碳钢表面复合涂层的制备及在海水中的防腐性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着碳钢材料越来越广泛的应用在海洋环境中,海洋环境中的防腐问题也受到了越来越多的重视。由于传统的防腐手段在海洋中的使用受到限制,且易造成严重的环境污染,因此研究方便,实用,经济,环保的新型海洋防腐材料成为当今的热门话题。
     我们首先运用化学镀的方法在碳钢基底之上制备了Ni-P及不同PTFE颗粒含量的Ni-P-PTFE防腐镀层,并分别运用XRD、SEM、EDS、极化曲线和电化学阻抗等方法对其形貌、物相、组分和海水中的防腐性能进行了研究。结果表明:镀层的微观形貌随着镀层中PTFE颗粒含量的变化而产生巨大的差异。镀层的电化学防腐性能随着镀层中PTFE含量的增加明显降低,在镀液中只含有少量的PTFE乳液的情况(0.2mL/L),制备的镀层在海水中都具有最好的防腐性能,这归因于少量的PTFE颗粒的复合填充了镀层表面的细微孔洞。另外,海水灭菌处理对镀层的防腐性能也有一定的影响。
     我们还设计运用溶胶-凝胶法制备TiO_2/ZnO复合陶瓷防腐涂层。在此之前,我们对涂层制备中使用的TiO_2/ZnO复合溶胶进行了后处理,并通过TG/DTA、XRD、SEM、HRTEM、FTIR、紫外吸收波谱等测试方法对得到的复合粉体的热稳定性、形貌、粒径、物相和光催化性能进行了探讨。结果显示:高温处理的TiO_2/ZnO复合粉体的结晶度得到了大幅度的提高,TiO_2也由锐钛矿相转化成了金红石相,并且在热处理过程中TiO_2和ZnO颗粒发生化学反应生成ZnTiO3相;经过氨水后处理的复合粉体,相的转变和化学反应一定程度上得到了抑制;复合粉体经过高温和NH3H2O处理后,光催化活性得到明显提高,这归因于粉体结晶度的提高、锐钛矿晶型的存在以及粉体平均粒径的减小。
     在上述实验基础之上,我们在碳钢基底上制备TiO_2/ZnO复合陶瓷防腐涂层,并分别运用XRD、SEM、EDS、极化曲线、电化学阻抗等方法对其形貌、物相、组分和海水中的防腐性能进行了研究。实验结果显示:纯TiO_2涂层煅烧后会出现很多裂纹,而TiO_2/ZnO复合涂层热处理后表面致密,无明显裂纹。煅烧后基底会发生不同程度的氧化,且氧化物会与ZnO颗粒发生反应生成新的物质。TiO_2/ZnO复合涂层低温下防腐性能较差,其中纯TiO_2涂层的性能最差;而温度的升高对镀层的防腐性能有一定的提高作用。涂层厚度的增加也会提高防腐性能。
Nowadays, carbon steel has been widely used in the areas of sea, and the more attention is paid for the problem of corrosion for steel materials in the seawater. Because the traditional anticorrosion method was limited to use in environment of ocean, and was easy to cause severe environmental pollution, the study of new marine anticorrosive material with ability of convenient, practical, economic, environmental protection has become one of the hottest topics.
     The Ni-P and Ni-P-PTFE coatings with various PTFE contents were electroless deposited on carbon steel and characterized through XRD, SEM, EDS, polarization curve and EIS. As a result, the microstructural morphologies of the coatings significantly varied with the PTFE content. The electrochemical anticorrosion capabilities of the coatings were seriously decreased with the increase of the PTFE content. The coating with a trace PTFE (PTFE emulsion concentration of 0.2mL/L in the plating bath) possessed excellent anticorrosion both in sterilized and unsterilized seawater which has been attributed to the absence of nano pores successfully blocked by the incorporated trace PTFE nano particles. Moreover, the process of sterilizing for seawater also affected the anticorrosion property of the coating.
     Before preparing the TiO_2/ZnO composite coating by sol-gel process, the study on photocatalytic activity of powder from the TiO_2/ZnO composite sol was conducted. The as-prepared composite powder was characterized in detail using TGA, XRD, SEM, HRTEM and FTIR. The results showed that the particle crystallization of the composite powder was significantly promoted with the increase of the calcining temperature and the anatase was transformed to rutile during heating process. In addition, the reaction between TiO_2 and ZnO occurred when temperature increasing. However, the phase transformation and reaction mentioned above had been successfully retarded via the ammonia treating process. The particle crystallization of the composite powder was significantly promoted with the increase of the calcining temperature. The photocatalysis evaluation through MO degradation revealed an enhanced photocatalytic activity for the composite powder that might be related to the good crystallization, the presence of anatase phase, and the particle size reduction of the powder.
     Then, the TiO_2/ZnO composite coatings were prepared on carbon steel via sol-gel process and the as-prepared coatings were characterized by XRD, SEM, EDS, polarization curve and EIS. The results showed that the TiO_2/ZnO composite coatings were more compact than pure TiO_2 coating. The matrix was oxidized after heating process and the reaction occurred between oxide and ZnO contained in coatings. The electrochemical anticorrosion capabilities of TiO_2/ZnO composite coatings varied with the heating temperature. The increasing for the thickness of coatings could improve the anticorrosion capabilities.
引文
[1] F. Qi, Y. X. Leng, N. Huang. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment. Nuclear Instruments and Methods in Physics Research B, 2007, 257(1-2): 416~419
    [2]彭小玲,付卉.浅谈几种常用金属的腐蚀机理和抗腐蚀性能.江西水利科技,2008,34(1):69~71
    [3]王丽荣,张树芳,庄晓娟.海水中碳钢缓蚀剂研究进展.内蒙古石油化工,2008,1:5~6
    [4]王建军,郑文龙,陈家光,等.表面涂层改性技术在提高耐候钢抗海洋性大气腐蚀中的应用.腐蚀与防护,2004,25(2):53~56
    [5]史航,王鲁民.无公害海洋防污技术的研究进展.海洋渔业,2003,(3):116-119
    [6] C. I. Pereni, Q. Zhao, Y. Liu. Surface free energy effect on bacterial retention. Colloids and Surfaces B: Biointerfaces, 2006, 48(2): 143~147
    [7] D. A. Jones, P. S. Amy. Athermodynamic einterpretation of microbiologieally influence corrosion. Corrosion, 2002, 58(8): 638~645
    [8] D. ?rnek, T. K. Wood, C. H. Hsu, et al. Pitting corrosion control of aluminum 2024 using Protective biofilms that seerete corrosion inhibitors. Corrosion, 2002, 58(9): 761~767
    [9] B. Little, R. Ray. A perspective on corrosion inhibition by biofilms. Cormsion, 2002, 58(5): 424~428
    [10]陶琦,李芬芳,邢健敏.金属腐蚀及其防护措施的研究进展.湖南有色金属,2007,23(2):43~46
    [11]王庆璋,杜敏.海洋腐蚀与防护技术.青岛:青岛海洋大学出版社,2001.9~19
    [12]宋秀索,石绍辉,史英祥.金属构件表面防护技术及工艺浅析.选煤技术,2007,2(2):65~67
    [13]刘京,胡吉明,张鉴清.金属表面硅烷化防护处理及其研究现状.中国腐蚀与防护学报,2006,26(1):59~64
    [14]李国丽,王雪明.氟树脂/聚苯硫醚共混改性防腐涂层的研究现状及展望.材料导报, 2005,19(7):45~47
    [15]张树琴.镁基合金牺牲阳极保护在船舶上应用.科技信息,2006,12:231~233
    [16] P. Peeters, G.v.d. Hoorn, T. Daenen. Properties of Electroless and Electroplated Ni-P and Its Application in Microgalvanics. Electrochim. Acta, 2001, 47(1-2): 161~169
    [17] P. Bolger, D. Szlag. Investigation into the Rejuvenation of Spent Electroless Nickel Baths by Electrodialysis. Environ.Sci, Technol, 2002, 36(10): 2273~2278
    [18] X. M. Huang, Z. G. Deng. The wear characteristics of Ni-P-SiC composite coatings. Trans IMF, 1992, 70(2): 84
    [19] V. K. Eberhard. SiC: diamant- and PTFE-dispersions schichten in chemisch abgeschiedener nickelmatr. Galvanotehnik, 1991, 82(10): 3400~3406
    [20]钟花香,黄国.Ni-P-Al2O3化学复合镀层的组织结构分析.表面技术,1994,23(4):184~189
    [21]于光.化学镀(Ni-P)-MoS2复合镀层的工艺研究.材料保护,1996,29(1):17~19
    [22] M. Izzard, J. K. Dennis. Deposition and properties of electroless nickel/graphite coatings. Trans IMF, 1987, 65: 85~89
    [23] N. Ronald. Hardness and wear resistance of electroless nickel-teflon composite coatings. Metal Finishing, 1989, 87(9): 33~34
    [24] N. Masayoshi, T. Osamu. Friction and wear characteristics of electroless Ni-P-PTFE composite coatings. Plating and Surface Finishing, 1993, 44(2): 140~144
    [25] S. Takashi, Y. Shuji, K. Yuichi. Corrosion preventing structure, EP0737759, 1996
    [26]吴昊.化学镀Ni-P-PTFE层的硫化气氛中耐蚀性的研究电镀与涂饰,1999,18(3):32~36
    [27]周啸,尚慧兰.镍-磷-聚四氟乙烯非电复合镀镀液的多次再生及它们的镀层性能.淮阴工学院学.2000,9(2):2~6
    [28]仵亚婷,孙卫军,沈彬,等.化学镀(Ni-P)-PTFE复合镀层的研究现状与展望.电镀与环保,2004,24(4):4~7
    [29]吕晓仁,刘阳,李曙.纳米PTFE粒子复合Ni-P化学镀层的摩擦学行为.摩擦学学报,2009,29(2):116~122
    [30] P. R. Ebdon. Composite Coatings with Lubricating Properties. TransIMF, 1987, 65(5): 80~82
    [31]崔晓莉,杨锡良,章壮健.光催化TiO2涂层在金属防腐蚀中的应用研究现状.腐蚀与防护,2003,24(3):102~106
    [32] O. Yoshihisa, S. Shuichi. Photoelectrochemical anticorrosion and self-cleaning effect of aTiO2 coating for type 304 stainless steel. Journal of the Electrochemical Society, 2001, 148(1): 24~28
    [33] G. X. Shen, Y. C. Chen, C. J. Lin. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films, 2005, 489(1-2): 130~136
    [34] C. X. Shan, X. H. Hou, K. L. Choy. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surface and Coatings Technology, 2008, 202(11): 2399~2402
    [35] N. Padhy, S. Kamal, R. Chandra, et al. Corrosion performance of TiO2 coated type 304L stainless steel in nitric acid medium. Surface and Coatings Technology, 2010, 204(16-17): 2782~2788
    [36] Y. J. Chen, D. D. Dionysiou. Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Applied Catalysis B: Environmental, 2006, 69(1-2): 24~33
    [37] N. Barati, M. A. F. Sani, H. Ghasemi, et al. Mirhoseini. Preparation of uniform TiO2 nanostructure film on 316L stainless steel by sol-gel dip coating. Applied Surface Science, 2009, 255(20): 8328~8333
    [38] H. Yun, C. J. Lin, J. Li, et al. Low-temperature hydrothermal formation of a net-like structured TiO2 film and its performance of photogenerated cathode protection. Applied Surface Science, 2008, 255(5): 2113~2117
    [39]温敏,齐公台,孙菊梅.TiO2溶胶的制备及其胶凝过程影响因素分析.表面技术,2004,33(1):30~31
    [40] Y. Bessekhouad, D. Robert, J. V. Weber. Synthesis of photocatalytic TiO2 nano-particles: optimization of the preparation conditions. J. Photochem. Photobiol. A:chemisty, 2003, 157(1): 47~53
    [41]徐明霞,徐延献,刘宁.由TiOSO4水解-沉淀制备TiO2薄膜.硅酸盐学报,1997,25(2):209~212
    [42]吕红辉,汤钧,白玉白.TiO2纳米晶薄膜电极的瞬态光电流特性.吉林大学自然科学学报,2001,3:99~102
    [43]姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000.101~104
    [44]于升学,邵光杰.热处理对Ni-P-PTFE化学复合镀层性能的影响.金属热处理,2000,7,12~13
    [45]谢华,陈增晖,陈晓.热处理工艺对Ni-P-PTFE复合镀层组织与性能的影响.金属热处理,2009,34(7):43~46
    [46] S. M. A. Shibli, V. S. Dilimon. Effect of phosphorous content and TiO2-reinforcement on Ni–P electroless plates for hydrogen evolution reaction. Int. J. Hydrogen Energ, 2007, 32(12): 1694~1700
    [47] J. Novakovic, P. Vassiliou, Kl. Samara, et al. Electroless NiP–TiO2 composite coatings: Their production and properties. Surf. Coat. Tech. 2006, 201: 895~901
    [48] X. Y. Yuan, T. Xie, G. S. Wu, et al. Fabrication of Ni–W–P nanowire arrays by electroless deposition and magnetic studies. Physica E: Low-dimensional Systems and Nanostructures, 2004, 23(1-2): 75~80
    [49] M. Crobu, A. Scorciapino, B. Elsener, et al. The corrosion resistance of electroless deposited nano-crystalline Ni–P alloys. Electrochim. Acta, 2008, 53(8): 3364~3370
    [50] M. D. Ger, B. J. Hwang. Effect of surfactants on codeposition of PTFE particles with electroless Ni-P coating. Mater. Chem. Phys, 2002, 76(1): 38~45
    [51] Q. Zhao, Y. Liu, H. Muller-Steinhagen, et al. Graded Ni–P–PTFE coatings and their potential applications. Surf. Coat. Tech, 2002, 155(2-3): 279~284.
    [52]曹楚南,张鉴清.电化学阻抗谱.北京:科学出版社,2002.21~25
    [53] D. A. Jones. Principles and Prevention of Corrosion (NJ: Prentice-Hall, Inc. Simon & Schuster/A Viacom Company) 2nd ed. pp 144~145
    [54] Stern, Greary. Electrochemical Polarization. Journal of Electrochemical Society, 1957, 104(1): 56~63
    [55] http://www.zahner.de/pdf/SIM.pdf : p24
    [56] http://www.zahner.de/pdf/SIM.pdf : p55
    [57] J. T. Tian, L. J. Chen, Y. S. Yin, et al. Photocatalyst of TiO2/ZnO nano composite film: Preparation, characterization, and photodegradation activity of methyl orange. Surface and Coatings Technology, 2009, 204(1-2): 205~214
    [58] S. F. Wang, F. Gu, M. K. Lu, et al. Preparation and characterization of sol–gel derived ZnTiO3 nanocrystals. Mater. Res. Bull, 2003, 38(8): 1283~1288
    [59] L. Q. Wang, H. M. Kang, D. F. Xue, et al. Low-temperature synthesis of ZnTiO3 nanopowders. J. Cryst. Growth, 2009, 311(5): 611-614
    [60] Y. L. Chai, Y. S. Chang, G. J. Chen, et al. The effects of heat-treatment on the structure evolution and crystallinity of ZnTiO3 nano-crystals prepared by Pechini process. Mater. Res. Bull, 2008, 43(5): 1066~1073
    [61] B. G. Shabalin. The synthesis and IR-spectra of some rare and new minerals of titanium and niobium. Mineral. Zh, 1982, 4(5): 54~61
    [62] J. T. Last. Infrared-Absorption Studies on Barium Titanate and Related Materials. Physical Rev. 1957, 105(6): 1740~1750
    [63] L. Hou, Y. D. Hou, M. K. Zhu, et al. Formation and transformation of ZnTiO3 prepared by sol–gel process. Mater. Lett, 2005, 59(2-3): 197~200
    [64] W. A. Daoud, J. H. Xin. Microstructural Evolution of Titania Nanocrystallites by a Hydrothermal Treatment: A HRTEM study. J. Am. Ceram. Soc, 2005, 88(2): 443~446
    [65] G. H. Tian, H. G. Fu, L. Q. Jing, et al. Preparation and Characterization of Stable Biphase TiO2 Photocatalyst with High Crystallinity, Large Surface Area, and Enhanced Photoactivity. J. Phys. Chem. C, 2008, 112(8): 3083~3089
    [66] S. A. Qaradawi, S. R. Salman. Photocatalytic degradation of methyl orange as a model compound. J. Photochem.Photobiol. A, 2002, 148(1-3): 161~168
    [67] M. Azuki, K. Morihashi, T. Watanabe. Ab initio GB study of the acid-catalyzed cis-trans isomerization of methyl yellow and methyl orange in aqueous solution. Journal of Molecular Structure(Theochem), 2001, 542(1-3): 255~262
    [68]王怡中,符雁,汤鸿霄.二氧化钛悬浆体系太阳光催化降解甲基橙研究.环境科学学报,1999,19(1):63~67
    [69]王怡中,符雁,汤鸿霄.平板构型太阳光催化反应系统中甲基橙降解脱色研究.环境科学学报,1999,19(2):142~146
    [70]方世杰,徐明霞,黄卫友.纳米TiO2光催化降解甲基橙.硅酸盐学报,2001,29(5):439~442
    [71]朱其永,褚道葆,周幸福.纳米TiO2悬浮体系光催化降解甲基橙的研究.淮南师范学院学报,2002,4(15):14
    [72] T. Zhang, T. Oyama, S. Horikoshi. Photocatalyzed N-demethylation and degradation ofmethylene blue in titania dispersions exposed to concentrated sunlight. Sol. Energy Mater. Solar Cells, 2002, 73(3): 287~303
    [73] Y. J. Li, X. D. Li, J. W. Li, et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40(6): 1119~1126
    [74] J. Matos, J. Laine, J. M. Hermann. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B: Environ, 1998, 18(3-4): 281~291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700