基于分子量级的化学机械抛光材料去除机理的理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学机械抛光(Chemical Mechanical Polishing,简称CMP)技术是目前实现集成电路全局平坦化的唯一广泛应用技术。CMP系统由抛光垫、芯片和抛光液组成。含有磨粒和化学试剂的抛光液在旋转的芯片和抛光垫之间流动。尽管CMP技术在微电子信息产业有广泛的应用,但是CMP的许多过程还不是很清楚。澄清CMP材料去除机理,能够为控制和优化CMP工艺参数提供理论指导。此外,随着特征尺寸的减小和芯片集成度的增加,需要建立定量预测CMP材料去除速率的数学物理模型,以此来满足未来超大规模集成电路(Ultra Large Scale Integration,简称ULSI)对平坦化的苛刻要求。
     首先提出了分子量级的CMP材料去除机理;通过抛光垫/磨粒大变形理论、粘着力对磨粒压入芯片的影响、考虑表面缺陷的传质扩散估算、材料去除速率的量级估算和原子力显微镜(Atomic Force Microscope,简称AFM)微观试验、原位纳米测试系统(Nano-mechanical Testing System Tribo-indenter,简称NTS)微观试验以及椭圆偏振光谱仪(Spectroscopic Ellipsometry,简称SE)试验的方法,证实了本文提出的材料单分子层去除机理的科学性。随后,基于微观接触理论、概率统计原理和材料单分子层去除机理,建立了考虑磨粒/抛光垫大变形的数学物理方程。结合机械去除能和化学结合能平衡的原理,进一步建立了考虑磨粒大小、浓度和氧化剂浓度以及机械化学协调效应的数学模型。此外,基于分子量级的材料去除机理,本文还建立了考虑新鲜分子去除的材料去除递推模型,模型预测结果与宏观试验相吻合。最后,初步建立了预测氧化剂、缓蚀剂和螯合剂浓度对铜CMP材料去除速率影响规律的数学模型。
     分子量级的材料去除机理为:化学作用将芯片表面的新鲜分子部分氧化成为氧化分子;磨粒将键能弱化的氧化分子去除;流动的抛光液将去除的原子/分子带走,露出新鲜表面,继续循环去除。采用理论和试验两个方面证实了本论文提出的材料单分子层去除机理的科学性。理论方面:考虑磨粒/抛光垫大变形的情况下,计算了磨粒压入芯片的深度为分子量级或者更小。模型进一步考虑了磨粒/芯片粘着力的影响,发现粘着力对磨粒/芯片接触力的影响显著,磨粒压入芯片的深度比不考虑粘着力时大2到4倍,但是仍然为分子量级。基于材料单分子层去除机理,采用量级估算的方法得到SiO_2和W芯片更适于用材料单分子层去除机理所描述。考虑芯片表面缺陷的情况下,CMP过程生成表面氧化分子层厚度和扩散厚度的估算表明:芯片表面生成氧化膜的厚度为1.0×10~(-3)nm量级。因此,认为CMP材料去除机理为单分子层去除。
     采用NTS试验和他人的试验结果,应用线性回归的方法,研究了CMP材料单分子层去除机理。根据线性回归分析知,磨粒在芯片表面的划痕深度为1.0×10~(-11)m量级。应用SE测定了铜CMP过程中芯片表面氧化薄膜随时间的变化规律。因为CMP过程中,两个连续磨粒扫过芯片表面一点的间隔时间为1.0×10~(-8)s量级,根据Nishizawa曲线,计算得到CMP中,生成新鲜氧化薄膜的厚度为1.0×10~(-13)m量级。采用NTS测定0-100μN下磨粒压入芯片的深度,通过回归分析,计算出70nN下,磨粒压入芯片的深度为1.0×10~(-11)m量级。上述3组试验数据表明CMP材料去除机理为单分子层去除。此外,现在Cabot公司提供的磨粒直径为10nm,而且高质量的抛光后,表面很少有划痕出现,表面粗糙度为0.1nm左右,因此材料去除机理应该为单分子去除。
     目前,磨粒尺寸和浓度对CMP材料去除速率的影响规律,还没有统一的定论。基于分子量级的材料去除机理,率先建立了预测磨粒大小、浓度和表面氧化剂浓度对材料去除速率影响规律的数学模型。模型考虑了氧化分子和芯片表面分子的结合能,以便说明磨粒尺寸对材料去除速率的三种不同影响规律。由于机械能和去除结合能耦合于磨粒直径,因此,磨粒大小和材料去除速率之间体现出了不同的非线性规律。此外,本模型还预测出,材料去除速率和去除结合能之间为非线性关系。模型还可以解释CMP众多参数对材料去除速率的影响,如抛光压力、相对速度、芯片表面硬度和抛光垫材料特性等。进一步建立了考虑芯片表面新鲜分子对材料去除速率影响的概率递推模型。结果表明:无论单独增加化学作用还是机械作用,都不能一直增加材料去除速率。当化学作用和机械作用相协调时,获得极大值去除速率。模型预测结果和他人试验相吻合。
     最后,铜CMP的研究在全世界范围内仍然属于攻关性的研究。本文基于化学反应和机械去除动态平衡原理以及考虑化学反应速率常数,首次建立了系统考虑氧化剂浓度、缓蚀剂浓度和螯合剂浓度对材料去除速率影响的数学模型。结果表明,螯合剂和氧化剂对材料去除速率的影响规律相似。模型预测结果和试验数据定性结果相吻合。本模型的建立为铜CMP理论的研究提供了初步的理论平台。
Chemical mechanical polishing(CMP) has emerged to be most promising because it can provide the planarity necessary to build multilevel interconnect schemes.In the CMP process, a rotating wafer is pressed against a rotating pad while slurry including abrasive particles and chemical additives flows between the wafer surface and polishing pad.It synergizes the abrasive particles and chemicals in slurry.Despite its crucial importance in the microelectronic industry,many aspects of the CMP process remain unclear and ambiguous. Understanding of the fundamental of CMP material removal mechanism may offer insights into the control and optimization of the polishing process.In addition,as device size is shrinking and integration level of IC chip is increasing,a detailed quantitative model for material removal rate in CMP,is required for meeting the strict planarization requirements in the manufacturing the future generation Ultra Large Scale Integration(ULSI) chips.
     In this study,the paper firstly proposes a material removal mechanism at molecular scale. And then this molecular scale removal mechanism has got wide support form many aspects such as large contact deformation of pad/particle,the effect of adhesion force on the indentation depth of particle into wafer surface,the order-of-magnitude calculation of material removal on the basis of chemical kinetics and transport phenomena under the wafer surface defect condition,and the nano-scale experiments carried out by atomic force microscope(AFM)、nano-mechanical testing system tribo-indenter(NTS) and spectroscopic ellipsometry(SE).Thirdly,with the consideration of the pad/particle large deformation,a new mathematical model is presented based on the molecular scale removal mechanism, probability statistics and micro contact mechanics.In order to interpret the influence of the abrasive particle size、concentration,oxidizer concentration and chemical mechanical synergy on material removal,another comprehensive model is proposed resting on the energy equilibrium knowledge in relation to the mechanical removal energy and chemical binding energy.Furthermore,the paper also reports another model being incorporation of the fresh wafer surface atoms removal.Finally,this dissertation also develops a novel mathematical model to systematically govern the combinational effects of oxidizer,complexing agent and inhibitor on polishing rate in CMP of copper.
     A more likely scenario for the process of the molecular scale removal mechanism has three steps:(ⅰ) chemical actions covert strongly the fresh wafer surface atoms/molecules into reacted molecular species;(ⅱ) mechanical actions deliver the energy that removes the weakly bonded reacted molecular species;(ⅲ) the slurry fluid washes the wafer surface,and the fresh surface sites are exposed,which is subsequently etched and removed.This molecular scale removal mechanism is verified form experimental and theoretical study.On one extreme, a mathematical model with the consideration of particle/pad large deformation states that the indentation depth of particle into wafer surface is at molecular scale or less.The effect of the adhesion force is also addressed,which strongly shows that the adhesion force can significantly influence the load force of particle/wafer.This model also predicts that the indentation depth of a particle into wafer surface considering the adhesion force is 2 or 4 times than that of no adhesion force.However,the magnitude of the indentation depth is still on the order of molecular scale.In the following,order-of magnitude calculations are used to support this new mechanism.And a closed-form equation supported by published experimental data is derived of the material removal rate in terms of the molecular removal mechanism.The results show that the material removal mechanism of SiO_2 and W can be explained by the molecular scale removal mechanism.In another magnitude analysis,the growth rate and diffusion thickness of the oxide layer are quantitatively evaluated.The calculation reports that the diffusion depth for case of Si wafer is on the order of 1.0×10~(-3) nm, indicating the CMP material is removed at molecular scale.
     On the other extreme,a series of experiments was conducted to investigate the mechanism of CMP material removal in this research.Wear behavior between a single slurry particle and the wafer surface using AFM was proposed.The scratch depth under real CMP conduction is of an order of 1.0×10~(-11)m determined on the basis of the linear regression mechanism.The SE tool was used to study the relationship between the thickness of oxidized layer and chemical action time.Since real CMP chemical action time is of an order of 1.0×10~(-8)s,the thickness of the oxidized layer is of an order of 1.0×10~(-13)m evaluated by theoretical model based on the experiment data.In addition,the indentation depth of a single particle into the wafer surface was investigated using NTS with 70 nN force.The indentation depth is of an order of 1.0×10~(-11) m on the basis of the linear regression mechanism.Nowadays,the abrasive particle size provided by Cabot Company is around 10nm.In addition,few abrasive grooves are found in high-quality-finished polishing wafer surface.The combined calculations and experimental results indicate that the CMP material is removed at molecular scale.
     No conclusive results have been proposed for the influence of the abrasive particle size on material removal during the CMP process.In this study,a mathematical model as a function of abrasive size and surface oxidizer concentration is presented for CMP.The influence in relation to the binding energy of the reacted molecules to the substrate is incorporated into the analysis so as to clarify the disputes on the variable experimental trends on particle size.It is shown that the mechanical energy and removal cohesive energy couple with the particle size, and being a cause of the non-linear size-removal rate relation.Furthermore,it also shows a nonlinear dependence of removal rate on removal cohesive energy.The model predictions are presented in graphical form and show good agreement with the published experimental data. Finally,variations of material removal rate with pressure,pad/wafer relative velocity,and wafer surface hardness,as well as pad characteristics are addressed.The present study also proposes a non-continuum statistic model for CMP material removal rate by a slurry particle, which considers the direct removal rate of the un-reacted surface sites.It is shown that higher chemical effects would not lead to a proportional increase of the removal rate.As chemical-mechanical synergetic effects are optimal,the removal rate is extremum.The predicted material removal rates follow trends similar to those shown by the experimental observations published previously.
     At last,the copper CMP is still a challenging subject for developing ICs.The paper presents a novel mathematical model that systematically describes the role of oxidizer,complexing agent and inhibitor on the material removal in CMP of copper.The physical basis of the model is the steady-state oxidation reaction and etched removal in additional to mechanical removal.It is shown that the complexing agent concentration-removal relation follows a trend similar to that observed from the effects of oxidizer on Cu-removal in CMP.The model prediction trends show qualitatively good agreement with the published experimental data. The governing equation of copper removal provides an important starting point for delineating the copper CMP process in addition to its underlying theoretical foundation.
引文
[1]Hahn P O.The 300 mm silicon wafer-a cost and technology challenge[J].Microelectron Eng,2001,56(1):3-13
    [2]International technology roadmap for semiconductors,interconnect.ITRS,2001Eidtion
    [3]Nanz G,Camilletti L E.Modeling of chemical mechanical polishing:a review[J].IEE Trans Semicond Manufact,1995,8(4):382-389
    [4]赵永武,刘家浚.半导体芯片化学机械抛光过程中材料去除机理研究进展[J].摩擦学学报,2004,24(3):283-287
    [5]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程[M].北京:冶金工业出版社,2002
    [6]Luo Q,Ramarajan S,Babu S V.Modification of the Preston equation for the chemical mechanical polishing of copper[J].Thin Solid Films,1998,335(1-2):160-167
    [7]Parshurarn B Z,Ashok K,Sikder A K.Chemical mechanical planarization for microelectronics applications[J].Mater Sci Eng R:Reports,2004,45(3-6):89-220
    [8]Evans C J,Ppaul E,Domfeld D,et al.Material removal mechanisms in lapping and polishing[J].Annals of the CIRP,2003,52(2):611-633
    [9]郭东明,康仁科,苏建修,等.超大规模集成电路制造中硅片平坦化技术的未来发展[J].机械工程学报,2003,39(10):100-105
    [10]张凯亮,刘玉岭,王芳,等.ULSI硅衬底的化学机械抛光[J].半导体学报,2004,25(1):115-119
    [11]雷红,雒建斌,马俊杰.化学机械抛光技术的发展、应用及存在问题[J].润滑与密封,2002,(4):73-76
    [12]Jamshid S,Leonard B,David S,et al.Revisiting the removal rate model for oxide CMP[J].J Tribol,2005,127(3):639-651
    [13]Hariharaputhiran M,Zhang J,Ramarajan,et al.Hydroxyl radical formation in H_2O_2-amino acid mixtures and chemical mechanical polishing of copper[J].J Electrochem Soc,2000,147(10):3820-3826
    [14]Wang Y,Chen K.Kinetics of polishing friction for copper pits formation during copper chemical mechanical polishing[J].J Electrochem Soc,2007,154(7):H589-H595
    [15]Bukkapatnam S,Rao P,Lib W,et al.Process characterization and statistical analysis of oxide CMP on a silicon wafer with sparse data[J].Appl Phys A,2007,88(4):785-792
    [16]Strausser Y E,Hetherington D L.Atomic force microscopy enhances chemical mechanical polishing[J].Semicond Int,1996,19(4):81-85
    [17]Liu F,Sutcliffe M P F.Modeling of delamination of ultra low-k material during chemical mechanical polishing[J].Tribol Lett,2007,25(3):225-236
    [18]Feng X,Sayle D,Wang Z,et al.Abrasives in the rond[J].Science,2006,312(9):1504-1507
    [19]马俊杰,潘国顺,雒建斌,等.计算机硬磁盘CMP中抛光工艺参数对去除率的影响[J].润滑与密封,2004,161(1):1-3
    [20]何捍卫,胡岳华,黄可龙,等.影响CMP用纳米Al_2O_3磨粒粒度均一性的因素及其机理[J].矿冶工程,2002,22(1):42-45
    [21]钟旻,张凯亮,宋志棠,等.ULSI化学机械抛光材料去除机制模型[J].润滑与密封,2006,177(5):170-173
    [22]李秀娟,金洙吉,康仁科,等.抛光液中缓蚀剂对铜硅片的影响[J].半导体学报,2005,26(11):2259-2263
    [23]Terrell E J,Higgs Ⅲ C.A modeling approach for predicting the abrasive particle motion during chemical mechanical polishing[J].J Tribol,2007,129(4):933-941
    [24]顾坚,李正兴,赵永武,等.单头单面旋转式化学机械抛光机的运动机理研究[J].煤矿机械,2006,27(8):39-41
    [25]Luo J,Dornfeld D A.Material removal regions in chemical mechanical planarization for submicron integrated circuit fabrication:coupling effects of slurry chemicals,abrasive size distribution,and wafer-pad contact area[J].IEE Trans Semicond Manufact,2003,16(1):45-56
    [26]Masato Y,Hiroshi O,Masaya Y,et al.Effect of pad surface roughness on SiO_2 removal rate in chemical mechanical polishing with ceria slurry[J].Japn J Appl Phys,2006,45(2):733-735
    [27]Pamela M V,Sean K E,Lauren E P,et al.Studies on CO_2-based slurries and fluorinated silica and alumina particles for chemical mechanical polishing of copper films[J].J Electrochem Soc,2006,153(12):G1064-G1071
    [28]李霞章,陈杨,陈志刚,等.纳米CeO_2颗粒的制备及其化学机械抛光性能研究[J].摩擦学学报,2007,27(1):1-5
    [29]Lee J W,Yoon B U,Hah S,et al.A planarization model in chemical mechanical polishing of silicon oxide using high selective CeO_2 slurry[C].Chemical-mechanical polishing,advances and future challenges.USA:San Franciso,2001.671:M531-M535
    [30]Gorantla V R K,Assiongbon K A,Babu S V,et al.Citric acid as a complexing agent in CMP of copper investigation of surface reactions using impedance spectroscopy[J].J Electrochem Soc,2005,152(5):G404-G410
    [31]康进卫,张大全,高立新.化学机械抛光液的研究进展[J].化学世界,2006,(9):565-567
    [32]胡伟,魏昕,谢小柱,等.CMP抛光半导体晶片中抛光液的研究[J].金刚石与磨料磨具工程,2006,156(6):78-80
    [33]Lin J,Lin S,Hocheng H.A simulation approach of dishing in chemical mechanical polishing of inlaid copper structures[J].J Electrochem Soc,2005,152(8):G664-G668
    [34]Larsen B J,Liang H.Probable role of abrasion in chemo-mechanical polishing tungsten[J].Wear,1999,233-235:647-654
    [35]Park K H,Kim H J,Chang O M,et al.Effects of pad properties on material removal in chemical mechanical polishing[J].J Material Process Technol,2007,187-188:73-76
    [36]Chen J M,Fang Y C.Hydrodynamic characteristics of the thin fluid film in chemical-mechanical polishing[J],IEE Trans Semicond Manufact,2002,15(1):39-44
    [37]Norbert E,Bernhard N,Bernd E,et al.Tungsten chemical mechanical polishing[J].J Electrochem Soc,1998,145(5):1659-1664
    [38]Gehman B L.In the age of 300mm silicon,tech standards are even more crucial[J].Solid State Technol,2001,44(8):128-127
    [39]Fury M.The early days of CMP[J].Solid State Technol,1997,40(5):81-86
    [40]Martinez M A.A year later,CMP market has grown even hotter[J].Solid State Technol,1995,38(9):44-47
    [41]Swetha T,Arun K S,Ashok K.Tribological issues and modeling of removal rate of low-k films in CMP[J].J Electrochem Soc,2004,151(3):G205-G215
    [42]Tsai W,Huang T.Abrasion and dissolution interaction of AI in a phosphoric acid solution[J].Thin Solid Films,2000,379(1-2):107-113
    [43]Du T,Luo Y,Desai V.The combinatorial effect of complexing agent and inhibitor on chemical mechanical planarization of copper[J].Microelectron Eng,2004,71(1):90-97
    [44]Deshpande S,Kuiry S C,Klimov M,et al.Chemical mechanical planarization of copper:role of oxidants and inhibitors[J].J Electrochem Soc,2004,151(11):G788-G794
    [45]Aksu S,Wang L,Doyle F M.Effect of hydrogen peroxide on oxidation of copper in CMP slurries containing glycine[J].J Electroehem Soc,2003,150(11):G718-G723
    [46]Akira I,Hisanori M,Takamaro K.Influence of slurry chemistry on frictional force in copper chemical mechanical polishing[J].J Electrochem Soc,2005,1502(9):G695-G697
    [47]何捍卫,胡岳华.铜在硝酸介质苯并三唑抛光液中化学机械抛光时的电化学行为[J].过程工程学报,2002,2(1):67-70
    [48]王新,刘玉岭.ULSI铜互连线CMP抛光液的研制[J].半导体学报,2002,23(9):1006-1008
    [49]李秀娟,金洙吉,康仁科,等.磨料对铜化学机械抛光过程的影响研究[J].摩擦学学报,2005,25(5):431-435
    [50]翁寿松.CMP的最新动态[J].电子工业专用设备,2005,120(1):7-9
    [51]童志义.化学机械抛光技术现状与发展趋势[J].电子工业专用设备,2004,113(6):1-6
    [52]本刊编辑部.化学机械抛光设备与市场[J].电子工业专用设备,2004,113(6):10-12
    [53]张楷亮,宋志棠,封松林,等.ULSI化学机械抛光的研究与展望[J].微电子学,2005,35(3):226-230
    [54]ShonRoy L T.CMP:market trends and technology[J].Solid State Technol,2000,43(6):67-85
    [55]Forsberg M.Effect of process parameters on material removal rate in chemical mechanical polishing of Si(100)[J].Microelectron Eng,2005,77(3-4):319-326
    [56]Liao H,Shie J,Yang Y K.Applications of taguchi and design of experiments methods in optimization of chemical mechanical polishing process parameters[J].Int J Adv Manuf Technol,2007,(In press)
    [57]Peter A.Semi-empirical modeling of SiO_2 chemical mechanical polishing planarization[C],in Proc.VMIC Conf.VLSI Multilevel Interconnection Conference,8~(th)International IEEE VMIC Conference.Santa Clara,1991.379-384
    [58]Robert W,Miquel S.Scratching the surface-fundamental investigations of tribology with atomic force microscopy[J].Chem Rev,1997,97(4):1163-1194
    [59]Nguyen V H,Velden P,Daamen R,et al.Modeling of dishing for metal chemical mechanical polishing[C].2000 IEEE International Electron Devices Meeting San Francisco:Technical Digest-International Electron Devices Meeting,2000.499-502
    [60]Yu T,Yu C,Orlowski M.A statistical polishing pad modal for chemical mechanical polishing[C].Proceedings of the 1993 IEEE International Electron Devices Meeting.Washington:Technical Digest-International Electron Devices Meeting,1993.865-868
    [61]Preston F.The theory and design of plate glass polishing machines[J].J Soc Glass Technol,1927,11:214-256
    [62]仲宝春.CMP加工过程中均匀去除率的研究[J].电子工业专用设备,2007,144(1):58-61
    [63]Tomozawa M.Oxide CMP mechanisms[J].Solid State Technol,1997,40(7):169-172
    [64]Mejia D C,Perlov A,Beaudoin S.Qualitative prediction of SiO_2 removal rates during chemical mechanical polishing[J].J Electroehem Soc,2000,147(12):4671-4675
    [65]Mejia D C,Kelchner,Beandoin S.Polishing pad surface morphology and chemical mechanical planarization[J].J Electrochem Soc,2004,151(4):G271-G278
    [66]Thagella S,Sikder A K,Kumar A.Tribologyical issues and modeling of removal rate of low-k films in CMP[J].J Electrochem Soc,2004,151(3):G205-G215
    [67]Ng D,Kulkami M,Johnson J,et al.Oxidation and removal mechanisms during chemical mechanical planarization[J].Wear,2007,263(7-12):1477-1483
    [68]Tseng W T,Wang Y L.Re-examination of pressure and speed dependences of removal rate during chemical mechanical polishing processes[J].J Electrochem Soc,1997,144(2):L15-L17
    [69]Shi F G,Zhao B.Modeling of chemical-mechanical polishing with soft pads[J].Appl Phys A,1998,(67):249-252
    [70]Zhao B,Shi F G.Chemical mechanical polishing:threshold pressure and mechanism[J].Electrochem Soild-state Lett,1999,2(3):145-147
    [71]Homma Y.Dynamical mechanism of chemical mechanical polishing analyzed to correct preston's empirical model[J].J Electrochem Soc,2006,153(6):G587-G590
    [72]Xie Y S,Bhushan B.Effects of particle size,polishing pad and contact pressure in free abrasive polising[J].Wear,1996,200(1-2):281-295
    [73]Vijayakumar A,Du T,Sundaram K B,et al.Polishing mechanism of tantalum films by SiO_2 particles[J].Microelectron Eng,2003,70(1):93-101
    [74]张朝辉,雒建斌,温诗铸.化学机械抛光中纳米颗粒的作用分析[J].物理学报,2005,54(5):2123-2127
    [75]苏建修.IC制造中硅片化学机械抛光材料去除机理研究[D]:[博士学位论文].大连:大连理工大学,2007
    [76]Luo J,Dornfeld D A.Material removal mechanism in chemical mechanical polishing:theory and modeling[J].IEE Trans Semicond Manufact,2001,14(2):112-133
    [77]Bielman M,Mahajan U,Singh R K.Effect of particles size during tungsten chemical mechanical polishing[J].Electrochem Soild-state Lett,1999,8:401-403
    [78]Jeng Y R,Huang P Y.Impact of abrasive particles on the material removal rate in CMP[J].Electrochem Soild-state Lett,2004,7(2):G40-G43.
    [79]Jeng Y R,Huang P Y.A material removal rate model considering interfacial micro-contact wear behavior for chemical mechanical polishing[J].J Tribol,2005,127(1):190-197
    [80]Zhao Y W,Chang L.A model of asperity interactions in elastic-plastic contact of rough surfaces[J].J Tribol,2001,123(4):857-864
    [81]Zhao Y W,Maietta D M,Chang L.An asperity contact model incorporating the transition from elastic deformation to full plastic flow[J].J Tribol,2000,122(2):86-93
    [82]Zhou C,Shan L,Hight J R,et al.Influence of colloidal abrasive size on material removal rate and surface finish in SiO_2 chemical mechanical polishing[J].Triobol Trans,2002,45(2):232-238
    [83]Tamboli D,Banerjee G,Waddell M.Novel interpretations of CMP removal rate dependencies on slurry particle size and concentration[J].Electrochem Solid-state Lett,2004,7(10):F62-F65
    [84]Fu G,Chandra A,Guha S,et al.A plasticity-based model of material removal in chemical mechanical polishing(CMP)[J].IEE Trans Semicond Manufact,2001,14(4):406-417
    [85]Che W,Guo Y J,Chandra A.A scratch intersection model of material removal during chemical mechanical planarization(CMP)[J].J Manuf Sci Eng,2005,127(3):545-554
    [86]Bastawors A,Chandra A,Guo Y J,et al.Pad effects on material removal rate in chemical mechanical planarization[J].J Electron Mater,2002,31(10):1022-1031.
    [87]Zhao Y W,Chang L.A micro-contact and wear model for chemical-mechanical polishing of silicon wafers[J].Wear,2002,252(3-4):220-226
    [88]Lin J F,Chern J D,Chang Y H,et al.Analysis of the tribologieal mechanisms arising in the chemical mechanical polishing of copper film wafers[J].J Tribol,2004,126(1):185-198
    [89]Kuide Q,Brij M,Chang W P.A chemical mechanical polishing model incorporating both the chemical and mechanical effects[J].Thin Solid Films,2004,446(2):277-286
    [90]Jeng Y R,Huang P Y.A material removal rate model considering interracial micro-contact wear behavior for chemical mechanical polishing[C].Proceedings of the World Tribology Congress Ⅲ,_United States:Washington,2005.239-240
    [91]Zeng T F,Thomas S.Size effect of nanoparticles in chemical mechanical polishing-a transient model[J],IEE Trans Semicond Manufact,2005,18(4):655-663
    [92]Kaufman F B,Thompson D B,Broadie R E,et al.Chemical mechanical polishing for fabricating patterned W metal features as chip interconnects[J].J Electrochem Soc,1991,138(11):3460-3465
    [93]Chen P S,Shih H C,Huang B W,et al.Catalytic-pad chemical kinetics model of CMP[J].Electrochem Soild-state Lett,2003,6(12):G140-G142
    [94]Chen P S,Huang B W,Shih H C.A chemical kinetics model to explain the abrasive size effect on chemical mechanical polishing[J].Thin Solid Films,2005,476(1):130-136
    [95]Christopher L B,Dipto G T,William N G,et al.Surface kinetics model for SiLK chemical mechanical polishing[J].J Electrochem Soc,2002,149(2):G118-G127
    [96]David J S,Hetherington D L,Cecchi J L.Investigation of the Kinetics of Tungsten Chemical Mechanical Polishing in Potassium Iodate-Based Slurries I.role of alumina and potassium iodate[J].J Electrochem Soc,1999,146(1):376-381
    [97]David J S,Hetherington D L,Cecchi J L.Investigation of the kinetics of tungsten chemical mechanical polishing in potassium iodate-based slurries IIroles of colloid species and slurry chemistry[J].J Electrochem Soc,1999,146(5):1934-1938
    [98]Min S L,Paul A W,Scott S P,et al.Microscopic investigations of chemo-mechanical polishing of tungsten[J].Thin Solid Films,2004,457(2):346-353
    [99]Estragnat E,Tang G,Liang H,et al.Experimental investigation on mechanisms of silicon chemical mechanical polishing[J].J Electron Mater,2004,33(4):334-339
    [100]卜俊鹏,郑红军,何宏家,等.GaAs晶片化学机械抛光的机理分析[J].固体电子学研究与进展,1997,17(4):399-402
    [101]王亮亮,路新春,潘国顺,等.硅片化学机械抛光中表面形貌问题的研究[J].润滑与密封,2006,174(2):65-68
    [102]陈杨,陈志刚,李霞章,等.硅晶片化学机械抛光材料去除机制与模型[J].润滑与密封,2006,176(4):119-126
    [103]蒋建忠,赵永武.CMP过程芯片表面氧化膜生成速度影响因素的分析[J].现代制造工程,2006,10:51-55
    [104]Zhao Y W,Chang L,Kim S H.A mathematical model for chemical mechanical polishing based on formation and removal of weakly bonded molecular species[J].Wear,2003,254(3-4):332-339
    [105]Kang R K,Wang K,Wang J,et al.Removal of scratch on the surface of MgO single crystal substrate in chemical mechanical polishing process[J].Appl Surf Sci,2008,254(15):4856-4863
    [106]Hocheng H,Tsai H Y,Su Y T.Modeling and experimental analysis of material removal rate in the chemical mechanical planarization of dielectric films and bare silicon wafers[J].J Electrochem Soc,2001,148(10):G581-G586
    [107]Zhang F,Busnaina A.The role of particle adhesion and surface deformation in the chemical mechanical polishing process[J].Electrochem Soild-state Lett,1998,1(4):184-187
    [108]Ahmadi G,Xia X.A model for mechanical wear and abrasive particle adhesion during the chemical mechanical polishing process[J].J Electrochem Soce,2001,148(3):G99-G109
    [109]Bastaninejad M,Ahmadi G.Modeling the effects of abrasive size distribution,adhesion,and surface plastic deformation on chemical mechanical polishing[J].J Electrochem Soc,2005,152(9):G720-G730
    [110]Collins G J,Williams G.Controlling CMP with atomic force microscopy[J].Solid State Technol,1996,39(3):99-102
    [111]Schmutz P,Frankel G S.Characterization of AA2024-T3 by scanning Kelvin probe force microscopy[J].J Electrochem Soc,1998,145(7):2285-2295
    [112]Devecchio D,Schmutz P,Frankel G S.A new approach for the study of chemical mechanical polishing[J].Electrochem Soild-state Lett,2000,3(2):90-92
    [113]Berdyyeva K T,Emery S B,Sokolov I Y.In suit AFM study of surface layer removal during copper CMP[J].Electrochem Soild-state Lett,2003,6(7):G91-G94
    [114]Ruslan B,Liu Y,Zdyrko B,et al.AFM measurements of interactions between CMP slurry particles and substrate[J].J Electrochem Soc,2007,154(6):H476-H485
    [115]Lee S,Park J.Interaction forces between silica particles and wafer surfaces during chemical mechanical planarization of copper[J].J Electrochem Soc,2007,150(5):G327-G332
    [116]Hiroki O,Yusuke T,Michihiko Y,et al.Study on the mechanisms of chemical mechanical polishing on copper and aluminum surfaces employing in situ infrared spectroscopy[J].Jpn J Appl Phys,2003,42(1):3582-3587
    [117]Zhang L C,Tanakat H.Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding[J].Tribol Int,1998,31(8):425-433
    [118]Rajendran A,Takahashi Y,Koyama M,et al.Tight-binding quantum chemical molecular dynamics simulation of mechano-chemieal reactions during chemical-mechanical polishing process of SiO_2 surface by CeO_2 particle[J].Appl Surf Sci,2005,244(1-4):34-38
    [119]Evgueni C,James B.Molecular dynamics simulations of chemical deformation of amorphous silicon dioxide during chemical mechanical polishing[J].J Appl Phys,2003,94(6):3853-3861
    [120]Han X.Study micromechanism of surface planarization in the polishing technology using numerical simulation method[J].Appl Sur Sci,2007,253(14):6211-6216
    [121]Katsuki F,Saguchi A,Takahashi W,et al.The atomic-scale removal mechanism during Si tip starching on Si and SiO_2 surfaces in aqueous KOH with an atomic force microscope[J].Jpn J Appl Phys,2002,41(7B):4919-4923
    [122]Vijayakumar A,Du T,Sundaram K B,et al.Polishing mechanism of tantalum films by SiO_2 particles[J].Microelectron Eng,2003,70(1):93-101
    [123]Pietseh G J,Chabal Y J,Higashi G S.The atomic-scale removal mechanism during chemo-mechanical polishing of si(100) and si(111)[J].Surf Sci,1995,331-333(1):395-401
    [124]Xu J,Luo J B,Lu X C,et al.Progress in material removal mechanisms of surface
    [124]Xu J,Luo J B,Lu X C,et al.Progress in material removal mechanisms of surface polishing with ultra precision[J].Chin Sci Bull,2004,49(16):1687-1693
    [125]徐进,雒建斌.含纳米粒子溶液对单晶硅表面的冲蚀磨损损伤实验研究[J].摩擦学学报,2006,26(11):7-11
    [126]Xu J,Luo J B,Wang L L.The crystallo graphic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing[J].Tribol Int,2007,40(2):285-289
    [127]Choi W,Rajiv K S.Roles of colloidal silicon dioxide particles in chemical mechanical polishing of dielectric dioxide[J].Jpn J Appl Phys,2005,44(12):8383-8390
    [128]Luo J,Domfeld D A.Review of chemical mechanical planarization modeling for integrated circuit fabrication:form particle scale to die and wafer scales.University of California-Berkely.2003.[EB/OL].http://repositories.cdlib.org/lma/pmg/2002_luo_l
    [129]Paul E.A model of CMP chemical mechanical polishing[J].J Electrochem Soc,2001,148(6):G355-G358
    [130]Paul E.A model of chemical mechanical polishing Ⅱ.polishing pressure and speed[J].J Electrochem Soc,2002,149(5):G305-G308
    [131]Paul E.A model of CMP Ⅱ.inhibitors[J].J Electrochem Soc,2003,150(12):G739-G743
    [132]Paul E,Kaufman F,Brusic A,et al.A model of copper CMP[J].J Electrochem Soc,2005,152(4):G322-G328
    [133]Wang L,Zhang K,Song Z,et al.Effect of chemicals on chemical mechanical polishing of glass substrates[J].Chin Phys Lett,2007,24(1):259-261
    [134]Lei H,Luo J B.CMP of hard disk substrate using a colloidal SiO_2 slurry:preliminary experimental investigation[J].Wear,2004,257(5-6):461-470
    [135]严波,张晓敏,吕欣.微电子材料化学机械平坦化加工中的材料去除模型[J].工程力学,2004,21(5):126-131
    [136]Borucki L.Mathematical modeling of polishing-rate decay in chemical mechanical polishing[J].J Eng Mathematics,2002,43(2-4):105-114
    [137]Sukharev V.Fluctuation model of chemical mechanical planarization[J].J Electrochem Soc,2001,148(3):G 172-G177
    [138]Jeng Y R,Huang P Y,Pan W C.Tribological analysis of CMP with partial asperity contact[J].J Electrochem Soc,2003,150(10):G630-G637
    [139]Jeremiah T A,Suresh Y,Wonseop C,et al.A tribochemical study of ceria-silica interactions for CMP[J].J Electrochem Soc,2006,53(11):G 1001-G 1004
    [140]Kevin C,Nicholas O,Anand G,et al.Analysis of contact interactions between a rough deformable colloid and a smooth substrate[J].J Colloid Inter Sci,2000,222(1):63-74
    [141]Chang Y P,Hashimura,Dornfeld D A.An investigation of material removal mechanisms in lapping with grain size transition[J].J Manuf Sci Eng,2000,122(3):413-419
    [142]Du T,Vijayakumar A,Desai V.Effect of hydrogen peroxide on oxidation of copper in CMP slurries containing glycine and Cu ions[J].Electrochimica Acta,2004,49(25):4505-4512
    [143]舒行军,何建国,陶继中,等.Ta-W合金的化学机械抛光实验研究[J].润滑与密封,2006,175(3):78-83
    [144]Chen C,Shu L,Lee S.Mechano-chemical polishing of silicon wafers[J].J Mater Procoss Technol,2003,140(1-3):373-378
    [145]李庆忠,于秀坤,苏建修.IC制造中平坦化技术的性能与分析[J].沈阳航空工业学院学报,2006,23(1):27-31
    [146]Liang H,Mogne T L,Martin J.Interracial transfer between copper and polyurethane in chemical mechanical polishing[J].J Electron Mater,2002,31(8):872-878
    [147]田业冰.硅片超精密磨削表面质量和材料去除率的研究[D]:[硕士学位论文].大连:大连理工大学,2005
    [148]杜宏伟.光电子材料钽酸锂晶片化学机械抛光过程研究[D]:[硕士学位论文].广东:广东工业大学,2004
    [149]Lu H,Fookes B,Obeng Y,et al.Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces[J].Mater Charact,2002,49(1):35-44
    [150]熊伟.化学机械抛光中抛光垫的作用研究[D]:[硕士学位论文].广东:广东工业大学,2006
    [151]张凯亮.CMP纳米抛光液及抛光工艺相关技术研究[D]:[博士后研究报告].上海:中国科学院上海微系统与信息技术研究所,2006
    [152]徐进.纳米颗粒碰撞固体表面损伤试验研究[D]:[博士后研究报告].北京:清华大学.2005
    [153]Cooper K,Cooper J,Groschopf J,et al.Effects of particle concentration on chemical mechanical planarization[J].Electroehem Soild-state Lett,2002,5(12):G109-G112
    [154]Choi W,Abiade J,Lee S M,et al.Effects of slurry particles on silicon dioxide CMP[J].J Electrochem Soc,2004,151(8):G512-G522
    [155]Borucki L.Lubrication layer perturbations in chemical-mechanical polishing.[EB/OL]. http://www.wpi.edu/Academics/Depts/Math/News/MPI2005/PDF/Borucki-CMP Lubricat ionLayer.pdf
    [156]Wrschka P,Hernandez J,Hsu Y,et al.Polishing parameter dependencies and surface oxidation of chemical mechanical polishing of Al thin films[J].J Electrochem Soc,1999,146(7):2689-2696
    [157]Nishizawa H,Tateyama Y,Saitoh T.Ellipsometry characterization of oxidized copper layers for chemical mechanical polishing process[J].Thin Solid Films,2004,455-456:491-494
    [158]陆栋,蒋平,徐至中.固体物理:晶体中的原子扩散[M].上海:上海科学技术出版社,2002,91-95
    [159]王运东,骆广生,刘谦.传递过程原理[M].北京:清华大学出版社,2001.229-256
    [160]Handbook of Chemistry and Physics[M],Boca Raton:CRC Press,1987
    [161]Dipto G,Donald W,Ronald,et al.Three dimensional wafer scale copper chemical mechanical planarization model[J].Thin Solid Films,2002,414(1):78-90
    [162]Subramanian R S,Zhang L,Babu S V.Transport phenomena in chemical mechanical polishing[J].J Electrochem Soc,1999,146(11):4263-4272
    [163]Cook L M.Chemical processes in glass polishing[J].J Non-Cryst Solids,1990,120(1-2):152-171
    [164]Song S H,Faulkner R G,Flewitt P E,et al.Modelling of equilibrium grain boundary solute segregation under irradiation[J].J Mater Sci Techno 1,2005,21(2):196-200
    [165]Bing G,Quate C F,Gerber C,et al.Surface studies by scanning tunneling microscopy[J].Phys Rev Lett,1982,49(1):57-61
    [166]Bing G,Quate C F,Gerber C.Atomic force microscope[J].Phys Rev Lett,1986,56(9):930-933
    [167]Bouvet D,Beaud P,Fazan P,et al.Impact of the colloidal silica particle size on physical vapor deposition tungsten removal rate and surface roughness[J].J Vac Sci Technol B,2002,20(4):1556-1560
    [168]Greenwood J A,Williamson J B P.Contact of nominally flat surface[M].London:Proc R Soc,1996.300-319
    [169]赵永武,吕彦明,蒋建忠.新的粗糙表面弹塑性接触模型[J].机械工程学报,2007,43(3):95-101
    [170]Mccool J I.Predicting microstructure in ceramics via a micro-contact model[J].J Tribol,1986,108:380-386
    [171]Guo L R,Subramanian R.Mechanical removal in CMP of copper using alumina abrasives[J].J Electrochem Soc,2004,151(2):G104-G108
    [172]李秀娟,金洙吉,康仁科,等.ULSI制造中铜化学机械抛光的腐蚀磨损机理分析[J].润滑与密封,2005,170(4):77-80
    [173]Mejia D C,Beaudoin S.A locally relevant wafer-scale model for CMP of silicon dioxide[J].J Electrochem Soc,2003,150(9):G581-G586
    [174]Johnson KL.Contact mechanics[M].New York:Cambridge university press,1985
    [175]Katsuki F,Kamei K,Saguchi A,et al.AFM studies on the difference in wear behavior between Si and SiO_2 in KOH solution[J].J Electrochem Soc,2000,147(6):2328-2331
    [176]Mahajan U D.Fundamental studies on silicon dioxide chemical mechanical polishing[D]:[PhD Thesis].Florida:University of Florida,2000
    [177]Burtovyy R,Liu Y,Zdyrko B,et al.AFM measurements of interactions between CMP slurry particles and substrate[J].J Electrochem Soc,2007,154(6):H476-H485
    [178]Hamaker H C.The london-van der waals attraction between spherical particles[J].Phisica A,1937,10:1058-1072
    [179]李庆扬.数值分析[M].武汉:华中理工大学出版社,1982
    [180]Wiesendanger R.Scanning probe microscopy and spectroscopy[M].New York:Cambridge University Press,1994.345-347
    [181]Israelachvili J N.Intermolecular and surface force[M].New York:Academic press,1992.241-246
    [182]Xia X,Ahmadi G Surface removal rate in chemical mechanical polishing[J].Part Sci Technol,2002,20(3):187-196
    [183]Eom D,Kim I,Han J,et al.The effect of hydrogen peroxide in a citric acid based copper slurry on Cu polishing[J].J Electrochemical Soc,2007,154(1):D38-D44
    [184]Miyoshi A,Nakagawa H,Matsukawa K.Simulation on chemical mechanical polishing using atomic force microscope[J].Microsyst Technol,2005,11(8-10):1102-1106
    [185]谢希德,陈栋.固体能带理论[M].上海:复旦大学出版社,1998
    [186]齐卫宏.金属纳米微粒热力学性能的尺寸效应和形状效应研究[D]:[博士学位论文].长沙:中南大学,2004
    [187]蒋建忠,赵永武.机械化抛光过程材料单分子层吸附去除机理分析及建模[J].哈尔滨工业大学学报,2006,38 sup:275-282
    [188]Li Y,Babu S V.Chemical mechanical polishing of copper and Tantalum in potassium iodate-based slurries[J].Electrochem Soild-state Lett,2001,4(2):G20-G22
    [189]Mahajan U,Lee S M,Singh R K.Effect of slurry abrasive size on polishing rate and surface quality of silicon dioxide films[C].In Proc.Int.Symp.Chemical Mechanical Polarization IC Device Manufacturing Ⅲ,New York:Troy,2007.396-401
    [190]Bastawros A,Chandra A,Guo Y.Pad effects on material removal rate in chemical mechanical planarization[J].J Electron Mater,2002,31(10):1022-1031
    [191]Sukam C P,Seok J,Kim A T,et al.Modeling of material removal for fixed abrasive CMP:blanket wafers[C].Walter Lincoln Hawkins graduate research conference,New York:Troy,2002.202-216
    [192]Seiichi K,Kouichi F,Kouji Y,et al.Damageless Cu chemical mechanical polishing for porous SiOC/Cu interconnects[J].Microelectron Eng,2007,84(11):2615-2619
    [193]Ernur D,Terzieva V,Schuhmacher J,et al.Corrosion and inhibition of WN_xC_Y barrier during chemical mechanical planarization[J].J Electrochem Soc,2005,152(12):B512-B518
    [194]Miranda P A,Imonigie J A,Moll.Chemical mechanical planarization for Cu through-wafer interconnects[J].J Electrochem Soc,2006,153(3):G211-G217
    [195]Hernandez J,Wrschka P,Oehrlein G S.Surface chemistry studies of copper chemical mechanical planarization[J].J Electrochemical Soc,2001,148(7):G389-G397
    [196]Aksu S,Doyle F M.The role of glycine in the chemical mechanical planarization of copper[J].J Electrochemical Soc,2002,149(6):G352-G361
    [197]张伟,路新春,刘宇宏,等.缓蚀剂在铜化学机械抛光过程中的作用研究[J].摩擦学学报,2007,27(5):401-405
    [198]Chen K W,Wang Y L.Study of non-preston phenomena induced from the passivated additives in copper CMP[J].J Electrochem Soc,2007,154(1):H41-H47
    [199]Prasad Y N,Ramanathan S.Chemical mechanical planarization of copper in alkaline slurry with Uric acid as inhibitor[J].Electrochimiea Acta,2007,52(22):6353-6358
    [200]Varadarajan T K,Ramakrishna T V,Kalidas C.Ion solvation of some copper(Ⅱ) salts in water+N-Methyl-2-pyrrolidinone solvent mixtures at 30℃[J].J Chem Eng Data,1997,42(3):453-457
    [201]Seal S,Kuiry S C,Heinmen B.Effect of glycine and hydrogen peroxide on chemical mechanical planarization of copper[J].Thin Solid Films,2003,423(2):243-251
    [202]Zhang L,Subramanian R S.A model of abrasive-free removal of copper films using an aqueous hydrogen peroxide-glyeine solution[J].Thin Solid Films,2001,397(1-2):143-151
    [203]Haque T,Balakumar S,Kumar A,et al.A material removal rate model for copper abrasive free CMP[J].J Electrochem Soc,2005,152(6):G417-G422
    [204]Shankar S R,RajeshM A.A model of chemical mechanical planarization of patterned wafers with fixed abrasives[J].Electrochem Solid-State Lett,2001,4(12):G115-G118
    [205]Jindal A,Hegde B.Chemical mechanical polishing using mixed abrasive slurries[J].Electrochem Solid-state Lett,2002,5(7):G48-GS0
    [206]张鹏珍.纳米氧化铈、氧化铝/氧化硅复合粒子的制备及其抛光性能的研究[D]:[硕士学位论文].上海:上海大学,2006
    [207]Gopal T,Talbot J.Use of slurry colloidal behavior in modeling of material removal rates for copper CMP[J].J Electrochem Soc,2007,154(6):H507-H511
    [208]Armini S,Whelan C M,Maex K,et al.Composite polymer-core silica shell abrasive particles during oxide CMP[J].J Electroehem Soc,2007,154(8):H667-H671

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700