基于乘员约束能的微型客车正碰安全性正向设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车行业的飞速发展和保有量逐年递增,带来了严重的交通安全问题。在我国,微型客车作为主要汽车下乡车型,其保有量将近占总量的20%,研究微型客车的正碰安全性设计是非常有意义的。微型客车低端用户要求造成了低成本设计及制造,但同样要满足我国的正面碰撞乘员保护法规,微型客车的正面碰撞安全性设计难度较大。
     本文研究了以乘员约束能为核心指导汽车安全性设计的方法,以微型客车正面碰撞安全性设计为例,系统地研究了微型客车正面碰撞安全性开发的流程及乘员约束能与汽车总布置,车身和乘员约束系统设计之间的关系,为关键区域的设计及整车安全性目标的实现提供了可靠的保证,该方法同样可以扩展到其它车型,本文研究的主要内容和创新点如下:
     (1)提出了基于乘员约束能的微型客车正面碰撞安全性开发流程,该方法系统有效地指导了微型客车正面碰撞安全性的开发,确保了安全性目标的顺利实现,很大程度上实现了安全性的正向设计。
     (2)提出了基于乘员约束能的乘员舱和前舱空间设计方法,根据乘员约束能目标可以求出最大乘员相对位移和车体动态压溃,为概念阶段乘员舱和前舱空间的安全性设计提供了充分的依据。针对详细阶段的乘员舱安全性设计,本文将多学科协同优化设计方法应用到了乘员舱的设计中,实现了乘员舱安全性和乘坐舒适性的多性能并行设计,缩短了乘员舱安全性的开发周期。该方法在某款微型客车乘员舱的设计中获得了较好的应用。
     (3)提出了基于最小化乘员约束能反求车身目标碰撞波形的方法,有效地确定了车身碰撞波形的设计目标,为车身碰撞波形的概念设计提供了指导。同时,针对详细设计阶段的车身碰撞波形设计,提出了基于最小化乘员损伤的车身碰撞波形设计方法,为汽车车身耐撞性设计提供方向。针对某款微型客车车身碰撞波形的反求设计,改进后的实车碰撞结果验证了该方法的实用性。
     (4)提出了基于乘员胸部响应波形效率的胸部约束刚度设计方法,为前期乘员胸部约束刚度的概念设计提供了指导,也为前期确定约束系统配置提供了依据。同时,针对微型客车正面碰撞中乘员局部损伤指标对于约束系统参数波动敏感的问题,本文将基于稳健性的设计优化方法应用到了约束系统的参数设计中,实现了乘员损伤指标的稳健性设计。撕裂式安全带在某款微型客车上的成功应用验证了该方法的有效性。
The rapid development of the automobile industry and the increasing of car ownership brought a serious traffic safety problem. In China, the minibus is the primary car to the countryside models. Its holdings accounts for nearly20%of the total, so the frontal crash safety design of minibuses are very meaningful. Low-end user requirements of the minibus caused the low-cost design and manufacturing, but also the minibus must meet our country's frontal crash occupant protection regulations, therefore the minibus frontal crash safety design is very difficult.
     In this paper, the method of having the occupant restraint energy central to guide the vehicle safety design is studied, take the minibus crash safety design for example, vehicle frontal crash safety development processes and the relationship between the occupant restraint energy and vehicle packaging design, body design, occupant restraint system design is studied, and provide a reliable guarantee for both of the critical regions design and vehicle safety goals. The main content and innovation of this study are as follows:
     (1) The development process of the frontal crash safety based on the occupant restraint energy is proposed, the method systematically and effectively guide the minibus front crash safety development to ensure the smooth realization of the vehicle safety goals, to a large extent to achieve the forward design of vehicle safety.
     (2) The space design method of passenger compartment and front cabin based on the occupant restraint energy is proposed, based on the goals of occupant restraint energy, the max relative displacement of the occupant and vehicle dynamic crush can be determined, and provide the sufficient basis for the safety design of the passenger compartment and front cabin. For the safety design of the passenger compartment at detailed design stage, multidisciplinary collaborative optimization design method is applied to the design of the passenger compartment to realize the multi-performance parallel design of the passenger compartment safety and ride comfort, and to shorten the development cycle. The method is effectively applied to the passenger compartment design of the minibus.
     (3) The method to reverse vehicle crash pulse based on minimizing the occupant restraint energy is proposed to provide the feasible direction for the conceptual design of crash pulse. Also, for the improvement design of crash pulse at the detailed design phase, the method to design vehicle crash pulse based on minimizing the occupant injuries is proposed to provide the guidance for the vehicle crashworthiness design. The method is effectively applied to the crash pulse design of the minibus, and the engineering practicability is validated by the minibus impact test.
     (4) The method to design occupant's chest restraint stiffness based on the chest response waveform efficient is proposed, and provides guidance for the conceptual design of the occupant chest restraint stiffness, and provides a basis to determine the configuration of the occupant restraint system. For the problem of occupant injury indexes sensitive restraint system parameter fluctuations, the robustness optimization design is applied to the parameters design of the restraint system, to achieve the robust Resign of the occupant injury indexes. The validity of the method is validated by successfully applying the fuse seatbelt to the minibus.
引文
[1]赵敏.汽车侧碰安全性设计关键技术研究.长沙:湖南大学,2011.
    [2]钟志华,张维刚,曹立波,等.汽车碰撞安全技术.北京:机械工业出版社,2008.
    [3]祝珂.汽车安全性研究与分析.汽车与安全,2011,(5):57-59.
    [4]U.S. Department of Transportation. Traffic Safety Facts 2003:A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System. United States, Washington D.C.:NHTSA Report HS-809775,2005.
    [5]中华人民共和国机械工业部.CMVDR 294关于正面碰撞乘员保护的设计规则.北京:机械工业部,1998.
    [6]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 11551-2003乘用车正面碰撞的乘员保护.北京:中国标准出版社,2003.
    [7]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 20913-2007乘用车正面偏置碰撞的乘员保护.北京:中国标准出版社,2007.
    [8]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 20071-2006汽车侧面碰撞的乘员保护.北京:中国标准出版社,2007.
    [9]中国汽车技术研究中心.C-NCAP管理规则.天津:中国汽车技术研究中心,2009.
    [10]中国汽车技术研究中心.C-NCAP管理规则.天津:中国汽车技术研究中心,2012.
    [11]赵凯绅,周俊杰,王增山,等.基于约束系统零部件试验验证的乘员保护仿真.第9届国际汽车交通安全学术会议.长沙:湖南大学,2011:122-127.
    [12]陈弘,董丽莉,赵航.CATARC汽车模拟碰撞试验系统的研究.汽车技术,1996,(10):28-32.
    [13]朱西产,刘玉光,郑宏.汽车车身结构碰撞性能的试验研究.汽车技术,1999,(4):20-22.
    [14]葛如海.汽车正面碰撞乘员约束系统匹配研究.南京:江苏大学,2007.
    [15]TASS. MADYMO Theory Manual Version 7.3. Delft, Netherlands:TNO Road Vehicles Research Institute,2010.
    [16]Hallquist J O. LS-DYNA theory manual. California:Livermore Software Technology Corporation,2006.
    [17]Altair Engineering. Radioss starter manual 5.1 version. Michigan:Altair Engineering,2007.
    [18]ESI Group. Pam-crash/safe 2004 solver notes manual. France:ESI,2004.
    [19]Schmitt K U, Niederer P F, Muser M H, et al. Trauma Biomechanics Accidental injury in traffic and sports. Second Edition. Berlin:Springer,2007.
    [20]Measured data processing vehicle safety workgroup. Crash Analysis Criteria Description. Bergisch Gladbach:Algorithm workgroup,2011.
    [21]葛如海,刘志强,陈晓东.汽车安全工程.北京:化学工业出版社,2005.
    [22]Mentzer S G. Efficient Computation of Head Injury Criterion (HIC) Values. Washington D.C.:NHTSA Report DOT-HS-806-681,1984.
    [23]Gadd C W. Use of a Weighted-Impulse Criterion for Estimating Injury Hazard. SAE Paper,660793,1966.
    [24]Versace J. A Review of the Severity Index. SAE Paper,710881,1971.
    [25]Chou C C, Nyquist G W. Analytical Studies of the Head Injury Criterion (HIC). SAE Paper,740082,1974.
    [26]Kleinberger M, Sun E, Eppinger R, et al. Development of improved injury criteria for the assessment of advanced automotive restraint sytems. Washington D.C.:NHTSA report,98-4405-9,1998.
    [27]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 24550-2009汽车对行人的碰撞保护.北京:中国标准出版社,2011.
    [28]Lowne R W. The Validation of the EEVC Frontal Impact Test Procedure. U.S. Department of Transportation. Proceedings of the 15th International Technical Conference on the Enhanced of Safety of Vehicles. Melbourne, Australia: National Highway Traffic Safety Administration,1996:401-413.
    [29]Viano D C, Parenteau, C S. Analysis of Head Impacts Causing Neck Compression Injury. Traffic Injury Prevention,2008,9(2):144-152.
    [30]Stalnaker R L, Mohan D. Human chest impact protection. Proceedings of the 3rd International Conference on Occupant Protection, New York:SAE,1974: 384-393.
    [31]Patrick L M, Mertz H J, Kroell C K. Cadaver knee, chest and head impact loads. Proc. Proceedings of the 9th Stapp car crash conference. Warrendale, PA:SAE, 1969:168-182.
    [32]Kroell C K, Schneider D C, Nahum A M. Impact tolerance and response to the human thorax. Proceedings of the 15th Stapp car crash conference. Coronado, PA:SAE,1971:84-134.
    [33]Kroell C K, Schneider D C, Nahum A M. Impact tolerance and response to the human thorax Ⅱ. Proceedings of the 18th Stapp car crash conference. Michigan: SAE,1974:383-457.
    [34]Viano D, Lau I V. Thoracic impact:a viscous tolerance criterion. Proceedings of the 10th International Technical Conference on the Enhanced of Safety of Vehicles. Oxford, England:National Highway Traffic Safety Administration, 1985:104-114.
    [35]Viano D. Biomechanicsof non-penetrating aortic trauma:a review. Proceedings of the 27th Stapp Car Crash conference. San Diego:SAE,1983:109-114.
    [36]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 11551乘用车正面碰撞的乘员保护(征求意见稿).北京:中国标准出版社,2011.
    [37]Crandall J, Portier L, Petit P, et al. Biomechanical response and physical properties of the leg, foot and ankle. SAE Paper,962424,1996.
    [38]Levine R. Injuries to the extremities in Accidental Injury-Biomechanics and Prevention. New York:Springer Verlag,2002.
    [39]Viano D C, Arepally S. Assessing the Safety Performance of Occupant Restraint System. SAE Paper,902328,1990.
    [40]Society of Automotive Engineers. Sign Convention for Vehicle Crash Testing. SAE Standard, J1733,1994.
    [41]Society of Automotive Engineers. Injury Calculations Guidelines. SAE Standard, J1727,1996.
    [42]Society of Automotive Engineers. Instrumentation for Impact Test. SAE Standard, J211,2003.
    [43]Prasad P, Belwafa J E. Vehicle Crashworthiness and Occupant Protection. Michigan:American Iron and Steel Institute,2004.
    [44]王大志.基于乘员保护的汽车正面碰撞结构设计与变形控制研究.北京:清华大学,2006.
    [45]王大志,黄世霖,张金换.碰撞损伤的计算机模拟及其试验再现.第七届中国汽车安全技术学会会议论文集.北京:中国汽车工程学会,2004.
    [46]Chou C, Lim G. Vehicle deceleration pulse characterization by harmonic analysis. SAE Paper,845019,1984.
    [47]Seo B P, Han S J, Kim W C. Performance Analysis methodology based on Crash Pules Severity and Vehicle Occupant Packaging for Full Frontal Crash Event. U.S. Department of Transportation. Proceedings of the 21th International Technical Conference on the Enhanced of Safety of Vehicles. United States, Washington D.C.:National Highway Traffic Safety Administration,2009, Paper Number 09-0173.
    [48]Nakahams R, Katoh H. Study on the Relationship between Seat Belt Anchorage Location and Occupant Injury. U.S. Department of Transportation. Proceedings of the 11th International Technical Conference on the Enhanced of Safety of Vehicles. Washington D.C.:National Highway Traffic Safety Administration, 1987:524-529.
    [49]Egli A. Stopping the Occupant of a Crashing Vehicle-A Fundamental Study. SAE Paper,670038,1967.
    [50]Searle J. Optimum Occupant Restraints. SAE Paper,700422,1970.
    [51]Lundell B. Dynamic Response of a Belted Dummy-A Computer Analysis Crash Pulse Variation. SAE Paper,840401,1984.
    [52]Ishii K, Yamanaka I. Influence of Vehicle Deceleration Curve on Dummy Injury Criteria. SAE Paper,880612,1988.
    [53]Matsumoto H, Sakakida M, Kurimoto K. A Parametric Evaluation of Vehicle Crash Performance. SAE Paper,900465,1990.
    [54]R Brantman. Achievable Optimum Crash Pulses for Compartment Sensing and Airbag Performance. Proceedings of the 13th International Technical Conference on Experimental Safety Vehicles. Paris:U.S. Department of Transportation National Highway Traffic Safety Administration,1991: 1134-1138.
    [55]Nahum A M, Melvin J W. Accident Injury-Biomechanics and Prevention. New York:Springer-Verlag,1993.
    [56]Sparke L J, Tomas J A. Crash Pulse Optimization for Minimum Injury Risk to Car Occupants. SAE Paper,945162,1994.
    [57]Sparke L J. Optimisation of Crash Pulse through Frontal Structure Design. Proceedings of the 15th International Technical Conference on Experimental Safety Vehicles. Melbourne:U.S. Department of Transportation National Highway Traffic Safety Administration,1996:720-725.
    [58]Witteman W J, Kriens R F C. Numerical Optimization of Crash Pulses. EUROPAM 99-9th User Conference, Darmstatd, Germany:1999.
    [59]Grimes W D, Lee F D. The Effect of Crash Pulse Shape on Occupant Simulations. SAE Paper,2000-01-0460,2000.
    [60]Motozawa Y, Kamei T. A New Concept forOccupant Deceleration Control in a Crash. SAE Paper,2000-01-0881,2000.
    [61]Matthew Huang. Vehicle Crash Mechanics. Boca Raton:CRC PRESS,2004.
    [62]Wu J, Nusholtz G S, Bilkhu S. Optimization of Vehicle Crash Pulses in Relative Displacement Domain. International Journal of Crashworthiness.2002,7(4): 397-413.
    [63]Wu J, Bilkhu S, Nusholtz G S. An Impact Pulse-Restraint Energy Relationship and Its Applications. SAE Paper,2003-01-0505,2003.
    [64]李建功,李三红.正面碰撞加速度波形与伤害指标相关性研究.2007中国汽车工程学年会论文集.北京:机械工业出版社,2007:284-287.
    [65]朱航彬,刘学军.正面碰撞波形对乘员伤害值的影响.中国机械工程,2008,30(11):964-968.
    [66]Martins H R N. Occupant Injury Optimization for Non-Air Bags Vehicles. SAE Paper,2003-01-3752,2003.
    [67]葛如海,臧绫,王浩涛,等.汽车座椅坐垫倾角对正面碰撞乘员保护影响分析.机械工程学报,2009,45(11):230-234.
    [68]Szabo T J, Voss D P, Welcher J B. Influence of Seat Foam and Geometrical Properties on BioRID P3 Kinematic Response to Rear Impacts. Traffic Injury Prevention,2003,4(4):315-23.
    [69]Eriksson L, Kullgren A. Influence of Seat Geometry and Seating Posture on NIC(max) Long-Term AIS 1 Neck Injury Predictability. Traffic Injury Prevention,2006,7(1):61-69.
    [70]Viano D C. Seat Design Principles to Reduce Neck Injuries in Rear Impacts. Traffic Injury Prevention,2008,9(6):552-560.
    [71]Altenhof W, Arnold B, Li Z, et al. A Comparison of the Crash Performance of Three-spoke and Four-spoke Steering Wheel Armatures during Impact Loading. Int. J. Vehicle Design,2004,35 (3):186-209.
    [72]Yang Z Z, Raman S V, Ma D. Virtual Tests for Facilitating Steering Wheel Development. SAE Paper,2005-01-1072,2005.
    [73]Hamid M, Narayanasamy N, Shah M J, et al. Systems Approach in Development of Adaptive Energy Absorbing Steering Columns by Virtual Engineering. SAE Paper,2005-01-0705,2005.
    [74]王灿军,管迪.基于台车试验方法的某微型轿车乘员约束系统改进设计.汽车技术,2009,(11):38-41.
    [75]钟志华,杨济匡.汽车安全气囊技术及其应用.中国机械工程,2000,11(1-2):234-237.
    [76]万鑫铭.基于虚拟试验的汽车前碰撞安全气囊防护效率的研究.长沙:湖南大学,2006.
    [77]李建功,李三红,张雄辉.安全气囊和安全带对假人上颈部伤害的研究.第十四届中国汽车安全技术学会会议论文集.北京:中国汽车工程学会,2011:350-354.
    [78]童忠才.乘员约束系统优化-安全气囊与安全带匹配研究.第十四届中国汽车安全技术学会会议论文集.北京:中国汽车工程学会,2011:355-358.
    [79]郝玮,吴光,金靖,等.转向管柱在正面碰撞安全中的功能要求.第十四届中国汽车安全技术学会会议论文集.北京:中国汽车工程学会,2011:393-397.运,胡远志,蒋成约.正面碰撞中吸能式转向管柱对假人伤害情况的影响.第十四届中国汽车安全技术学会会议文集.北京:中国汽车工程学会2011:398-402.
    [81]袁健,孙正东,史永万.轿车安全带优化设计及模拟仿真.汽车工程,2002,24(2):160-163.
    [82]张君媛,林逸,赵英如.微型客车约束系统参数对乘员碰撞响应的影响.吉林大学学报,2002,32(1):6-11.
    [83]林逸,张君媛,赵英如,等.微型客车乘员约束系统性能分析及改进设计.中国机械工程,2003,14(19):1694-1696.
    [84]Kachnowski B, Fu Y. Experience with Response Surface Methods for Occupant Restraint System Design. SAE Paper,2005-01-1306,2005.
    [85]宋敬滨,任春玲,钱国强.汽车正面碰撞乘员侧约束系统优化算法.机械,2008,35(11):17-19.
    [86]张学荣,刘学军,苏清祖.轿车乘员约束系统的试验验证及参数优化.中国机械工程,2008,10(19):1254-1257.
    [87]张维刚,刘晖.Kriging模型与优化算法在汽车乘员约束系统仿真优化中的应用研究.湖南大学学报(自然科学版),2008,35(6):23-26.
    [88]张维刚,刘晖,廖兴涛.基于代理模型的汽车乘员约束系统仿真设计.江苏大学学报(自然科学版),2008,29(4):293-296.
    [89]高晖,李光耀,李铁柱.基于遗传算法和可靠性分析的乘员约束系统优化.汽车工程,2008,30(12):1052-1055.
    [90]李铁柱,李光耀,高晖,等.基于可靠性优化的汽车乘员约束系统的性能改进.中国机械工程,2010,21(8):993-999.
    [91]张学荣,苏清祖.乘员约束系统参数优化及稳健性分析.汽车工程,2010,32(12):1053-1056.
    [92]李方义,李光耀,张佳洪,等.基于区间数规划的汽车乘员约束系统不确定优化.汽车工程,2011,33(1):6-10.
    [93]Matsui S A. Method of Estimating the Crashworthiness of Body Construction. Proceedings of the 6th International Technical Conference on the Experimental Safety Vehicles. Washington D.C.:U.S. Department of Transportation,1976: 302-309.
    [94]Huang M, Loo M. A Study on Ride-Down Efficiency and Occupant Responses in High Speed Crash Tests. SAE Paper,950656,1995.
    [95]Katoh H, Nakahama R. A Study on the Ride-Down Evaluation. Proceedings of the 9th International Technical Conference on Experimental Safety Vehicles. Kyoto, Japan:U.S. Department of Transportation,1982:190-195.
    [96]张金换,杜汇良,马春生,等.汽车碰撞安全性设计.北京:清华大学出版社,2010.
    [97]谷美林,黄传真.数据相关性分析在材料设计中的应用.材料导报,2005,19(3):116-117.
    [98]张健,周洲.战术无人机总体与性能参数相关性分析.飞行力学,2009,27(4):18-21
    [99]冯力.回归分析方法原理及SPSS实际操作.北京:中国金融出版社,2004.
    [100]易国伟.多学科设计优化中的质量工程.北京:北京航空航天大学,2004.
    [101]陈建江.面向飞航导弹的多学科稳健优化设计方法及应用.武汉:华中科技大学,2004.
    [102]余雄庆.多学科设计优化算法及其在飞机设计中的应用研究.南京:南京航空航天大学,1999.
    [103]陈炉云,郭维,王德禹.多学科设计优化技术在舰船设计中的应用.船海工程,2001,(4):28-30.
    [104]李哲.多学科优化设计在航空航天领域的应用及发展.航天返回与遥感,2004,25(3):65-70.
    [105]钱国强.汽车正面碰撞乘员侧约束系统仿真与参数优化.锦州:辽宁工学院,2007.
    [106]陶海龙,刘岩.汽车乘员约束系统的参数分析及仿真研究.上海汽车,2008,(7):25-28.
    [107]占建军,郑晋军.人工神经网络在汽车内部布置中的应用.天津汽车,2002,(3):10-12.
    [108]占建云.汽车车身内部布置方法研究与总结.吉林:吉林大学,2003.
    [109]吕景华.轿车人体工程设计一般方法的研究.汽车技术,2002,(10):1-5.
    [110]Hamza K, Hossoy I, Reyes-Luna J F, et al. Combined maximization of interior comfort and frontal crashworthiness in preliminary vehicle design. Int. J. Vehicle Design,2004,35(3):167-185.
    [111]刘晖.代理模型方法在轿车乘员约束系统仿真优化中的应用研究.长沙:湖南大学,2008.
    [112]廖兴涛.基于代理模型的汽车碰撞安全性仿真优化研究.长沙:湖南大学,2006.
    [113]Matheron G. Principles of Geostatistics. Economic Geology,1963,58: 1246-1266.
    [114]丁彦闯,兆文忠.基于Kriging模型的焊接构架抗疲劳优化设计.大连交通大学学报,2008,29(2):7-11.
    [115]Engineous Software, Inc. Isight 9.0 Reference Guide.Engineous Software In. 2004.
    [116]Lophaven S N, Nielsen H B, Sondergaard J. A MATLAB Kriging Toolbox Version 2.0. Technical University of Denmark,2002.
    [117]方开泰,马长兴.正交与均匀实验设计.北京:科学出版社,2001.
    [118]Montgomery D C. Design and Analysis of Experiments.5th Edition. New York: JOHN WILEY&SONS, INC.,2001.
    [119]方开泰.均匀试验设计的理论、方法和应用—历史回顾.数理统计与管理.2004,23(3):69-80.
    [120]Sobieszczanski-sobieski J, Kodiyalam S, Yang R Y. Optimization of Car Body under Constraints of Noise, Vibration and Harshness (NVH) and Crash. Structural and Multidisciplinary Optimization,2001,2(4):295-306.
    [121]Craig K J, Nielen S, Dooge D A, et al. MDO of Automotive Vehicle for Crashworthiness and NVH using Response Surface Methods.9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Atlanta, Georgia: 2002:1-12.
    [122]方杰,蔡国飙,王珏,等.再生冷却推力室的多学科设计优化.火箭推进,2005,31(2):12-16.
    [123]方杰,童晓艳,毛晓芳,等.某型发动机喷管的多学科设计优化.推进技术,2004,25(6):557-560.
    [124]吴立强,尹泽勇,蔡显新.航空发动机涡轮叶片的多学科设计优化.航空动力学报,2005,20(5):795-801.
    [125]张勇,李光耀,孙光永,等.多学科设计优化在整车轻量化设计中的应用研究.中国机械工程,2008,19(7):877-881.
    [126]张勇,李光耀,孙光永.汽车车身耐撞性与NVH多学科设计优化研究.中国机械工程,2008,19(14):1760-1763.
    [127]胡朝辉,成艾国,钟志华.多学科优化设计在热成形车架轻量化中的应用.中国机械工程,2010,21(6):728-732.
    [128]龚春林,谷良贤,袁建平.飞航导弹基于响应面近似技术的并行子空间优化设计.西北工业大学学报,2005,23(3):392-395.
    [129]王书河,何麟书.飞行器多学科设计优化概述.宇航学报,2004,25(6):697-700.
    [130]Sobieski I P, Kroo I. Collaborative Optimization Using Response surface Estimation. AIAA Journal,2000,38(10):1931-1938.
    [131]穆雪峰,姚卫星,余雄庆,等.多学科设计优化中常用代理模型的研究.计算力学学报,2005,22(5):608-612.
    [132]Ma D, Matlack J, Zhang H L, et al. Correlation Grading Methodology for Occupant Protection System Models. SAE Paper,2004-01-1631,2004.
    [133]Hong S, Lee J. Development of Correlation Methodology Using Optimization Technique. Proceedings of the 19th International Technical Conference on the Enhanced of Safety of Vehicles. Washington D.C.:U.S. Department of Transportation, Paper Number 05-0120,2005.
    [134]Eriksson L, Sundmark H, Zellmer H, et al. Using the objective rating method(ORM) as a quality assessment tool for physical tests, test methods, and mathematical models. Proceedings of the 21th International Technical Conference on the Enhanced of Safety of Vehicles. Stuttgart, Germany:National Highway Traffic Safety Administration, Paper Number 09-0163,2009.
    [135]Jacob C, Charras F, Trosseille X, et al. Mathematical models integral rating. International Journal of Crashworthiness,2000,5(4):417-432.
    [136]Pipkorn B, Eriksson M. A Method to Evaluate the Validity of Mathematical Models, the 4th European MADYMO user conference, Brussels:TNO,2002.
    [137]Schneider R, Nitsche S, Weissenbach G. Automated validation by using an objective correlation criterion as the target function, the 4th European MADYMO user conference, Brussels:TNO,2002.
    [138]Zhan Z, Fu Y, Yang R J, et al. An automatic model calibration method for occupant restraint systems. Struct Multidisc Optim.2011,44:815-822.
    [139]中华人民共和国国家质量监督检验检疫总局.GB 10000-88中国成年人人体尺寸.北京:中国标准出版社,1988.
    [140]Byrne D M, Taguchi S. The Taguchi Approach to Parameter Design. American Society for Quality Control.40th Annual Quality Congress Transactions. Wisconsin,1987:19-26.
    [141]Chen W, Allen J K, Tsui K L, et al. A Procedure for Robust Design:Minimizing Variations Caused by Noise Factors and Control Factors. ASME Journal of Mechanical Design,1996,118(4):478-485.
    [142]Peace G S. Taguchi Methods:A Hands-On Approach. New York:Addison Wesley,1993.
    [143]Phadke M S. Quality Engineering using Robust Design. New Jersey:Prentice Hall,1989.
    [144]Harry M J. The Nature of Six Sigma Quality. Illinois:Motorola University Press, 1997.
    [145]Harry M. Six Sigma:A Breakthrough Strategy for six sigma through robust optimization. 1998,31(5):60-64.
    [146]李玉强,崔振山,阮雪榆,等.6σ概率优化设计方法及其应用.中国机械工程,2004,15(21):1916-1919.
    [147]李玉强,崔振山,陈军,等.基于响应面模型的6σ稳健设计方法.上海交通大学学报,2006,40(2):201-205.
    [148]黄金陵,崔岸,陈晓华,等.稳健设计方法用于车门系统设计.汽车工程,2006,28(11):1011-1014.
    [149]Koch P N, Yang R J, Gu L. Design for six sigma through robust optimization. Struct Multidist Optim.2004,26:235-248.
    [150]孙光永,李光耀,陈涛,等.基于6σ的稳健优化设计在薄板冲压成形中的应用研究.机械工程学报,2008,44(11):248-254.
    [151]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 11557-2011防止汽车转向机构对驾驶员伤害的规定.北京:中国标准出版社,2011.
    [152]Rychlewski H, Cronkhite J, Smith M. FMVSS 201U Testing-Vehicle Targeting Using both Manual and Computer-Aided Methods. SAE Paper,1999-01-0434, 1999.
    [153]周传月,郑红霞,罗慧强,等.MSC. Fatigue疲劳分析应用与实例.北京:科学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700