多孔膜的污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文就对多孔膜的污染问题进行了理论探讨,并针对多孔膜中硫酸钙垢的清洗作了一系列实验。找出了高效清洗多孔膜中的硫酸钙垢的试剂和优化条件。主要包括:
     通过对三聚磷酸钠、六偏磷酸钠、乙二胺四乙酸二钠、乙二胺四乙酸四钠四种螯合剂对硫酸钙溶解性对比实验,最终选择乙二胺四乙酸二钠和乙二酸四乙酸四钠作为本实验清洗剂。
     研究了反应浓度对Na_4EDTA和Na_2EDTA溶解硫酸钙的影响。在高反应浓度下,反应能够相对较快达到平衡。
     初步拟合了20℃下,Na_4EDTA,Na_2EDTA和硫酸钙同为0.029mol时对硫酸钙溶解的反应速率公式:其中v为反应速率,mol/l·s,t为反应时间,s。
     考察了在Na_4EDTA和Na_2EDTA溶解硫酸钙过程中,pH值的改变。发现1.等摩尔浓度的Na_4EDTA和Na_2EDTA的水溶液中,Na_4EDTA溶液的pH值高于Na_2EDTA的pH。2.对Na_4EDTA来说,溶液浓度越大,pH值越高,Na_2EDTA则相反。3.随着螯合反应的进行,pH不断下降。
     考察了pH对Na_4EDTA和Na_2EDTA螯合性能的影响。考察了含盐量对Na_4EDTA和Na_2EDTA溶解硫酸钙性能的影响。随着NaCl盐浓度的增加,Na_2EDTA和Na_4EDTA对CaSO_4的溶解率缓慢上升。
     在上述实验的基础上,参选出不同的因素水平,作出Na_4EDTA和Na_2EDTA对CaSO_4溶解的三因素四水平正交实验。通过极差和方差分析后,认为在Na_4EDTA溶解CaSO_4过程中,时间和pH对此反应有高度显著影响。在所选水平内,反应20min,pH=11时,效果最好。在Na_2EDTA溶解CaSO_4过程中,时间此反应有高度显著影响,pH有显著影响。在所选水平内,反应25min,pH=5时,效果最好。
     最后,在前面实验的基础上,作出Na_4EDTA和Na_2EDTA对硫酸钙垢污染的PVDF微滤
    
    膜清洗后,相对通量恢复率的五因素三水平正交实验。通过正交实验的极差和方差分析认为,
    在Na4EDTA对污染膜的清洗过程中,浓度对清洗效果影响是高度显著的,pH和压力对清洗
    效果影响显著,而时间、温度则无明显影响。最优工程的操作条件为Na4EDTA浓度为4%wt,
    操作压力为0.IMPa,清洗pH=11。在NaZEDTA对污染膜的清洗过程中,浓度,时间对清洗
    效果影响是高度显著的,pH和压力对清洗效果影响显著,而温度则无明显影响。最优工程的
    操作条件为NaZEDTA浓度为4%wt,清洗时间为40min,操作压力为o.IMPa,清洗pH=11。
     在综合考虑乙二胺四乙酸二钠和乙二胺四乙酸四钠对硫酸钙的溶解性实验及正交实验,
    和最后对污染膜清洗的正交实验可以看出,尽管最优工程选择中NaZEDTA清洗后膜的相对恢
    复率略高于Na4ED飞’A,但其要求条件相对苛刻,从溶解性实验也可看出,Na4EDrLA对硫酸钙
    的溶解相对稳定,溶解率高。可以得出结论,对于膜污染的硫酸钙垢,采用N粼EDTA可以达
    到最好的清洗效果,其最优清洗条件为:PH=11、操作压力为0.IMPa、浓度为4%wt。
In this paper, theories of porous membrane fouling and cleaning were explored, and a series of experiments were especially done to clean CaSO4 scale in porous membrane. The high-efficiency cleaning agent and optimum conditions were chosen and it has some guiding significance on practice. The main tasks include:
    By the contrastive experiments of sodium tripolyhosphate, sodium hexametaphosphate, Na2EDTA and Na4EDTA dissolving CaSO4, Na2EDTA and N^EDTA were chosen as cleaning agents in this experiment.
    Effects of Na2EDTA and Na4EDTA's concentration on dissolving CaSO4 were studied. The reaction rate was relatively easy to reach the balance when concentrations of cleaning agents were higher.
    The dissolving reaction rate was fitted under the experiment conditions when NNa2EDTA and NCaso4 is 0.029mol:
    where v is the reaction rate, mol/l-s; and t is the reaction time,s.
    The change of pH was examined in the process of Na4EDTA and Na2EDTA dissolving CaSO4. Some conclusions were obtained: 1. PH value of Na4EDTA solution was higher than that of Na4EDTA solution when the mol concentration of the both solutions is same.2. For Na4EDTA solution or for Na2EDTA solution, the higher the solution concentration, the higher pH value was, however, the Na2EDTA solution is adverse. 3. With the increasing of the chelating reactions, pH value decreased gradually.
    The effect of pH value on the chelating properties of Na4EDTA and Na2EDTA for CaSO4 was studied. For Na4EDTA, and the effect of ionic strength on the chelating properties of Na4EDTA and Na2EDTA for CaSO4 was reviewed. With the increasing of ionic strength, the chelating property increased.
    On the basis of above experiments, the different factors and levels were selected and the
    
    
    three-factor-four-level orthogonal experiments of Na4EDTA and NaiEDTA were done. By range analysis and variance analysis, time factor and pH factor were considered that had high remarkable effects on the course of Na4EDTA dissolving CaSO4. In all selected levels, the dissolving effect is best when time=20rm'nand pH=ll. In the course of Na2EDTA dissolving CaSO4, time factor has high remarkable effect and pH has remarkable effect. The effect is best when time=25min and pH=5.
    At last, on the basis of above experiments, the five-factor-three-level orthogonal experiments on the relative flux recovery ratio after Na2EDTA and Na4EDTA cleaning PVDF microfiltration membrane that was fouled by CaSO4 were done. By range analysis and variance analysis, the effect of concentration, pH and pressure on the cleaning property of Na4EDTA to the fouled membrane were high remarkable, but, time and temperature did not affect much. The optimum condition was that Na4EDTA concentration is 4%wt, operating pressure is 0.1 Mpa and pH is 11. In the process of Na2EDTA cleaning the fouled membrane, concentration and time had high remarkable effects, pH and pressure had remarkable effects but temperature had not obvious effect. The optimum condition was that NaiEDTA is 4%wt, cleaning time is 40min, operating pressure is 0. IMpa and pH is 11.
    Integrating the dissolving experiments of Na2EDTA and Na4EDTA and the orthogonal experiments, we can conclude that the dissolving property of Na^EDTA is relatively more stable and higher than that of Na2EDTA in this experiment. And, the conclusion can be made that for the CaSO4 scale in membrane Na4EDTA has the best cleaning effect and the optimum condition is pH=11, operating pressure=0.1Mpa and concentration=4%wt.
引文
1. 邵刚.《膜法水处理技术》(第二版).冶金工业出版社.2000,:1-10
    2. 刘茉娥.《膜分离技术》(第一版).化学工业出版社.1998,:211—212
    3. A. J. Bromley, R. G. Holdich, I. W. Cumming. Particulate fouling of surface microfilters with slotted and circular pore geometry. J. Membr. Sci., 2002, 196: 27-37
    4. Carroll T. J. and Booker N. A.. Axial features in the fouling of hollow-fibre microfiltration membranes. J. Memb. Sci., 2000, 168: 203-213
    5. Malgorzata Kabsch-Korbutowicz, Katarzyna Majewska-Nowak, Tjomasz Winnicki. Analyse of membrane fouling in the treatment of water solutions containing humic acids and mineral salts. Desalation, 1999, 126: 179-189
    6. 王湛.《膜分离技术基础》(第一版).北京:化学工业出版社,2000.1:244-244
    7. A. Claudia, Sousa, Joaquim, Mis. Cabral, Marilia Mateus. The role of the electolyte enviroment on the development of dymanic cake layer. J. Membr. Sci. 2002, 217: 171-217
    8. W. P. Eagles, R. J. Wakeman. Interaction between dissolved material and the fouling layer during mirofiltration of a model beer solutions. J. Membr. Sci., 2002, 206: 253-263
    9. S. G. Yiantsios, A. J. Karabelas. The effect of colloid stability on membrane fouling. Desalination, 1998, 118: 143-152
    10. K. Khatib, J. Rose, O. Barres, W. Stone, J. Y. Bottero, C. Anselme. Physico-chemical study of fouling mechanisms of ultrafiltration membrane in Biwa lake(Japan). J. Membr. Sci., 1997, 130: 53-63
    11. Kelly. Protein fouling during microfiltration: camparative behavour of different membranes during stirred cell filtrater. Bioeng, 1997, 55: 91-103
    12. Marshall, A. D. ; Munro, P. A. ; Tragardh, G. Influence of permeate flux on fouling during microfiltration of lactoglobulin solutions under crossflow conditions. J. Membr. Sci., 1997, 130: 23-30
    13. Darko M. Krstic, Sinisa L. Markov, Miodrag N. Teki. Membrane fouling during cross-flow micro filtration of Polyporus squamosus fermentation broth. Biochemical Engineering Journal, 2001, 19: 103-109
    
    
    14. CARROLL, S. KING, S. R. GRAY, B. A. BOLTOM and N. A. BOOKER. The fouling of microfiltration membranes by nom after cougulation treatment. Water Research, 131 (11): 2861-2870
    15. Piotr Czekaj, Francisco López, Carme Güell. Membrane fouling during microfiltration of fermented beverages. Journal of Membrane Science, 2000, 166: 199-209
    16. B. Tansel, W. Y. Bao, N. Tansel. Characterization of fouling kinetics in ultrafiltration systems by resistances in series model. Desalination, 2000, 129: 7-16
    17. J. Jacob, E Pradanos, J. I. Calvo, A. Aernandez and G. Jonssom. Fouling kinetics and associated dynamics of structural modifications. Colloids and Surfaces A: Physicochemical Engineering Aspects, 1998, 138: 173-183.
    18. Liisa Pure, Jukka Tanninen, Marianne Nystriim. Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 2002, 143: 1-9
    19.时钧等.《膜技术手册》(第一版).北京:化学工业出版社,2001:73-73
    20. Huihua Zhu, Marianne Nystrom. Cleaning results characterized by flux, streaming potential and FTIR measurements. Colloids and Surfaces A: PhySicochemical and Engineering Aspects,1998, 138: 309-319
    21. Marine Nyctrom, Huihua zhu. Characterization of cleaning results using combined flux and streaming potential methods. J. Membr. Sci, 1997, 131: 195-196
    22. Jianxin Li, R. D. Sanderson, D. K. Hallbauer, V. Y. Hallbauer-Zadorozhnaya. Measurement and modelling of organic fouling deposition in ultrafiltration by ultrasonic transfer signals and reflections. Desalination, 2002, 146: 177-187
    23. R. M. McDonogh, H. Stroh, U. Grauschoph. Experimental in situ measurement of concentration polarization during ultra-and micro-filtration of bovine serum albumin and dextran blue solutions. J. Membr. Sci., 1995, 104: 51-63.
    24.孙培松,K.J.Kim,吴惠珍,A.G Fane.蛋白质在超滤过程中的膜污染和膜清洗.《水处理技术》,20(2):81-84
    25. M. Mietton Peuchot, R. Ben Aim. Improvement of crossflow microfiltration performance with flocculation. J. Membr. Sci.. 1992. 68: 241-250
    
    
    26. M. Otaki. S. Takizewa. S. Ohgaki. Control and modeling of membrane fouling due to microorganism growth by UV pretreatment. Wat. Sci. Tech., 1998, 138 (4-5): 405-412
    27.吴惠珍,Vicki Chen,孙培松,A.G Fane.阴离子表面活性剂对降低超滤膜污染的影响.《水处理技术》 20(2):85-88
    28. Huimin Ma, Christopher N. Bowman, Robert H. Davis. Membrane fouling reduction by backpulsing and surface modification. Journal of Membrane Science, 2000, 173: 191-200
    29. Field, R. W. Wu. D. Howell. J. A. & Gupta. B. B. Critical flux for microfiltration fouling. J. Membr. Sci., 1994, 100: 259-272
    30. Harit, K. Vyas. R. J. Bennett, A. D., Marshell. Performance of crossflow microfiltration during constant transpressure and constant flux operation: Internal Dairy J., 2002, 12: 473-485
    31. G. F. Grozes, J. G. Jacangelo, C Anselme. Impact of ultrafiltration operating conditions on membrane irreversible fouling. J. Membr. Sci., 1997, 124: 63-72
    32. R. Bian a, K. Yamamoto a, Y. Watanabe b.. The effect of shear rate on controlling the concentration polarization and membrane fouling. Desalination, 2000, 131: 225-236
    33. Satoshi Takizawaa, Kenji Fujitab, Kim Hyung Soob. Membrane fouling decrease by microfiltration with ozone scrubbing. Desalination, 1996, 106: 423-432
    34. Young G. Park. Effect of ozonation for reducing membrane-fouling in the UF membrane. Desalination, 2002, 147: 4348
    35.莫罹,黄霞,吴金玲,张立平.混凝-微滤的膜污染特征及其清洗.中国环境科学,2002,22(3):258-262
    36. Maartens a E. P. Jacobsb E Swarta. UF of pulp and paper effluent: membrane fouling-prevention and cleaning. Journal of Membrane Science, 2002, 209: 81-91
    37. 徐南平.中国膜科学重大技术问题的研究与展望.《中国膜科学与技术报告会议论文集》 2003.9:1—3
    38. 刘茉娥《膜分离技术应用手册》.化学工业出版社.2001.2:1—7
    39. 王保国,蒋维钧.《水处理技术》.化学工业出版社.1995,21 (1):12
    40. 大连理工大学无机化学教研室.《无机化学》.北京人民教育出版社 1978:115-125
    41. 黄子卿《电解质溶液理论导论》北京科学出版社.1983:119—123
    
    
    42. 朱志良、张冰如、苏耀东、倪亚明,“聚丙烯酸及马丙共聚物对硫酸钙阻垢机理的结晶动力学研究”《工业水处理》.2000,Vol.20,No 12:17-21
    43. J.Burgess.《溶液中的金属离子》.原子能出版社.1987.1:5—30
    44. 张祥麟.《络合物化学》(第一版).高等教育出版社.1980:1
    45. J.Burgess《溶液中的金属离子》原子能出版社 1987,1:249
    46. 孟繁敬,郝俊果.反渗透膜的污染与清洗.河北化工,2001,1:30—31
    47. 王宇彤.反渗透膜的污染与清洗.化学清洗.1996.3,Vol.12,NO.1:20-22
    48. 张祥麟.《配合物化学》(第一版).高等教育出版社.1991:38—56,107—121,201—224
    49. 华中师范学院,东北师范大学,陕西师范大学.《分析化学》(第一版).人民教育出版社.1981:60—62
    50. 郑淳之.《水处理剂和工业循环冷却水系统分析方法》(第一版).化学工业出版社 2000:153—159
    51. 何铁林.《水处理试剂手册》.化学工业出版社.2000:381
    52. 天津顶福工厂与天津天一达有限公司网上报价单
    53. 周性尧,任建国.《分析化学中的离子平衡》.科学出版社.1998:283—296
    54. 轻工业部设计院.《日用化工理化数据手册》.轻工业出版社.1981:7—9,75—76
    55. 张治军.《分析化学中有关型体平衡的通用处理》高等教育出版社.1996:154—173
    56. 祁鲁梁,李永存,李本高.《水处理工艺与运行管理实用手册》.中国石化出版社.2002:578—590

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700