块体纳米晶工业纯铁化学镀镍磷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
块体纳米晶工业纯铁(BNⅡ)是将普通工业纯铁(CPⅡ)通过深度轧制技术制得的块状纳米材料。
     化学镀镍磷是一项表面处理技术,是化学镀技术最具代表性且应用最广泛的一种。化学镀镍磷是利用次磷酸钠为还原剂,使镀液中的镍离子直接在具有催化活性的基体表面还原,同时磷共沉积而形成镍磷镀层的一种镀镍工艺。
     本文采用高温(88℃)酸性(pH 4.4-4.5)化学镀Ni-P合金的方法制得了高磷(12-14 wt%)非晶镀层,并利用其高硬度、耐磨性、抗腐蚀性对BNⅡ进行修饰和保护。研究内容包括最佳施镀工艺的研究,采用扫描电镜形貌分析仪、能谱分析仪、X射线衍射分析仪、X射线光电子能谱、金相显微镜、硬度计、电化学工作站等仪器对镍磷镀层的结构形貌、孔隙率、硬度、结合力、腐蚀性能等相关性能的研究。同时对BNⅡ与CPⅡ化学镀镍磷的性能及沉积机理进行对比研究,以期使用BNⅡ较适用CPⅡ在化学镀镍磷性能方面有所改善。
     制备了光泽度及平整度优良的高磷(P wt%11-13%)镀层,厚度为24±1μm,具有零孔隙率,结合力良好,化学镀镀态的硬度为HV 506,经390℃热处理1h后可达HV 936。镀膜为非晶结构,加热可使其晶化,生成Ni和Ni3P两相,BNⅡ镀层晶化温度为340℃,镀层在883℃时熔化。由Tafel极化实验知,在5% NaCl和0.5 mol/LHC1溶液中,BNⅡ镀层与BNⅡ相比,自腐蚀电位Ecorr分别正移216 mV和197 mV;CPⅡ镀层Ecorr与CPⅡEcorr相比,分别正移50 mV和118 mV;BNⅡ镀层自腐蚀电流密度icorr(8.956×10-6A/cm2,4.215×10-5A/cm2),较BNⅡ的icorr(1.303×10-5A/cm2,1.326×10-4A/cm2)明显减小。
     X射线光电子能谱分析表明,在化学镀最初期,BNⅡ与CPⅡ相比,其化学镀Ni-P镀层中P 2p3结合能高出0.9 eV;Ni 2p3结合能降低0.1 eV,Ni 2p1结合能降低0.3 eV;Fe 2p3结合能降低0.2 eV,Fe 2p1结合能降低0.4 eV。
Bulk nanocrystalline ingot iron (BNII) was produced from conventional polycrystalline ingot iron (CPII) by the severe rolling technique.
     Electroless nickel-phosphorus (Ni-P) is a technique for solid surface treatment. It has been adopted as representative chemical plating and widely applied in industry. Electroless Ni-P using sodium hypophosphite as a reducing agent, therefore the nickel ion is reduced directly on the catalytic reducting surface of the substrate from Ni-plating solution, and phosphorus is co-deposited simultaneously. Thus chemical Ni-P plating is performed.
     In this paper, high phosphorus (Pwt% 11%-13%) amorphous plating was obtained by optimum Ni-P electrless plating process at high temperatures of 88℃The acidity of the plating solution was controlled as 4.4-4.5 in pH with a buffer solution. Characterization of nickel-phosphorus plating including the structure and morphology, porosity, hardness, bonding strength, and corrosion resistance properties was made by using scanning electron micrograph, X-ray diffraction analyzer, X-ray photoelectron spectroscopy, metallographic microscope, hardness tester, chi660c electrochemical workstation equipment, respectively. The deposition mechanism of electroless Ni-P on BNII and CPII was studied, and improvement of electroless Ni-P plating on BNII was expected.
     The experimental results indicated that the prepared Ni-P plating has excellent gloss smoothness, zero porosity, and nice binding force. The thickness of the Ni-P plating was 24±1μm. The hardness was increased from HV 506 at the very beginning of chemical plating to HV 936 after treating at 390℃for 1h. The structure of Ni-P plating is amorphous at room temperature. A crystallized structure with two-phase Ni and Ni3P could be formed at elevated temperatures. The crystallization temperature of the plating on BNII was 340℃, and the melting point was about 883℃. According to the Tafel polarization analysis,in 5% NaCl and in 0.5 mol/L HCl solutions, the corrosion potential Ecorr of BNII with the plating is 216 mV and 197 mV higher than that without plating, respectively; The corrosion potential Ecorr of CPII with the plating is 50 mV and 118 mV higher than that without plating, respectively; Meanwhile, corrosion current density icorr of BNII with the plating (1.303×10-5 A/cm2,4.215×10-5 A/cm2, respectively) are obviously lower than those of BNII without plating (1.303×10-5 A/cm2,1.326×10-4 A/cm2, respectively).
     According to the X-ray photoelectron spectroscopy, the binding energy of the earlier plating was increased in 0.9 eV for P 2p3; decreaded in 0.1 eV for Ni 2p3 and 0.3 eV for Ni 2p1; decreased in 0.2 eV for Fe 2p3 and 0.4 eV for Fe 2p1, respectively, by comparing the results obtained from BNII plating with those from CPII plating.
引文
1.张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001:164-169.
    2.程军胜,杨滨,张济山等.块体金属纳米材料成形技术研究进展[J],材料导报,2004,18(11):63-65.
    3.张振忠,宋广生,杨根仓,周尧和.块状金属纳米材料的制备技术进展及展望[J],兵器材料科学与工程,1999,22(3):46-50.
    4.赵廷凯,柳永宁,朱杰武.纳米材料概述[J],功能材料,2004,35:2675-2678.
    5. Gleiter H. Nano-structured materials:basic concepts and micro-structure [J], Acta Materialia,2000,48(1):1-29.
    6. Langdon G. Recent. Development in high strain rate super plasticity [J], Materials Transactions,1999,40(8):716-722.
    7.张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001:170-171.
    8. Xu B S, Tanaka S I. Formation and bonding of platinum nanoparticles controlled by high energy beam irradiation [J], Nanostructured Materials,2000,20(12):915-917.
    9.曹茂盛,关长斌,徐甲强.纳米材料导论[M],哈尔滨:哈尔滨工业大学出版社,2001:5-14.
    10.居志兰,戈晓岚,许晓静.块体纳米材料的研究现状与发展思路[J],江苏大学学报,2002,23(4):47-51.
    11. Gleiter H V. Synthesis of nanostructured materials by the use of a thermophoretic forced flux system [J], Nanostructured Materials,1986,27(8):43.
    12.王胜刚,龙康,龙期威.深度轧制细化工业纯铁晶粒[J],金属学报,2003,39(12):1247-1250.
    13. Wang S G, Shen C B, Long K, Yang H Y, Wang F H, Zhang Z D. Preparation and electrochemical corrosion behavior of bulk nanocrystalline ingot iron in HCl acid solution [J], Jurnal of Physical Chemistry B,2005,109(8):2499-2503.
    14. Wang S G, Shen C B, Long K, Zhang T, Wang F H, Zhang Z D. The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution [J], Jurnal of Physical Chemistry B,2006,110(9):377-382.
    15.吕晓仁,王胜刚,刘阳,李曙.纳米化纯铁在干摩擦及油润滑条件下的磨损行为研究[J],摩擦学学报,2007,27(1):20-27.
    16.姜晓霞,沈伟.化学镀理论及实践[M],北京:国防工业出版社,2000:3-4.
    17. Gutzeit G. An outline of the chemistry involved in the Process of catalytic Nickel deposition from aqueous solution plating [J], Surface and Coatings Technology,1959, 50(4):1275-1278.
    18.李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M],哈尔滨:哈尔滨工业大学出版社,2000,1-3.
    19. Hajdu J. Electroless plating:the past is prologue [J], Plating and Surface Finishing, 1996,83(9):29-33.
    20.沈伟,沈晓丹,张钦京.化学镀镍行业近年的发展状况[J],材料保护,2007,40(20):50-54.
    21.胡信国,张钦京.美国化学镀镍年会论文综述[J],电镀与涂饰,2003,22(2):35-37.
    22.李宁.化学镀实用技术[M],化学工业出版社,2003,1-4.
    23.张钦京,杨德钧.我国化学镀技术交流与发展[J],表面工程资讯,2005,2(5):5-6.
    24. Bayes M W. Electroless nickel in the 90s'[J], Metal Finishing,1990,88(4):27-30.
    25. Brenner A, Riddell G E. Niekel plating on steel by chemieal reduetion plating and surface Finishing [J], Plating and Surface Finishing,1946,39(11):385-395.
    26.崔国峰.化学镀镍磷合金过程中磷的析出及其对镀层性能的影响[D],哈尔滨工业大学,2006
    27.李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M],哈尔滨:哈尔滨工业大学出版社,2000,11-13.
    28. Meerak A. Electroless nickel plating from acid bath [J], Surface and Coatings Technology,2000,123(1):72-77.
    29.俞宏英.化学镀镍磷合金镀层在硝酸溶液中的腐蚀机理[D],北京科技大学,1999
    30.洪春勇,张萌.化学沉积镍磷合金的扫描电镜研究[J],江西大学学报,1990,14(3):31-33.
    31. Fundo A M, Abrantes L M. The electrocatalytic behaviour of electroless Ni-P alloy [J], Journal of Electroanalytical Chemistry,2007,600(1):63-79.
    32. Baskaran I, Sankara T S, Narayanan N. A stephen.properties of electroless and electroplated Ni-P and its application in microgalvanics [J], Materials Chemistry and Physics,2006,99(2):117-126.
    33. Mayanna S M, Ramesh L, Sheshadri B S. Electroless nickel plating influence of mixed legands [J]. Transactions of the Institute of Metal Finishing,1996,74(2):66-68.
    34.胡文彬.难度基材的化学镀[M],北京:化学工业出版社,2003,10-13.
    35. Zhoua Q J, He J Y, Haob X P, Chuan W Y, Qiao L J. The effect of hydrogen on plastic deformation of electroless nickel phosphorous amorphous plating [J], Materials Science and Engineering A,2006,437(2):356-359.
    36. Singh D D N. Electroless nickel-phosphorus coatings to protect steel reinforcement bars from chloride induced corrosion [J], Surface and Coatings Technology,2006, 201(1):90-101.
    37.张星笃,严文,白真权.化学镀高磷Ni-P合金的研究[J],电镀与环保,2008,28(5):31-33.
    38. Parker K. The effect of nickel salts on electroless nickel plating [J], Surface Finishing and Plating,1996,38(1):70-71.
    39.訾炳涛,王辉.块体纳米材料的制备技术现状[J],中国有色金属学会第五届学术年会论文集,2000:184-188.
    40. Brenner A, Riddell G E. Niekel Plating on Steel by Chemieal Reduetion Plating and Surface Finishing [J], Surface Finishing and Plating,1996,39(11):385-395.
    41. Huang S, Cui F Z. Effect of complexing agent on the morphology and micros-tructure of electroless deposited Ni-P alloy [J], Surface and Coatings Technology,2007,201(9): 5416-5418.
    42.李春玲.化学复合镀Ni-P-纳米TiO2工艺及性能研究(D],沈阳东北大学,2007
    43.张天顺.化学镀Ni-P合金工艺研究[J],表面技术,1999,12(4):12-16.
    44.郭素枝.扫描电镜技术及其应用[M],厦门:厦门大学出版社,2000,14-15.
    45.张延东.化学镀镍磷合金工艺优化及络合剂作用的研究(D),北京科技大学,2000
    46.卢旭东,邵忠财.化学镀N i-P合金镀层孔隙率的影响因素[J],电镀与精饰,2007,29(6):1-3.
    47.郭东萍,薛士科,王春玉.化学镀镍磷层孔隙率的电化学评价[J],材料保护,2007,40(9):28-30.
    48.王煜明.非晶体及晶体缺陷的X射线衍射[M],北京:科学出版社,1988,55-60.
    49.杨于兴,漆睿.X射线衍射分析[M],上海:上海交通大学出版社,1994,1-15.
    50.李吉学,国秀珍.化学镀N i-P合金镀层相结构与硬度的研究[J],表面技术,2001,30(1):6-8.
    51.牛振江,沈吉军,李则林,吴廷华.原位XRD研究热处理Ni-P化学镀合金的结构[J],材料保护,2003,36(7):45-47.
    52.王丽丽,管从胜,孙从征.热处理对镍磷合金镀层结合强度和硬度的影响[J],电镀与精饰,2008,30(2):4-6.
    53. Guo X P, Tomoe Y. The effect of corrosion product layers on the anodic and cathodic reations of carbon steel in CO2-saturated MDEA solutions at 100℃ [J], Corrosion science,1999,41:1391-1402.
    54.曹楚南,张鉴清.电化学阻抗谱导论[M],北京:科学出版社,2002,151-154.
    55.李瑛,王福会.表面纳米化对金属材料电化学腐蚀行为的影响[J],腐蚀与防护,2003,24(1):7-9.
    56.蒋太祥,吴辉煌,毛秉伟,周少民.化学镀镍磷合金在浓NaOH溶液中的电化学腐蚀行为[J],应用化学,1999,16(3):21-24.
    57.王徐承,王卫东,柳厚田,郁祖湛.化学镀非晶态Ni-P和Ni-B合金在H2SO4溶液中的电化学行为[J],电化学,2003,9(1):36-39.
    58.胡飞,肖静芝,旷亚非.非晶态Ni-P合金电镀层耐蚀性的研究[J],电镀与涂饰,1997,16(4):17-20.
    59.徐瑞东,王军丽,薛方勤,郭忠诚.全光亮镍磷合金镀层的耐蚀性[J],腐蚀科学与防护技术,2004,16(2):110-112.
    60.李振钢,徐景生,王宙,李淑华,赵小京.化学沉积Ni-P合金非晶态形成机制[J],大庆石油学院学报,1993,17(2):100-102.
    61.曹文博,任晨星,关绍康.高锌镁合金化学镀镍磷初始沉积特征的研究[J],材料保护,2006,39(2):11-13.
    62.洪春勇,张萌.化学沉积镍磷合金的扫描电镜研究[J],江西大学学报,1990,14(3):31-34.
    63.朱和国,王恒志.材料科学研究与测试方法[M],南京:东南大学出版社,2007,257-259.
    64.王龙彪,吴俊,黄清安.非晶态Ni基合金电极电子结构的XPS研究[J],化学物理学报,2000,13(4):487-490.
    65. Ezaki H, Morinaga M, Watanabe M. Hydrogen overpotential for transition metals and alloys and its interpretation using an electronic model [J], Electrochimica Acta,1993, 38:55-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700