。
     (3)观察到了晶体的二维核产生、发展最后融合成“堆垛层”的连续变化过程,提出了一种新的成核-侧向推展模型(二维核叠层生长模型)来描述此特殊生长现象。此前,在对LAP晶体生长机理的实验观察中,并未发现二维核叠层生长现象,晶体的生长丘多由螺位错发展而成。
     二维核融合的过程中没有在连接处留下痕迹,不会导致缺陷,融合后的新二维岛中,越靠近岛中心,高度越低,中心最低处与岛周边高度最大相差50nm,这说明二维岛向外扩展的同时也从四面向岛中央逐层延伸。这种四周高而中心凹下去的二维核生长丘分布易于吸附或沉积杂质粒子,最终可能会产生晶体缺陷。
     台阶推移速度与平台宽度之间的关系可以用表面扩散控制生长模型来解释,拥有宽平台的台阶会比拥有窄平台的台阶运动速度快,成为成核最有利的位置。同时,二维核提供了进一步成核的台阶源,新核在其上面继续形成加速了宽台阶的生长,逐渐形成阶梯状向外扩展的二维岛甚至导致台阶悬垂形貌形成。
     (4)二维核的形貌与生长温度和过饱和度之间存在密切关联:较低温度下二维核大都呈圆形和椭圆形,随着温度的升高和过饱和度的降低,二维核形貌由圆形转变成椭圆形再到扇形,
     4.LATF晶体缺陷的研究
     借助光学显微镜和原子力显微镜,结合化学腐蚀法,对LATF晶体的缺陷及其形成机制进行了系统的观测与研究。LATF晶体中生长缺陷主要包括位错、空洞、溶液包裹体、开裂和楔化等。位错缺陷主要是受到生长条件的波动和杂质浓度的影响而形成的;空洞主要是由杂质对晶体生长的阻碍作用所致;溶液包裹体的形成与失去稳定性的聚并台阶及大台阶有关;导致开裂产生的原因包括温度波动、过饱和度变化太大、晶体的各向异性热膨胀特性及包裹体的存在等;引起晶体楔化的因素可以归结为杂质离子、溶液的pH值、过饱和度及生长温度。针对晶体缺陷的不同形成机制,采取了高温处理溶液新方法等有效减少或消除LATF晶体缺陷的相应措施。
Nonlinear optics (NLO) crystal materials has become forefront of current research in view of its vital applications in areas such as high-speed optical communication, optical signal processing, optical modulation, optical switching, frequency shifting and high-density data storage. Organic NLO crystals have already become a hotspot in the field of nonlinear optical crystal material research, as they have large nonlinear coeffieicents, inherent ultrafast response times, high optical thresholds for laser power and easy processability as compared with inorganic crystals.
     L-arginine phosphate monohydrate (LAP) is discovered by Shandong University as a very promising UV organic NLO crystal material and has been given more emphasis by scientists. Due to the incomparable high laser damage threshold and more than 90% conversion efficiency, LAP crystal behaves important value in developing intense laser frequency shifting and phase conjugating mirrors and attracts more and more worldwide researchers's attention to develop rapidly and widely.
     Stimulated by the discovery of LAP crystal, our group has synthesized L-arginine trifluoroacetate (LATF) crystal as another NLO crystal material exhibiting high damage threshold for the fisrt time. LATF is synthesized by dissolving equimolar quantities of L-arginine and trifluoroacetate acid in deionized water. Primary experimental results indicate that LATF belongs to the monoclinic system, P2_1 space group, powder SHG efficiencies is 2.5 times higher than that of KDP, ultraviolet transparency cutoff is 232 nm, its specific heat is 2 times larger than that of LAP, and the optical damage threshold of LATF at low repeat frequency strong laser is higher than that of LAP and DLAP. Therefore, LATF crystal is a new valuable and potential NLO crystal material. In this dissertation, the bulk crystal growth, structure, defects, surface morphologies, mechanisms, characterization and appraisal properties of LATF crystal are systemically investigated. The outline of this dissertation is as follows:
     1. Investigation of bulk crystal growth of LATF single crystals
     The growth velocity of LATF crystal oriented various directions has large anisotropy, c-axis is much slower than that of b-axis and a-axis, which bring difficulty to provide crystal samples for experimental measurement. Through adjustment of the solution composing, the rule of prevention sheet growth of crystals has been discovered, and combined with a continuous optimized seed-crystal method, the key technical question of obtaining excellent bulk LATF crystal has been resolved. In addition, through the investigations of nucleation kinetics, the metastable zonewidth and induction period are determined, the nucleation parameters such as interfacial energy of crystal-solution, critical radius and critical free energy barrier are all calculated. Buck LATF crystals with maximum size up to 50×27×7 mm~3 and high optical quality have been grown by using the temperature lowering method. The crystal morphology was also analyzed, the optimal growth direction is oriented along b axis and the major flat facets are indexed as (101), (100) and (001).
     2. Investigations of crystal structure and properties of LATF crystals
     The structure of LATF crystal is determined and characterized by X-ray diffraction, Fourier transform infrared (FT-IR), Fourier transform Raman and Fourier transform nuclear magnetic resonance (FT-NMR) techniques. The introduction of CF_3COOH optimizes the orientation of L-Arginine, namely L-Arginine and CF_3COOH arrange in order along c-axis. The optically active L-Arginine with the asymmetrical guanidyl and carboxyl groups to combine with the alkyl radical possessing F_3C tetrahedra of CF_3COOH and forms the high nonlinearity of the crystal. The NMR studies found that there is hydrogen-bonding and static interactions exist between L-Arginine and CF_3COOH, and may result in the conformational change of L-Arginine.
     Through the investigations of optical, thermal and electric properties, LATF crystal has been proved to be an excellent new NLO crystal material.
     The SHG efficiency of LATF crystal powder has been estimated as 2.5 times higher than that of KDP; the transparent region is in optical range of 232-2000 nm, with 232 nm being the UV cutoff wavelength, besides negative solvatochromism, i.e., hypsochromic (blue) shift occurs with increasing solvent polarity which might indicate a reduction in dipole moment on excitation; the principal refractive indices of crystal were measured by classical V-prism method and the dispersion curves obtained from the fit in terms of the Sellmeier analytical equation were plotted; the phase-matching curves of crystal were simulated and calculated theoretically and the equation for the effective nonlinear coefficients were presented; the laser damage threshold is 2 GW/cm~2 for laser wavelength 1053 nm, pulse width 20 ns and 1064, 19, 3.5 GW/cm~2 for laser wavelength 1064 nm, pulse width 20 ps, 1 ns, 10 ns, the essential and external factors that affect the laser damage threshold were both studied. For low repeat frequency strong laser, the electric field effect plays a great role in damage process and the laser damage threshold of crystal is correlated with its thermal (specific heat and thermal expansion coefficient) and mechanical properties.
     LATF crystal is thermally stable up to 217℃, which is substantially higher than that of LAP (140℃); the specific heat of LATF is larger than that of LAP and the thermal expansion coefficients of LATF are less anisotropic than that of LAP, Therefore, LATF has a higher laser damage potential than LAP; According to the method obtaining the values of principal expansion coefficients, projection of thermal expansion quadric along the b-axis is presented.
     The dielectric constant and dielectric loss were recorded and analyzed both as function of frequency and temperature. The dielectric constant is relatively high in the lower frequency region and decreases with increasing frequency and becomes almost saturated beyond 100 kHz. This may be due to the interfacial polarization, in which the mobile charge carriers are interdicted by a physical barrier which restrains generating a localized polarization of the material. The variation of dielectric constant with temperature is small, which infers that the crystals are of good chemical homogeneity. The higher values of dielectric loss at low frequencies originates from space-charge polarization mechanism of molecular dipoles, and the characteristic of low dielectric loss at high frequencies clarifies that the grown samples possess enhanced optical quality with lesser defects.
     3. Investigations of surface morphologies and growth mechanisms of LATF crystals
     The surface morphologies and growth mechanisms of LATF crystals grown from various conditions were investigated using by atomic force microscopy (AFM). Crystals grow mainly by layer mode including dislocation-controlled mechanism and two-dimensional (2D) nucleation growth which dominates during the crystal growth.
     (1) The growth step patterns consist of three types, namely the elementary steps, macrosteps and quasi-macrosteps. The step height of elementary steps is about 0.64 nm, matching the interplanar distance of d_(101) and the macrosteps's height is multiple as that of elementary steps. The step bunching is always introduced by foreign impurities or particles. However, the impurities have a selective affect on the step movement. The straight step trains will show ultimately if the growth component is ample and the influence by the impurities is not evident. Quasi-macrosteps are practically formed by highly dense steps but remain the properties of elementary steps and its formation can be explained by Chernov's kinematic waves of steps theory. Steps with low density usually advance faster than steps with narrow separations, the elementary steps behind gradually overtake and pile up at the step bunches and finally the highly dense steps come into being.
     The ubiquity of straight steps oriented along b axis is one of the primary growth characteristics. Its formation is correlated with the microcomponent of crystal and their arrangement pattern. Since large polarized field and binding energy exist along the b axis, crystal growth oriented this direction advances rapidly. Once a critical nucleus forms, it will engender the formation of b-oriented straight steps inevitably, and then the step trains spread along the tangent direction and overspread the whole crystal facet.
     (2) Most of the spiral dislocation growth hillocks are elliptical, rectangular shaped hillocks which indicate the anisotropy of step advancement are seldom seen only when the driving force surroundingthe the spiral dislocation differs slightly. The b-axis is the preferential growth direction, which contributes to the formation of rectangular shaped hillocks, crystal growth is confined not only by growth conditions but also by crystal structure. The steps generated by spiral dislocation have dissimilar heights and spacing, however, under few growth conditions, the Berg's effect which indicates the stability of step movement can also be discovered.
     (3) The sequence of nucleation, growth, coalescence of islands and expansion of a "stack" has been observed. A new birth and spread (terraced nuclear) model is put forward to explain this new phenomenon. Previously, this new birth and spread phenomenon was not found during LAP studies, a majority of the hillocks were primarily generated by spiral dislocation.
     In the multiple nuclei growth, the 2D nuclei can gradually merge into a uniform and perfect growth layer when they meet with one another. No defects exist at the junction of the 2D nuclei. The height in the center of the 2D islands is lower than that of far from the center and maximal height difference is 50 nm, which shows that these 2D islands extend inward to the center and expand outward simultaneously. Thus, impurities were easily absorbed and deposited at the bottom of the hillocks and defects will appear ultimately.
     The correlation between step speed and terrace width can be explained by surface-diffusion-controlled growth coupled with the up-step diffusion bias model. The growth rate of a step with a wider terrace is faster than that of a step having a narrow terrace and the steps with larger terraces are the preferential growth sites. At the same time, the emergence of the 2D islands provides step sources for further growth and growth of the wide steps is expedited when several 2D nuclei grow on top of them. Thus, the segments proceed to grow faster than other segments, and the overhang morphology of steps appears in the end.
     (4) The morphologies of 2D nuclei depend both upon supersaturation and upon temperature. More specifically, at the low temperature, 2D nuclei often have circular and elliptical shape. With the increase of temperature and decrease of supersaturation, the islands change from circular to elliptical shape, and further become sector-shaped.
     4. Investigations of LATF crystal defects
     Make use of opton optical microscope and atomic force microscopy, combined with chemical etching method, the results of the observations and discussions of growth defects and its formation mechanisms were presented in the dissertation. The main defects of LATF crystals are growth dislocations, hollow cores, inclusions, cracks, tapering. Growth dislocation defects are mainly influenced by disturbance of growth conditions and distribution of impurities; Hollow cavities result from the adsorbed impurities that block up crystal gowth; the formation of liquid inclusions is correlated with the macrosteps, once the growth surface loses its stability, mother solution will be trapped resulting in liquid inclusions; cracks in crystals are related with the disturbance of temperature, large diversity of supersaturation, anisotropic thermal expansion properties and the presence of inclusions; impurity particles, the pH value, supersaturation and growth temperature of the solution may cause tapering defects. In order to avoid or decrease these defects, corresponding measurements such as a newly disposing high temperature solutions method were taken according to the distinct formation mechanisms results.
引文
[1]钱世雄主编,非线性光学——原理及进展,复旦大学出版社,2001年第一版。
    [2]V.G.Dmitriev,G.G.Gurzadyan,D.N.Nicogosyan,"Handbook of Nonlinear Optical Crystals",Springer-Verlag,New York(1999).
    [3]M.S.Wong,C.Bosshard,F.Pan,P.Gunter,Non-classical donor-acceptor chromophores for second order nonlinear optics,Adv.Mater.8(1996) 677.
    [4]姚建铨,非线性光学频率转换及激光调谐技术,科学出版社,1995年第一版。
    [5]张克从,王希敏,非线性光学晶体材料科学,2005年第二版,科学出版社,p309。
    [6]许东,蒋民华,谭忠格,一种新的有机非线性光学晶体,化学学报,41(1983)570。
    [7]许东,蒋民华,邵宗书,关于LAP晶体的分子基团和主要性能关系的研究,山东大学学报(自然科学版),21(增刊)(1986)1。
    [8]许东,蒋民华,新型紫外倍频材料LAP晶体生长特征的研究,山东大学学报(自然科学版),23(3)(1988)103。
    [9]刘希玲,董胜明,许东,蒋民华,LAP晶体的生长形貌和形貌的研究,15(4)(1986)229。
    [10]胡建平,邱服民,付雄鹰等,SiO_2半波覆盖层对HfO_2/SiO_2高反膜激光损伤的影响,强激光与离子束,13(2)(2001)137.
    [11]郑启光,辜建辉,激光与物质相互作用,武汉:华中理工大学出版社,1996。
    [12]W.Koechner,Solid-state laser engineering,Beijing:Science Press,582(2002).
    [13]奥尔曼,激光束与材料相互作用的物理原理及应用,北京:科学出版社,1994。
    [14]葛自明,吕志伟,林殿阳,强激光非线性效应及光学元件损伤的研究进展,激光杂志,23(2)(2002)12。
    [15]徐建程,胡建平,许乔,基于分数泰伯效应的激光损伤阈值测量,强激光与粒子束,19(12)(2007)1970。
    [16]张问辉,胡建平,陈建国,段利华,马平,高功率激光诱导光学元件损伤阈值测量的不确定度分析,强激光与粒子束,17(4)(2005)528。
    [17]郭少锋,陆启生,程湘爱,光学材料的激光损伤形态的研究,强激光与粒子束,14(2)(2002)238。
    [18]K.H.Guenther,1.06μm Laser damage of thin film optical coating a round-robin experiment involving various pulse lengths and beam parameters[J],Appl.Optics,23(1984) 3743.
    [19]陈飞,孟绍贤,光学材料破坏机理,物理学进展,18(2)(1998)187。
    [20]D.H.Auston,A.A.Ballman,P.Bhattacharya,et al.,Research on nonlinear optical materials:an assessment,Applied Optics,26(2)(1987) 211.
    [21]D.Eimerl,"The Potential for Efficient Frequency Conversion at High Average Power Using Solid State Nonlinear Optical Materials",Lawrence Livermore National Laboratory Report UCID-20565,(1985) pp.92.
    [22]D.Eimerl,S.Velsko,L.Davis,F.Wang,G.Lotacono,G.Kennedy,Deuterated L-arginine phosphate:a new efficient nonlinear crystal,IEEE J.Quantum Electron.QE-25(1989) 179.
    [23]A.Yokotani,T.Sasaki,K.Yoshida,S.Nakai,Extremely high damage threshold of a new nonlinear crystal L-arginine phosphate and its deuterium compound,Appl.Phys.Lett.55(1989)2692.
    [24]A.Yokotani,T.Sasaki,K.Fujioka,S.Nakai et al.,Growth and characterization of deuterated L-arginine phosphate monohydrate,a new nonlinear crystal,for efficient harmonic generation of fusion experiment lasers,J.Crystal Growth 99(1990) 815.
    [25] G. Dhanaraj, M. R. Srinivasan, H. L. Bhat, H. S. Jayanna, and S. V. Subramanyam, Thermal and electrical properties of the novel organic nonlinear crystal L-arginine phosphate monohydrate, J. Appl. Phys. 72 (8) (1992) 3464.
    [26] G. Robertson, Malcolm H. Dunn, Excimer pumped deuterated L-arginine phosphate optical parametric oscillator, Appl. Phys. Lett. 62 (26) (1993) 3405.
    [27] H. Yoshida, M. Nakatsuka, et al., High-energy operation of a stimulated brillouin scattering mirror in an L-Arginine phosphate monohydrate crystal, Applied Optics, 36(30) (1997) 7783.
    
    [28] M. Yoshimura, Y. Mori, et al., Efficient stimulated brillouin scattering in the organic crystal deuterated L-arginine phosphate monohydrate, J. Opt. Soc. Am. B, 15(1)(1998)446.
    
    [29] R. Mohan Kumar, N. Gopalakrishnan, R. Jayavel, P.Ramasamy, Investigations on the Nucleation Kinetics of L-Arginine Phosphate single crystals, Cryst. Res. Technol. 34 (1999) 1265.
    [30] G. Arunmozhi and E. de M. Gomes, Metastability and crystal growth kinetics on L-arginine phosphate, Cryst. Res. Technol. 39(1) (2004) 34.
    
    [31] G.C. Bhar, A.K. Chaudhary, P. Kumbhakar, Study of laser induced damage threshold and effect of inclusions in some nonlinear crystals, Applied Surface Science 161 (2000) 155.
    
    [32] Arnaud Brignon and Jean-Pierre Huignard, Phase conjugate laser optics, John Wiley & Sons, Inc. ISBN 0-471-43957-6, 2004.
    
    [33] Y. L. Geng, D. Xu, X. Q. Wang, G. H. Zhang, G. W. Yu, D. L. Sun, Surface morphology of {100} faces of L-arginine phosphate monohydrate single crystals investigated by atomic force microscopy, J. Applied Crystallography. 38 (2005) 657.
    [34] Y. L. Geng, D. Xu, D. L. Sun, G. H. Zhang, W. Du, H. Y. Liu, and X. Q. Wang, Growth morphology of {100} faces of L-Arginine phosphate monohydrate single crystals investigated by atomic force microscopy, Cryst. Res. Technol. 39 (2004) 712.
    [35] Y.L. Geng, D. Xu, D.L. Sun, W. Du, H.Y. Liu, G.H. Zhang, X.Q. Wang, Atomic force microscopy studies on growth mechanisms of LAP crystals grown in solution containing excessive amount of L-arginine, Materials Chemistry and Physics 90 (2005) 53-56.
    [36] Y.L. Geng, Private Communication, Thesis, Institute of Crystal Materials, Shandong Univeristy, China, 2006 (in Chinese).
    [37] K.C. Wu, C.P. Liu, C.Y. Mang, Theoretical studies on vibrational spectra and nonlinear optical property of L-arginine phosphate monohydrate crystal, Optical Materials 29 (2007) 1129.
    [38] D. Xu, X.Q. Wang, W.T. Yu, S.X. Xu, GH. Zhang, Crystal structure and characterization of a novel organic nonlinear optical crystal: 1-arginine trifluoroacetate, J. Crystal Growth 253 (2003) 481.
    [39] S. Arjunan, R. Mohan Kumar, R. Mohan, R. Jayavel, Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal, Materials Research Bulletin 43 (2008) 2018.
    [40] S. Arjunan, R. Mohan Kumar, R. Mohan, R. Jayavel, Nucleation kinetics and growth aspects of organic nonlinear optical L-arginine trifluoroacetate single crystals, Cryst. Res. Technol. 43 (2008) 417.
    [41] G. Ravi, K. Srinivasan, S. Anbukumar, P. Ramasamy, Growth and characterization of sulphate mixed L-arginine phosphate and ammonium dihydrogen phosphate/potassium dihydrogen phosphate mixed crystals, J. Crystal Growth 137 (1994)598.
    [42] A.S. Haja Hameed, G. Ravi, MD.M. Hossain, P. Ramasamy, Growth and characterisation of L-arginine phosphate family crystals, J. Crystal Growth 204 (1999) 333.
    [43] Ra. Shanmugavadivu, G. Ravib, A. Nixon Azariah, A.S. Haja Hameed, T. Thenappan, Synthesis, growth and characterization of new mixed analogs of LAP family crystals, Materials Science and Engineering B 113 (2004) 269.
    [44] S. Dhanuskodi, P.A. Angeli Mary, K. Vasantha, Spectroscopic and optical studies on pure and doped single crystals of sulphate-mixed L-arginine phosphate monohydrate-a nonlinear optical crystal, Spectrochimica Acta Part A 59 (2003) 927.
    [45] N. Kavitha, M. Arivanandhan, K. Ramamoorthy, et al., Microbial inhibition, growth of Li~+-doped LAP single crystals and their characterization, Optical Materials, 26 (2004) 275.
    
    [46] A.S. Haja Hameed, S. Rohani, Nucleation studies and surface SHG analysis of L-arginine phosphate monohydrate (LAP) family crystals, Materials Letters 61 (2007)5141.
    [47] M. Meena, C. K. Mahadevan, Growth and electrical characterization of L-arginine added KDP and ADP single crystals, Cryst. Res. Technol. 43 (2) (2008) 166.
    [48] A. Zalkin, D. Eimerl, S.P. Velsco, Structure of (+)-L-arginine diarsenate, Acta Crystallogr.C 45(1989)812.
    [49] A.M. Petrosyan, R.P. Sukiasyan, H.A. Karapetyan, S.S. Terzyan, R.S. Feigelson, Growth and investigation of new non-linear optical crystals of LAP family, J. Crystal Growth 213 (2000) 103.
    [50] A.S. Haja Hameed, G. Ravi, T. Mahalingam, P. Ramasamy, Growth of stubbier habit LAP2 single crystals and their characterisation studies, Materials Science and Engineering B95(2002)61.
    [51] R. Ittyachan and P. Sagayaraj, Growth and characterisation of L-arginine diphosphate crystal, J. Crystal Growth 243 (2002) 356.
    [52] A. Joseph Arul Pragasama, S. Selvakumar, K. Thamizharasan, D. Prem Anand, P. Sagayaraj, Growth and optical characterization of Cu- and Mg- substituted L-arginine di phosphate single crystals, J. Crystal Growth 280 (2005) 271.
    [53] P. C. Thomas, J. Thomas, J. Packiam Julius, J. Madhavan, S. Selvakumar, P. Sagayaraj, Growth and characterization of L-argininium dinitrate, J. Crystal Growth 277 (2005) 303.
    [54] S. S. Terzyan, H. A. Karapetyan, R. B. Sukiasyanand A. M. Petrosyan, L-Arginine nitrates, Journal of Molecular Structure, 687 (2004) 111.
    [55] A. Joseph Arul Pragasam, J. Madhavan, K. Ambujam, P. Sagayaraj et al., Growth and characterization of amino acid (glycine and valine) substituted L-arginine diphosphate single crystals, Optical Materials 29 (2006) 173.
    
    [56] S.B. Monaco, L.E. Davis, S.P. Velsko, F.T. Wang, Synthesis and characterization of chemical analogs of L-arginine phosphate, D. Eimerl, J. Crystal Growth 85 (1987)252.
    
    [57] S. Haussuhl, J. Chrosch, F. Gnanam, E. Fiorentini, K. Recker, F. Wallrafen, Crystal growth and physical properties of monoclinic L-arginine hydrochloride monohydrate, C_6H_(14)O_2N_4HCl·H_2O, and L-arginine hydrobromide monohydrate, C_6H_(14)O_2N_4HBr·H_2O, Cryst. Res. Technol. 25 (1990) 617.
    
    [58] S. Mukerji, Tanusree Kar, Thermal and spectroscopic studies of as-grown L-arginine hydrochloride monohydrate crystals, Materials Chemistry and Physics 57 (1998) 72.
    [59] S. Mukerji, T. Kar, Vicker's Microhardness Studies of L-arginine Hydrobromide Monohydrate Crystals (LAHBr), Cryst. Res. Technol. 34 (1999) 1323.
    [60] S. Mukerji, T. Kar, Knoop microhardness anisotropy and Young's modulus of L-arginine hydrochloride monohydrate and L-arginine hydrobromide monohydrate, Materials Research Bulletin 35 (2000).
    
    [61] A.M. Petrosyan, R.P. Sukiasyan, H.A. Karapetyan, S.S. Terzyan, R.S. Feigelson, Growth and investigation of new non-linear optical crystals of LAP family, J. Crystal Growth 213 (2000) 103.
    
    [62] T. Pal, T. Kar, X.Q. Wang, G.Y. Zhou et al., Growth and characterization of nonlinear optical material, LAHClBr-a new member of L-arginine halide family, J. Crystal Growth 235 (2002) 523.
    [63] T. Pal, T. Kar, Single crystal growth and characterization of the nonlinear optical crystal l-arginine hydrofluoride, J. Crystal Growth 234 (2002) 267.
    [64] A.S. Haja Hameed, P. Anandan, R. Jayavel, P. Ramasamy, G. Ravi, Synthesis, growth and characterization of nonlinear optical material: 1-arginine fluoride, J. Crystal Growth 249 (2003) 316.
    [65] A.M. Petrosyan, H.A. Karapetyan, A.A. Bush, R.P. Sukiasyan, Crystal structure and characterization of L-arginine dichloride monohydrate and L-arginine dibromide monohydrate, Materials Chemistry and Physics 84 (2004) 79.
    [66] K. Meera, R. Muralidharan, R. Dhanasekaran, P. Manyum, P. Ramasamy, Growth of nonlinear optical material: L-arginine hydrochloride and its characterization, J. Crystal Growth 263 (2004) 510.
    [67] T. Pal, T. Kar, G. Bocelli, L. Rigi, Morphology, crystal Structure, and thermal and spectral studies of semiorganic nonlinear optical crystal LAHClBr, Cryst. Growth Des. 4 (2004) 743.
    [68] T. Pal, T. Kar, Studies of microhardness anisotropy and Young's modulus of nonlinear optical crystal l-arginine hydrochlorobromo monohydrate, Materials Letters 59 (2005) 1400.
    [69] T. Pal, T. Kar, Studies on growth defects and mechanical properties of nonlinear optical crystal: L-arginine hydrofluoride, J. Crystal Growth 276 (2005) 247.
    [70] T. Pal, T. Kar, Optical, thermal and structural characterization of an NLO crystal, L-arginine perchlorate, J. Crystal Growth 274 (2005) 251.
    [71] D. Kalaiselvi, R. Jayavel, Single crystal growth and characterization of nonlinear optical L-Arginine dibromide monohydrate (LA2HBr), Materials Letters 25 (2006) 331.
    [72] T. Pal, T. Kar, Studies on surface micromorphology and growth mechanism of nonlinear optical crystal: L-arginine hydrochlorobromo monohydrate, J. Crystal Growth 289 (2006) 202.
    [73] P. C. Thomas, L.B. Kumar, A. Anuradha, S. Aruna, G.P. Joseph, P. Sagayaraj, Growth and characterization of nonlinear optical single crystals of L-arginine diiodate, J. Crystal Growth 290 (2006) 560.
    [74] D. Kalaiselvi, R. Mohan Kumar, R. Jayavel, Growth, optical and thermal studies of nonlinear optical L-arginine perchlorate single crystals, Cryst.Res.Technol. 1 (2007) 1.
    
    [75] R. Sankar, R. Muralidharan, C.M. Rahgavan, R. Mohan Kumar, R. Jayavel, Structural, thermal, mechanical and optical properties of l-arginine diiodate crystal: A new nonlinear optical material, Materials Chemistry and Physics 107 (2008) 51.
    [76] R. Sankar, R. Muralidharan, CM. Rahgavan, R. Mohan Kumar, R. Jayavel, Synthesis, growth, and characterization of nonlinear optical material L-arginine iodate crystal, Materials Letters 62 (2008) 133.
    [77] T. Pal, T. Kar, G. Bocelli, L. Rigi, Synthesis, growth, and characterization of L-Arginine acetate crystal: a potential NLO material, Cryst. Growth Des. 3 (2003) 13.
    [78] R. Muralidharan, R. Mohankumar, R. Jayavel and P. Ramasamy, Growth and characterization of L-arginine acetate single crystals: a new NLO material, J. Crystal Growth 259 (2003) 321.
    [79] T. Pal, T. Kar, Optical, mechanical and thermal studies of nonlinear optical crystal l-arginine acetate, Materials Chemistry and Physics 91 (2005) 343.
    [80] T. Pal, T. Kar, Studies on mechanical properties of an organic nonlinear optical crystal, Materials Science and Engineering A 437 (2006) 235.
    [81] K. Selvaraju, R. Valluvan, K. Kirubavathi, S. Kumararaman, Investigation on the nucleation kinetics of L-arginine acetate single crystals, Materials Letters 61 (2007) 3041.
    [82] M. Gulam Mohamed, M. Vimalan, J. G. M. Jesudurai, J. Madhavan, P. Sagayaraj, Growth and characterization of pure and doped nonlinear optical l-arginine acetate single crystals, Cryst. Res. Technol. 10 (2007) 948.
    [83] S.Suresh, S. Padmanabhan, M. Vijayan, X-ray studies on crystalline complexes involving amino acids and peptides. XXVII. Effect of chirality, specific interactions and characteristic aggregation patterns in the structures of arginine and its complexes with formic acid, J. Biomol. Struct. Dyn. 11 (1994) 1425.
    [84] A. M. Petrosyan, R. S. Feigelson, E. W. Van Stryland, R. P. Sukiasyan, H.A. Karapetyan, New class of nonlinear optical crystals among arginine saltsProc. SPIE 4751(2002)217.
    [85] J. P. Juliusa, A. J. Arul Pragasamb, S.A. Rajasekara, P. Sagayaraj et al., Studies on the growth and characterization of 1-argininium formate single crystals, J. Crystal Growth 267 (2004) 619.
    [86] S. Haussuhl, H. A. Karapetyan, R. P. Sukiasyan, A. M. Petrosyan, Structure and Properties of Orthorhombic L-Arginine Formate, Cryst. Growth Des. 6 (2006) 2041.
    [87] T. Pal, T. Kar, Crystallization and characterization of nonlinear optical material L-arginine formomaleate, Materials Letters 61 (2007) 3826.
    [88] N.R. Chandra, M.M. Prabu, J. Venkatraman, S. Suresh, M. Vijayan, X-ray studies on crystalline complexes involving amino acids and peptides. XXXIII. Crystal structures of L- and DL-Arginine complexed with oxalic acid and a comparative study of amino acid-oxalic acid complexes acta cryst. B 54 (1998) 257.
    [89] G Arunmozhi, R. Jayavel and C. Subramanian, Experimental determination of metastable zone width, induction period and interfacial energy of LAP family crystals, J. Crystal Growth 178 (1997) 387.
    [90] C.C. Zhu, J. Zhu, S.M. Guo, Restraint of foreign crystals by activated cabon during the course of LAP growth, Journal of Synthetic Crystals, 23 (3-4) (2004) 261.
    [91] A.M. Petrosyana, R.P. Sukiasyana, H.A. Karapetyanb, M.Yu. Antipinc, R.A. Apreyan, L-arginine oxalates, J. Crystal Growth 275 (2005) e1927.
    [92] M.Yu. Antipin, K.A. Lyssenko, A.M. Petrosyan et al., Infrared and Raman spectra, structure and electron density distribution of L-arginine dioxalate, Journal of Molecular Structure 792-793 (2006) 194.
    [93] A.M. Petrosyana, Comment on the paper by R. Sankar, R. Muralidharan, C.M. Rahgavan, R. Mohan Kumar, R. Jayavel, "Synthesis, growth, and characterization of nonlinear optical material l-arginine iodate crystal", Materials Letters 62 (2008) 133.
    [94] K. Vasantha, S. Dhanuskodi, Single crystal growth and characterization of phase-matchable L-arginine maleate: a potential nonlinear optical material, J. Crystal Growth 269 (2004) 333.
    [95] T. Mallik, T. Kar, Synthesis, growth and characterization of a new nonlinear optical crystal: l-arginine maleate dehydrate, Cryst. Res. Technol. 40 (2005) 778.
    [96] D. Kalaiselvi, R. Mohan Kumar, R. Jayavel, Growth and characterization of nonlinear optical L-arginine maleate dihydrate single crystals, Materials Letters 62 (2008)755.
    [97] C. Owensa, K. Bhata, W.S. Wanga, A. Tana, M.D. Aggarwala et al., Bulk growth of high quality nonlinear optical crystals of L-arginine tetrafluoroborate (L-AFB), J. Crystal Growth 225 (2001) 465.
    [98] D. Rajan Babua, D. Jayaramana, R. Mohan Kumarb, G. Ravic, R. Jayavel, Growth aspects of semi-organic nonlinear optical 1-arginine tetrafluoroborate single crystals, J. Crystal Growth 250 (2003) 157.
    [99] A. Pricilla Jeyakumari, S. Dhanuskodi, S. Manivannan, Phase matchable semiorganic NLO material for frequency doubling: L-Arginine tetrafluoroborate, Spectrochimica Acta Part A 63 (2006) 91.
    [100] A.M. Petrosyan, Vibrational spectra of L-arginine tetrafluoroborate and L-arginine perchlorate, Vibrational Spectroscopy 41 (2006) 97.
    [101] I. L. Karle and J.Karle, An application of the symbolic addition method to the structure of L-arginine dehydrate, Acta Cryst. B 17 (1964) 835.
    [102] T. Mallik, T. Kar, Growth and characterization of nonlinear optical L-arginine dihydrate single crystals, J. Crystal Growth 285 (2005) 178.
    [103] T. Mallik, T. Kar, Gabriele Bocelli and Amos Musatti, Structural and thermal characterization of L-arginine dihydrate-a nonlinear optical material, Cryst. Res. Technol. 41 (2006) 280.
    [104] S.X. Xu, Private Communication, Thesis, Institute of Crystal Materials, Shandong Univeristy, China, 1998 (in Chinese).
    [105] C.M. Pina, U. Becker, P. Risthaus, D. Bosbach, A. Putnis, Molecular-scale mechanisms of crystal growth in barie, Nature 395 (1998) 483.
    [106] A.J. Malkin, Yu.G. Kuznetsov, A. Mcpherson, An in situ AFM investigation of catalase crystallization. Surf. Sci. 393 (1997) 95.
    [107] P. Hartman, Morphology of crystals (ed. I. Sunagawa), Terra Scientific, Tokyo, 1987,269.
    
    [108] K. Sangwal, J. Borc, T. Palczynska, On the growth hillocks vicinality and normal growth rates of the (101) face of KDP crystals, J. Crystal Growth 194 (1998) 214.
    [109] J.J. De Yoreo, T.A. Land, L.N. Rashkovich, et al., The effect of dislocation cores on growth hillock vicinality and normal growth rates of KDP {101} surfaces, J. Crystal Growth 182 (1997) 442.
    [110] K.J. Davis, P.M. Dove, J.J. De Yoreo, The role of Mg~(2+) as an impurity in calcite growth, Science 290 (2000) 1134.
    [111] W.J.P. van Enckevort, A.C.J.F. van denBerg, Impurity blocking of crystal growth: a montecarlo study, J. Crystal Growth 183 (1998) 441.
    [112] S. Yu, Potapenko, Moving of step through impurity fence, J. Crystal Growth 133 (1993) 147.
    [1]王步国,施尔畏,仲维卓,夏长泰等,晶体的习性机制与实际形态控制,人工晶体学报,26(3)(1997)189。
    [2]鲍慈光,杨宗璐,普朝光,TGFB晶体在乙二醇—水混和溶剂中溶解度和过饱和度曲线的测定,人工晶体学报,23(3)(1994)219。
    [3]张克从,张乐惠,晶体生长科学与技术(上),科学出版社,1997,p178。
    [4]H.E.Buckly(Ed.),Crystal growth,Willey,New York,1951.
    [5]J.Nyvlt,O.Sohnel,M.Matuchova and M.Broul,The Kineics of Industrial Crystallization(Academia,Prague,1985).
    [6]K.Sangwal,On the estimation of surface entropy factor,interfacial tension,dissolution enthalpy and metastable zone-width for substances crystallizing from solution,J.Crystal Growth 97(1989) 393.
    [7]J.Nyvlt,R.Rychly,J.Gottfried,Z.Wurzelova,Metastable zone-width of some aqueous solutions,J.Crystal Growth 6(1970) 151.
    [8]N.P.Zaitseva,L.N.Rashkovich,S.V.Bogatyreva,Stability of KH_2PO_4 and K(H,D)_2PO_4 solutions at fast crystal growth rates,J.Crystal Growth I48(1995) 276.
    [9]J.Nyvlt,O.Sohnel,J.J.Zola,G.Kostescky,Investigations on the nucleation kinetics of tris thiourea zinc cadmium sulphate,J.Crystal Growth 62(1983) 543.
    [10]A.E.Nielson,S.Sarig,Homogeneous nucleation of droplets and interfacial tension in the liquid system methanol-water-tribromomethane,J.Crystal Growth 8(1971) 1.
    [11]R.Becker,W.Doring,The kinetic treatment of nuclear formation in supersaturated vapors,Ann.Physik(Berlin,Germany) 24(1935) 719.
    [12]闵乃本,晶体生长的物理基础,上海:上海科技出版社,1982。
    [13]J.Scholl,L.Vicum,M.Muller,M.Mazzotti,Precipitation of L-Glutamic acid:determination of nucleation kinetics,Chem.Eng.Technol.29(2006) 257.
    [14]A.E.Nielson,O.Sohnel.Interfacial tensions electrolyte crystal-aqueous solution from nucleation data[J].J.Crystal Growth 11(1971) 233.
    [15]M.Volmer,A.Weber,Nucleus formation in supersaturation systems,Z.Physik.Chem.119(1926) 277.
    [16]S.K.Gao,G.M.Wang,Y.X.Jiang,J.Z.Chen,Nucleation process of ammonium tetramolybdate in supersaturated solutions,J.Synthetic crystals 35(6)(2006) 1232.
    [17]许东,蒋民华,新型紫外倍频材料LAP晶体生长特征的研究,山东大学学报(自然科学版),23(3)(1988)103。
    [18]C.Cope,Condensation reactions.I.The condensation of ketones with cyanoacetic esters and the mechanism of the knoevenagel reaction,J.Am.Chem.Soc.59(1937) 2327.
    [1]S.X.Xu,Private Communication,Thesis,Institute of Crystal Materials,Shandong Univeristy,China,1998(in Chinese).
    [2]I.L.Karle,J.Karle,An application of the symbolic addition method to the structure of L-arginine dihydrate,Acta Crystallogr.17(1964) 835.
    [3]南京大学地质学系矿物岩石学教研室编,粉末X射线物相分析,地质出版社,1986。
    [4]杨南如,无机非金属材料测试方法,武汉工业大学出版社,1990。
    [5]吕孟凯,固态化学,山东大学出版社,1995。
    [6]P.Y.Bruice,Organic Chemistry,Pearson Education(Singapore) Pte.Ltd.,Delhi,2002,first Indian reprint.
    [7]B.R.Zeng,X.Y.Yu,S.H.Cai,Z.Chen,H.L.Wan,Acta Chimica Sinica,62(2004) 230.
    [8]S.K.Kurtz and T.T.Perry,"A powder technique for the evaluation of nonlinear optical materials",J.Appl.Phys.39(1968) 3798.
    [9]S.K.Kurtz,J.P.Doughterty,"Methods for the detection of noncentrosymmetry in solids",Systematic Materials Analysis,4(1978) 269.
    [10]D.Eimerl,S.Velsko,L.Davis,F.Wang,G.Lotacono,G.Kennedy,Deuterated L-arginine phosphate:a new efficient nonlinear crystal,IEEE J.Quantum Electron.QE-25(1989) 179.
    [11]蒋民华编著,晶体物理,山东科学技术出版社。
    [12]M.V.Hobden,Phase-matched second-harmonic generation in biaxial crystals,J.Appl.Phys.38(11)(1967) 4365.
    [13]肖定全,王民编著,晶体物理学,p184.
    [14]J.Q.Yao and W.D.Sheng,Acuurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,J.Opt.Soc.Am.B,9(6)(1992) 891.
    [15]A.Yokotani,T.Sasaki,K.Fujioka and S.Nakai,C.Yamanaka,Growth and characterization of deuterated L-arginine phosphate monohydrate,a new nonlinear crystal,for efficient harmonic generation of fusion experiment lasers,J.Crystal Growth 99(1990) 815.
    [16]D.Xu,X.Q.Wang,W.T.Yu,S.X.Xu and G.H.Zhang,Crystal growth and characterization of a novel organic nonlinear optical crystal:L-arginine trifluoroacetate,J.Crystal Growth 253(2003) 481.
    [17]A.Yokotani,T.Sasaki,K.Yoshida,S.Nakai,Extremely high damage threshold of a new nonlinear crystal L-arginine phosphate and its deuterium compound,Appl.Phys.Lett.55(1989) 2692.
    [18]W.J.Chen,J.Z.Chen,Measurement of specmc heat capacity at constant pressure of BBO,LBO and CLBO crystals by DSC,Journal of synthetic crystals,32(2003) 152.
    [19]夏锐,毛小沽,王伟力等,高峰值功率皮秒激光系统KTP和BBO倍频技术研究,激比与红外,37(2007)421。
    [20]杨兆荷,用DSC法测量晶体的比热容,山东大学学报,24(1)(1989)122。
    [21]D.N.Nikogosyan,Nonlinear optical crystals:a complete survey(hardcover),New York:Springer,2005.
    [22]S.Nadanaciva,J.Weber,S.Wilke-Mounts and A.E.Senior,Importance of F_1-ATPase Residue α-Arg-376 for catalytic transition state stabilization,Biochemistry,38(1999) 15493.
    [23]A.E.Senior,S.Nadanaciva,J.Weber,The molecular mechanism of ATP synthesis by F_1Fo-ATP synthase,Biochim.Biophys.Acta.1553(2002) 188.
    [24]S.H.Liu,G.X.Lv,Q.L.Wang,Preparation of L-ArgHCl/ Phosphalidylcholine Liposome and molecular recognition to ATP,17(1)(2005) 49.
    [25]D.Y.Sasaki,K.Kurihar,T.Kunitake,Specific,multiple-point binding of ATP and AMP to a guanidinium-functionalized monolayer,J.Am.Chem.Soc.113(1991) 9685.
    [26]A.Blazek.Thermal Analysis,1973.
    [27]W.Wm.Wendlandt.Thermal Methods of Analysis,1964.
    [28]关振铎,张中太,焦金生编著,无机材料物理性能,清华大学出版社,1992。
    [29]张克从,王希敏编著,非线性光学晶体材料科学,科学出版社,1996,p120。
    [30]许东,有机晶体,晶体生长科学与技术,张克从主编,科学出版社,1997。
    [31]M.Born,K.Huang,Dynamical theory of crytal lattices,Oxford University Press,38(1954),printed in Great Britain.
    [32]M.Liu,T.R.Finlayson,Thermal expansion of martensitic In-T1:Stress-induced microstructure and the premartensite state,Phys.Rev.B 48(1993) 3009.
    [33]X.-L.Wang,C.M.Hoffmann,C.H.Hsueh,G.Sarma,C.R.Hubbard,and J.R.Keiser,Influence of residual stress on thermal expansion behavior,Appl.Phys.Lett.75(1999) 3294.
    [34]J.F.Nye,Physical Properties of Crystals(Clarendon,Oxford,1985).
    [35]R.S.Krishnan,R.Srinivasan,and S.Devanarayanan,Thermal Expansion of Crystals (Pergamon,New York,Press,1979,48-50).
    [36]G.Dhanraj,M.R.Srinivasa,H.L.Bhat,H.S.Jyanna,S.V.Subramanyam,Thermal and electrical properties of the novel organic nonlinear crystal L-arginine phosphate monohydrate, J. Appl. Phys. 72 (1992) 3464.
    [37] Z.P. Wang, B. Teng, Y.P. Shao, X.G Xu, et al, Development of Natural Science. 12(10)(2002)1083-1085.
    [38] F.Q. Meng, M.K. Lu, Z.H. Yang, H. Zeng, Thermal and crystallograhic properties of a new NLO material, urea-(d) tartaric acid single crystal, Mater. Lett. 33 (1998) 265.
    [39] S. Brahadeeswaran, H.L. Bhat, N.S. Kini, A.M. Umarji, P. Balaya, P.S. Goyal, Dielectric, thermal, and mechanical properties of the semiorganic nonlinear optical crystal sodium p-nitrophenolate dihydrate, J. Appl. Phys. 88 (2000) 5935.
    [40] G. Ramesh Kumar, S.Gokul Raj, R. Mohan, R. Jayavel, Influence of lsoelectric pH on the growth linear and nonlinear optical and dielectric properties of L-threonine single crystals, Cryst.Growth Des. 6 (2006) 1308.
    [41] S. Haussuhl, H.A. Karapetyan, A.M. Petrosyan. Crystal structure and properties of L-arginine diphosphate, Z. Kristallogr. 218 (2003) 501.
    [42] P.C. Thomas, L.B. Kumar, A. Anuradha, S. Aruna, G.P. Joseph, P. Sagayaraj, Growth and characterization of nonlinear optical single crystal of 1-arginine diiodate, J. Cryst. Growth 290 (2006) 560.
    
    [43] C.P. Smyth, Dielectric BehaViour and Structure; McGraw Hill, New York, 1995,132.
    [44] C. Balarew, R. Duhlev, Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures, J. Solid State Chem. 55 (1984) 1.
    [45] V.A. Hiremath, A. Venkataraman, Dielectric, electrical and infrared studies of γ-Fe_2O_3 prepared by combustion method, Bull. Mater. Sci. 26 (4) (2003) 391.
    [1]A.E.Nielsen,Kinetics of precipitation,International series of monographs on analytical chemistry,1964.
    [2]R.A.Laudise,The growth of single crystal,Premtice-Hall(1970).
    [3]J.C.Brice,The growth of crystal from liquids,Wiley(1973).
    [4]A.N.Christenson,F.Leccabue et al.,Crystal growth and characterization of advanced materials,World Scientific,Singapore,New Jersey,London(1987).
    [5]W.K.Burton,N.Cabrera and F.C.Frank,The growth of crystals and the equilibrium structure of their surfaces,Royal Soc.London Philos.Trans.A 243(1951) 299.
    [6]J.J.De Yoreo,T.A.Land and B.Dair,Growth morphology of vicinal hillocks on the {101} face of KH_2PO_4:From step-flow to layer-by-layer growth,Phys.Rev.Lett.73(1994) 838.
    [7]A.A.Chernov,Modern Crystallography Ⅲ:Crystal Growth,Springer-Verlag,Berlin Heidelberg,New York,Tokyo,1984,p.104-111,p137-143.
    [8]J.C.Brice,The growth of crystals from the liquids,Amsterdam:North-Holland Publishing Company,1973,88.
    [9]J.Christoffersen,M.R.Christoffersen,A revised theory for the growth of crystals by surface nucleation,J.Crystal Growth 121(1992) 608.
    [10]A.J.Malkin,Yu.G.Kuznetsov,T.A.Land et al.,Mechanisms of growth for protein and virus crystals,Nature structural biology,2(11)(1995) 956.
    [11]X.L.Yu,Y.Sun,W.B.Hou,S.J.Zhang,Zh.X.Cheng,Interface kinetics and crystal growth mechanism of a new organometallic coordination compound:triallylthiourea mercury bromide,J.Crystal Growth 182(1997) 428.
    [12]C.A.Verschuren,M.R.Leys,T.Marschner,H.Vonk,J.H.Wolter,A modified BCF model to quantitatively describe the <100> InP growth rate in chemical beam epitaxy,J.Crystal Growth 188(1998) 11.
    [13]F.C.Frank,Crystal growth[J].Discuss.Faraday Soc.,5(1949) p48,p76,p186.
    [14]A.A.Chernov,L.N.Rashkovich,A.A.Mkrtchan,Solution growth kinetics and mechanisms:Prismatic face of ADP,J.Crystal Growth 74(1986) 101.
    [15]A.A.Chernov,Presentday understanding of crystal growth from aqueous solutions,J.Crystal Growth 26(1993) 121.
    [16]E.Bauser,H.Strunk,Dislocation as growth step sources in solution growth and their influence on interface sructures,Thin.Solid Films,93(1982) 185.
    [17]闵乃本主编,探索新晶体:光电功能材料的结构、性能、分子设计及制备过程的研究。长沙:湖南科技出版社,1998,185。
    [18]闵乃本,砂川一郎,晶体生长的层错机制[J],物理学报,37(5)(1988)789。
    [19] Nai-Ben Min, K.Tsukamoto, I. Sunagawa, A.A. Chernov, Stacking faults as self-perpetuating step sources, J. Crystal Growth 91 (1988) 11.
    [20] W.W. Mullins and R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys. 34 (1963) 323.
    
    [21] A. A. Chernov, The spiral growth of crystals, Sov. Phys. Uspekhi 4 (1961) 116.
    [22] J.P.van der Eerden, H. Muller-Krumbhaar, Dynamic coarsening of crystal surfaces by formation of macrosteps, Phy. Rev. Lett. 57 (1986) 2431.
    [23] A.A. Chernov, Formation of crystals in solutions, Contemp.Phys. 30 (1989) 251.
    [24] J.P.van der Eerden, in: D.T. J. Hurle (Ed.), Handbook of crystal growth, Thermodynamics and kinetics, vol.1, Part A: Crystal growth mechanisms, North-Holland, Amsterdam, 1994,465.
    [25] S.R. Coriell, B.T. Murray, A.A. Chernov, GB. Mcfadden, Step bunching on a vicinal face of a crystal growing in a flowing solution, J. Crystal Growth 169 (1996) 773.
    [26] A.A. Chernov, Influence of growth parameters on the interface abruptness in CBE-grown InGaAs/InP QWs and SLS, J. Crystal Growth 118 (1992) 333.
    [27] I. Sunagawa, P. Bennema, Modes of vibrations in step trains: rhythmical bunching, J. Crystal Growth 46 (1979) 451.
    [28] Y. Saito, M. Uwaha, Morphological instability caused by asymmetry in step kinetics, Phys. Rev. B 51 (1995) 11172.
    [29] A.J. Malkin, Yu.G. Kuznetsov, A. McPherson, In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization, J. Crystal Growth 196 (1999) 471.
    [30] A.A. Chernov, Modern Crystallography III: Crystal Growth, Springer-Verlag, Berlin Heidelberg, New York, Tokyo, 1984, p.153.
    [31] A.A. Chernov, Modern Crystallography III: Crystal Growth, Springer-Verlag, Berlin Heidelberg, New York, Tokyo, 1984, p. 124.
    
    [32] W.F. Berg, Crystal growth from solutions, Proc. Roy. Soc. A 164 (1938) 79.
    [33] F.C. Frank, Capillary equilibria of dislocated crystals, Acta Crystallogr. 4 (1951) 497.
    [34] N.Cabrera, M.M. Levine, On the dislocation theory of evaporation of crystals, Philos.Mag.1(1956) 450.
    [35]B.Van der Hoek,J.P.van der Eerden,P.Bennema,J.Crystal Growth 56(1982) 621.
    [36]T.A.Land,J.J.De Yoreo,The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy,J.crystal Growth 208(2000) 623.
    [37]I.Sunagawa and P.Bennema,Observations of the influence of stress fields on the shape of growth and dissolution spirals,J.crystal Growth 53(1981) 490.
    [38]J.George and C.K.Valsala Kumari,Growth and characterization of tin disulphide crystals grown by physical vapour transport method,J.Crystal Growth 63(1983) 233.
    [39]K.Sato and M.Okada,Step morphology of giant spirals of long-chain stearic acid crystals grown from solution,J.Crystal Growth 63(1983) 177.
    [40]张克从,陈万春,晶体生长科学与技术(第二版,上册)(主编:张克从,张乐惠):晶体生长动力学,科学出版社,1997,p110。
    [41]A.E.D.M.van der Heijden,G.M.van Rosmalen,Handbook of Crystal Growth,Vol.2,Elsevier:Amsterdam,1994,Chapter 7,p.336.
    [42]R.Rosmalen,P.Bennema,The influence of volume diffusion on crystal growth,J.Cryst.Growth 29(1975) 342.
    [43]G.H.Gilmer,P.Bennema,Computer simulation of crystal surface structure and growth kinetics,J.Cryst.Growth 13/14(1972) 148.
    [44]G.Ehrlich,F.G.Hudda,Atomic view of surface self-diffusion:Tungsten on tungsten,J.Chem.Phys.44(1966) 1039.
    [45]R.I.Schwoebel,E.J.Shipsey,Step Motion on Crystal Surfaces,J.Appl.Phys.37(1966) 3682.
    [46]T.A.Land,J.J.De Yoreo,J.D.Lee,An in-situ AFM investigation of canavalin crystallization kinetics,Surf.Sci.384(1997) 136.
    [47]W.J.P.Van Enckevort,L.A.M.J.Jetten,Surface morphology of the {010} faces of potassium hydrogen phthalate crystals,J.Cryst.Growth 60(1982) 275.
    [48]X.N.Jiang,D.Xu,Atomic force microscopy studies on liquid inclusions and induced defects of cadmium mercury thiocyanate crystal,Cryst.Res.Technol.38(2003) 767.
    [1]张克从,张乐惠,晶体生长科学与技术,科学出版社,1997,p471.
    [2]J.H.Jr.Crawford,L.M.Slifkin.Point Defects in Solid,New York,Plenum Press,1972.
    [3]胡小波,博士后研究工作报告,山东大学,1999.
    [4]B.J.Mehta,J.R.Pandya,Thermal etching on calcite cleavages,Cryst.Res.Technol.17(1982) 485.
    [5]M.S.Joshi,M.A.Ittyachen,Rotation of etch pits on the basal cleavages of apophyllite crystals,Philos.Mag.16(1967) 717.
    [6]P.N.Kotru,On the dissolution of grown synthetic quartz inside the autoclaves,Krist.Tech.13(1978) 35.
    [7]K.Sangwal,Etching of Crystals:Theory,Experiment and Application(North-Holld;Amsterdam) 1987.
    [8]J.R.Bourne,R.J.Pavey,The role of solvent-solute interactions in determining crystal growth mechanisms from solution:I.The surface entropy factor,J.Crystal Growth 36 (1976) 278.
    [9] A.J. Malkin, T.A. Land, Yu.G Kuznetsov, A. McPherson, J.J. DeYoreo, Investigation of virus crystal growth mechanisms by in situ atomic force microscopy, Phys. Rev. Lett. 75 (1995) 2778.
    [10] S.D. Durbin, W.E. Carlson, Lysozyme crystal growth studied by atomic force microscopy, J. Crystal Growth 122 (1992) 71.
    [11] S.D. Durbin, W.E. Carlson, M.T. Saros, In situ studies of protein crystal growth by atomic force microscopy, J. Phys. D. 26 (1993) B128.
    [12] A. Peter, K. Polgar, E. Beregi, Revealing growth defects in non-linear borate single crystals by chemical etching, J. Crystal Growth 209 (2000) 102.
    [13] S.J. Zhang, J.G. Zhang, Z.X. Chang, G.Y. Zhou, J.R. Han, H.C. Chen, Studies on the growth and defects of GdCa_4O(BO_3)_3 crystals, J. Crystal Growth 203 (1999) 168.
    [14] X.N. Jiang, D. Xu, D.R. Yuan, D.L. Sun, M.K. Lv, GH. Zhang, S.Y Guo, Atomic force microscopy studies on growth mechanisms and defect formations on {110} faces of Cadmium mercury thiocyanate crystals, Cryst. Res. Technol. 36 (2001) 601.
    [15] M. Skouri, B. Lorber, R. Giege, J.-P. Munch, J. S. Candau, Effect of macromolecular impurities on lysozyme solubility and crystallizability: dynamic light scattering, phase diagram, and crystal growth studies, J. Crystal Growth 152 (1995) 209.
    [16] A.A. Chernov, Modern Crystallography III: Crystal Growth, Springer-Verlag, Berlin Heidelberg, New York, Tokyo, 1984, p.235.
    [17] B.R. Thomas, P.G Vekilov, F. Rosenberger, Heterogeneity determination and purification of commercial hen egg-white lysozyme, Acta Crystallogr. D. 52 (1996) 776.
    [18] J. Mullin, Crystallization. Butterworth Heinmann, London, 1993, p. 238.
    [19] N. Cabrera, D. A. Vermilyea, in: R. H. Doremus, et al. (Eds.), Growth and perfection of crystals, 1958, p.393.
    [20] Y.L. Geng, D. Xu, D.L. Sun, W. Du, H.Y Liu, GH. Zhang, X.Q. Wang, Atomic force microscopy studies on growth mechanisms of LAP crystals growth in solution containing excessive amount of 1-arginine, Mater. Chem. Phys. 90 (2005) 53.
    [21]T.Nakada,G.Sazaki,S.Miyashita,S.Durbin,H.Komatsu,Direct AFM observations of impurity effects on a lysozyme crystal,J.Crystal Growth 196(1999) 503.
    [22]Mariusz J.Krasinski,Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy,SPIE,3178(1997) 94.
    [23]A.A.Chernov,in:M.Cardona,P.Fulde,H.J.Queisser(Eds),Modern Crystallography Ⅲ.Crystal Growth,vol.36(Springer,Berlin,1984) p.249.
    [24]N.Zaitseva,L.Carman,L.Smolsky,R.Torres,M.Yan,The effect of impurities and supersaturation on the rapid growth of KDP crystals,J.Crystal Growth 204(1999) 512.
    [25]A.A.Chemov,The spiral growth of crystals,Sov.Phys.Uspekhi 4(1961) 116.
    [26]J.P.van der Eerden,H.Muller-Krumbhaar,Formation of macrosteps due to time dependent impurity adsorption,Electrochim.Acta 31(1986) 1007.
    [27]J.P.van der Eerden,H.Muller-Krumbhaar,Dynamic coarsening of crystal surfaces by formation of macrosteps,Phy.Rev.Lett.57(1986) 2431.
    [28]唐鼎元,林翔,赵庆兰,曾文荣,谭奇光,毛宏伟,仲维卓,华素坤,三硼酸锂晶体中负晶的观察,物理学报42(1993)1950。
    [29]齐振一,罗豪苏,华素坤,仲维卓,BaTiO_3晶体中的负晶结构和对电畴结构的影响,人工晶体学报26(1997)351。
    [30]胡小波,徐现刚,王继扬,韩荣江,董捷,李现祥,蒋民华,6H-SiC单晶的生长与缺陷,硅酸盐学报32(2004)248。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700