基于四分之一悬架模型与整车虚拟样机的主动悬架控制系统仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代汽车对乘坐舒适性和行驶安全性的要求越来越高,设计一个具有良好综合性能的悬架成为现代汽车研究的一个重要课题。传统的被动悬架系统的弹性元件和阻尼元件的刚度值和阻尼值是固定的,在汽车行驶过程中无法随路面状况、载荷等因素的变化而变化,所以有必要设计一种不同于被动悬架的新型悬架。主动悬架是随着现代控制理论和电子技术的发展而发展起来的,可以随汽车的行驶状态而自适应地改变其刚度和阻尼参数,具有优良的减振性能和操纵稳定性,是未来汽车悬架研究的一个重要方向。
     对主动悬架的研究主要从两个方面展开:一是四分之一主动悬架模型结构形式的研究,采用不同的控制方法,以达到较好的控制效果,并对汽车主动悬架控制系统进行了深入的研究。二是鉴于汽车结构和运动方式十分复杂,四分之一悬架模型仅仅考虑了汽车的垂直运动情况,为了能更好的反映主动悬架对俯仰、侧倾运动的影响,又采用虚拟样机建立了整车模型,进行了整车的平顺性实验台实验。
     首先,对悬架系统中几种控制方法进行了理论分析和算法研究,包括PID控制,模糊控制和模糊自适应PID控制等。
     其次,在理论研究的基础之上,分别以1/4车二自由度悬架系统模型为控制对象进行了主动悬架控制算法的计算机仿真。仿真试验的结果表明,对于不同的路面激励,各个控制算法都明显地抑制了车体振动,其中以模糊控制和模糊自适应PID控制方法效果最好。因此,车辆主动悬架系统采用这些控制是可行的和有效的。
     然后,本论文采用ADAMS/Car和MATLAB/Simulink联合仿真方法,分别对装配被动悬架和装配主动悬架整车的平顺性进行了分析。在ADAMS/Car环境中建立了装配可控悬架的整车虚拟样机模型;并利用MATLAB/Simulink建立主动悬架控制模型,考虑到控制器结构以及传感器个数,采用了上述模糊控制方法。联合ADAMS/Car中建立的整车虚拟样机模型和MATLAB/Simulink中建立的控制器模型进行了仿真。
     仿真结果表明,装备了主动悬架的整车平顺性比采用被动悬架的性能要好。联合仿真避免了建立整车动力学方程及推导传递函数,为复杂机械系统的控制与仿真提供了新思路。同时,采用虚拟样机协同设计、调试和试验的方法,同传统的设计方法相比有明显的优势,可以大大地提高设计效率,缩短开发周期,降低开发产品的成本,获得优化的系统整体性能。
With the increasing requirement of the vehicle's ride comfort and road security, the design of suspension with good performance has become more and more important. As the conventional passive suspension has the constant spring stiffness and damper coefficient, it can not change with the road disturbances and loads, so it is necessary to design a new-style suspension—active suspension. Active suspension develops with the modern control theory and the electronic technique, its stiffness and damper coefficient can change to adapt the different work circumstances, and it improves the vehicle ride comfort and road holding. So it is significant to research and develop active suspension.
     The study of active suspension can divide into two aspects:first, the different control laws of 1/4 vehicle active suspension system. In order to get the good performance, the different control laws will be used. At the same time, this thesis makes a deep study and analysis of automobile active suspension control system. Second, because of complexity in vehicle's structure and movement, the thesis analyses the ride comfort of whole vehicle, which is respectively equipped with passive suspension and active suspension.
     Firstly, this thesis analyze and research some familiar active suspension control algorithm, just as PID, FUZZY, FUZZY self-adapt PID(FAPID). Moreover it lays emphasis on the excellence of the application of the FAPID.
     Secondly, based on theoretical study, this thesis takes 1/4 vehicle 2 DOF suspension system model as control object to do computer simulation. FUZZY and FAPID control can obviously restrain the vibration of vehicles in terms of different stimulation. Therefore, they are practical and effective.
     Thirdly, based on the co-simulation method with ADAMS/Car and MATLAB/Simulink, the thesis analyses the ride comfort of whole vehicle, which is respectively equipped with passive suspension and active suspension. Virtual prototype models furnished with controlled suspension are established under the environment of ADAMS. In addition, the controller models of active suspension are set up using MATLAB/Simulink software and simulations are done.
     The results show the ride comfort of active suspension is better than that of traditional suspension. The co-simulation method, where no complex dynamic equation and transfer function is needed, offers a new approach to control and simulation of complicated mechanism. At the same time, comparing with the conventional means of design, it is much useful to assist designing, adjusting and testing via Virtual Prototype Technology. This means can highly enhance the efficiency of design, decrease the developing periods, cut down the cost of developing products and acquire the optimized integrated performance of the system.
引文
1.陈家瑞.汽车构造[M],北京:机械工业出版社,2000,10
    2.常明.汽车底盘构造[M],北京:国防工业出版社,2005,3
    3. Dave Crolla. A Vehicle Dynamics Theory into Practice. Journal of Automobile Engineering[J],1996,Vol.210,No,210,No.2, pp.83-94.
    4. Crosby M J, Karnopp D C. The Active Damper-a New Concept for Shock and Vibration Control[J], The 43rd Shock and Vibration Bulletin, part H,1973,6.
    5.王遂双.汽车电子控制系统的原理与检修[M],北京:北京理工大学出版社,2005,8
    6.李春明.汽车底盘电控技术[M],北京:机械工业出版社,2004,2
    7.俞凡,林逸.汽车系统动力学[M],北京:机械工业出版社,2005
    8.Dave Crolla,俞凡.车辆动力学及其控制[M],北京:人民交通出版社,2003.
    9.杨强.世界汽车工业发展新趋势与我国对策[J],武汉理工大学学报,2001,4:5-8.
    10.俞德孚.我国汽车工业的发展形势与悬架减振器的国产化课题[J],兵工学报,1994,5:18-22.
    11.余志生.汽车理论[M],北京:机械工业出版社,1999,9:25-27.
    12.王彪.80C196KC单片机应用于车辆悬架控制[J],汽车电器,1998,11:35-38.
    13.丁科等.车辆主动悬架的神经网络模糊控制[J],汽车工程,vol.23,No.5,2001
    14.李伟,何渝生.汽车主动悬架一种控制方法的研究[J],重庆交通学院报,vol.16,No.1,1997
    15. Thompson A G, Davis B R. Technical note on the lotus suspension patents [J], Vehicle System Dynamics,1911,6:381-383.
    16. Yokoya Y, Kizu R,etal. Integrated control system between active control suspension and four wheel steering for the 1989 Celica [J], SAE paper 901748,1990:1546-1561.
    17. Li jima T, Akastu Y, etal. Development of a hydraulic active suspension [J], SAE Paper 931971,1993:2142-2153.
    18. Hoogterp F B. Active suspension in the automotive industry and the military [J],SAE.paper 961037,1996:96-101.
    19.张永林,钟毅芳.车辆路面不平度输入的随机激励时域模型[J],农业机械学报,2004,3
    20.姜正根.汽车概论[M],北京:北京理工大学出版社,1999,3
    21.韩峻峰.公路汽车行驶平顺性系统动力学建模和仿真[D],上海交通大学硕士学位论文,2003,10
    22.喻凡,林逸编著.汽车系统动力学[M],北京:机械工业出版社,2005
    23.王岩松,耿艾莉.汽车平顺性非线性模拟分析及软件实现[J],渤海大学学报(自然科学版).2005(Vol.26)No.2.
    24.刘俊,林砺宗,刘小平,王刚.ADAMS柔性体运动仿真分析研究及运用.现代制造工程[J],2004第6期.
    25.金睿臣,宋健.路面不平度的模拟与非线性随机振动的研究[J],清华大学学报.1999
    26.曹丽亚.汽车脉冲平顺性的仿真分析[J],北京理工大学学报.2005(Vol.28)No.4.
    27.王国权,杨文通,许先峰,余群.汽车平顺性的虚拟试验研究[J],上海交通大学学报.2003(Vol1.37)No.11.
    28.王明容,宋永增,甄子健,任尊松.汽车平顺性建模与仿真分析[J],设计·计算·研究.2005年第4期.
    29.董景新,赵长德.控制工程基础[M].北京:清华大学出版社,2004
    30. Mohamed Bouazara, Marc J Richard. An optimization method to improve 3-D vehicle comfort and road holding capability through the use of active and semi-active suspensions [J],Eur J Mech A/Solids,2001,20:509-520.
    31. Yoshimura T. Active suspension of vehicle system using fuzzy logic [J], Int J of Systems Science,1996, (2):215-219.
    32. HROVATD. Optimal Active Suspension Structures for Quarter Car Vehicle Models [J],Automatical,1990,26:845-860.
    33.李军.基于多自由度汽车模型的主动悬架[J].重庆大学学报,2002,25(9):97-100.
    34.李克强,董珂,永井正夫.多自由度车辆模型主动悬架及鲁棒控制[J],汽车工程,2003,(1):7-11.
    35.宋晓琳,方其让,查正邦等.采用模糊理论的七自由度汽车主动悬架控制系统[J],湖南大学学报(自然科学版),2003,30(6):56-59.
    36.宋宇.基于多刚体系统动力学的汽车悬架性能分析及控制研究[D],合肥:合肥工业大学,2002
    37.杨永柏.汽车主动悬架控制策略与仿真研究[D],长沙:中南林学院工业学院,2003
    38.孙建民.车辆主动悬架系统控制技术研究[D],哈尔滨:哈尔滨工程大学,2003
    39.郭大蕾.车辆悬架振动的神经网络半主动控制[D],南京:南京航空航天大学,2001
    40.朱婉玲.汽车半主动悬架系统结构/控制集成优化研究[D],合肥:合肥工业大学,2002
    41.胡芳.空气悬架系统及主动控制的研究[D],合肥:合肥工业大学,2005
    42.符永法.几种新型PID调节器参数的整定法[J],化工自动化及仪表,1997,24(1):25-26.
    43.金睿臣,宋健.路面不平度的模拟与汽车非线性随机振动的研究[J],清华大学学报(自然科学版),1999,39(8):76-79.
    45.邵瑛.车辆主动悬架控制策略的仿真研究[D].南京:南京农业大学,2003.
    46.刘曙光.模糊控制技术[M].北京:中国纺织出版社,2001.
    47.张化光,何希勤.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002.
    48.诸静.模糊控制原理与应用[M].北京:机械工业出版社,1999.
    49. Rao M V C, Prahlad V. A tunable fuzzy logic controller for Vehicle-Active SuspensionSystems [J]. Fuzzy Sets and Systems,1997,85:11-21.
    50.余强.主动悬架系统的连续模糊控制[J].汽车技术,1999,1:9-12.
    51.孙建民.基于带修正因子的模糊控制汽车主动悬架系统的研究[J].振动工程学报,2005,18(1):79-84.
    52.孙建民.一种汽车主动悬架系统模糊控制器设计及试验[J].振动与冲击,2005,24(1):13-17.
    53. T Yoshimura. Active suspension of passenger cars using linear and fuzzy-logic controls[J].Control Engineering Practice,1999,(7):41-47.
    54.孙鹏远.汽车悬架的鲁棒控制与模型预测控制[D].吉林:吉林大学,2001.
    55.陈无畏,王国美,肖寒松.农用运输车悬架系统的自适应控制[J].农业机械学报,1997,28(4).
    56.方敏,王峻,陈无畏.汽车半主动悬架的自适应LQG控制[J].汽车工程.1997,19(4):200-205.
    57.陈志林,金达锋,赵六齐.汽车主动悬架系统的渐近稳定自适应控制[J].青华大学学报(自然科学版),1997,37(12):106-110.
    58.李霆,姜节胜.车辆系统的自适应控制明.振动工程学报,1995,8(4):369-376.
    59.刘华,黄田,曾子平.一类非线性振动自适应控制的神经网络方法[J].振动工程学报,1995,8(1):16-21.
    60.刘新亮,张建武,林忠钦.主动汽车悬架的非线性控制闭[J].汽车工程.1997,19(3):175-179.
    61.乐巍,张孝祖.汽车四自由度半主动悬架阻尼模糊控制的方法[J].江苏大学学报(自然科学版),2003,24(1):55-59.
    62.孙增析.智能控制理论与技术[M],北京:清华大学出版社,2000.
    63.郑军,钟志华.非线性汽车行驶平顺性模型的神经网络优化闭[J].汽车工程,2001,23(3):172-176.
    64.周克敏,毛剑琴.鲁棒与最优控制[M].北京:国防工业出版社,2002.
    65.梅生伟,申铁龙.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003.
    66. Damien Sammier, Olivier Sename, Luc Dugard. Skyhook and H∞ control of semi-active suspensions:some practical aspects[J].Vehicle System Dynamics.2003,39(4):279-308.
    67.傅志方,张志谊,华宏星.半主动悬架控制的H∞方法[J].振动工程学报,1998,12(1):33-38.
    68.张志谊,傅志方,华宏星.半主动悬架的PI控制.上海交通大学学报,1999,33(3):350-353.
    69.韩波,王庆丰.电液主动悬架的H∞控制研究[J].汽车工程,2000,22(2):77-80.
    70.徐听,李涛,伯晓展.MATLAB工具箱应用指南[M].北京:电子工业出版社,2000.
    71.陶永华,尹怡欣,葛芦生.新型PID控制及其应用.北京:机械工业出版社,1998,2-8.
    72.王立权,王晓东等.基于虚拟样机的控制系统仿真研究.哈尔滨工程大学学报,2000.年第21第6期:26-29.
    73.吕景华,井绪文.Mazda6轿车底盘结构设计分析.汽车技术.2003,(9):1-6.
    74. Ashley T.Dudding and William Wilson.Development of a New Front Air Suspension and Steer Axle System for On Highway Commercial Vehicles.SAE Paper 2000-01-3449.
    75. Pierluigi Pisu,Ahmed Soliman,Giorgio Rizzoni.Vehicle Chassis Monitoring System.Control Engineering Practice.2003,(11):345-354.
    76. Hrovat D.Survey of Advanced Suspension Developments and Related Optimal Control Application. Automatic.1997,33(10):1781-1817.
    77. Michael John Thoresson. Mathematical Optimisation of the Suspension System of an Off-Road Vehicle for Ride Comfort and Handling.Dissertation of University of Pretoria for Master of Engineering.2003:34-79.
    78. Arun Kumar Chandrasekaran, Giorgio Rizzoni, Ahmed Soliman, John Josephson, Mark Carroll. Design Optimization of Heavy Vehicles by Dynamic Simulations.SAE Paper 2002-01-3061.
    79.于珊珊,徐尚德,雷君相.多连杆机构分析和虚拟样机技术的发展.机械设计与制造.2004,(5):118-121.
    80. MSC. Getting Started Using Adams/Car [K].2005.
    81. MSC. Getting Started Using Adams/Car Ride.2005.
    82. Peng Shuang, Song Jian.Simulation of vehicle ride comfort performance in Adams,Proceedings of Asian Simulation Conference:System Simulation and Scientific Computing,2002 (2):738-742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700