中国汉族人C4基因拷贝数变异及与系统性红斑狼疮相关性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引言:系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种经典的自身免疫性疾病,以自身抗体产生、补体激活、免疫复合物沉积累及多种组织器官损伤为主的多基因遗传性疾病。由于可累及全身多个系统、器官,其患者的临床表现多种多样,且不同的患者之间有较大的差异,因此给临床的诊疗带来一定的困难。该病好发于女性,特别是育龄期妇女,男女的患病率之比约为1:9。其发病机制迄今尚未完全阐明,遗传因素和环境因素共同导致了该病的发生。SLE的临床表现,风险性和发病率在不同的种族、地区和性别间存在差异,提示遗传异质性在SLE临床表现的复杂性方面可能起重要的作用。
     拷贝数变异(copy number variants,CNVs)和单核苷酸多态性(single nucleotide polymorphisms, SNPs)是人类基因变异的两个重要遗传基础。目前,以Tag- SNPs为基础的关联分析研究(genome-wide association study, GWAS)在欧洲和亚洲SLE人群中确定了30多个SLE的易感基因/位点。但是,通过SNP- GWAS人们发现所识别的绝大部分常见变异仅能解释相对一小部分疾病风险,对疾病发生的解释贡献大约2%~15%,即使再进行大规模、大样本量的研究,遗传因素如何导致疾病的发病风险原因仍然解释不清。在SNP-GWAS的热潮过后,如何进一步挖掘SNP芯片数据的剩余价值是许多研究机构关心的问题。利用芯片数据进行CNV分析也是GWAS后期数据挖掘的一部分。我们通过illumina 610芯片平台分析CNV的结果不确定,故利用此平台不能有效分析相关的CNV。为了进一步对CNV认识和分析,我们通过候选基因的方法对与SLE强相关的C4基因进行拷贝数变异的相关性研究。
     CNV领域的一系列进展可以让我们重新审视CNV与疾病临床表型研究的必要性和可行性。最近,在多个不同人群SLE患者的GWAS研究中发现许多与SLE有关的易感基因,此研究除了为发现SLE遗传因素提供了直接证据外,同时也从基因组水平认识SLE的发病机制提供了重要线索。随后关于SLE基因型-表型的研究相继出现,不仅暗示了系统性红斑狼疮是一种异质性的疾病,而且进一步说明遗传因素在SLE的发病机制中有重要作用。基因拷贝数变异与疾病的临床表型相关性分析研究也说明基因拷贝数与疾病的临床表型相关。在此,我们行基因拷贝数变异与临床表型的分析进一步探索C4基因拷贝数变异与中国汉族SLE患者的临床表型之间的关系,对探索C4拷贝数变异在SLE发病过程中的特定作用及进一步阐明系统性红斑狼疮的发病机制具有重要意义。
     目的: 1)C4基因拷贝数(C4GCNs)在中国汉族正常人群中的分布状态。2) C4GCNs与中国汉族SLE患者的相关性分析。3)C4基因拷贝数变异多态性与SLE患者临床表型的相关性,进一步阐明系统性红斑狼疮的发病机制,并为下一步建立相应的动物模型和从功能上证实这些易感基因与特定表型相关提供相应的证据。
     方法:首先从安徽地区医院收集SLE患者和对照样本(1047例SLE患者和1056例正常对照),按照相同的样本收集标准,利用TaqMan荧光定量PCR(TaqMan-based qRT-PCR)方法确定正常人群和SLE中C4 GCNs的分布状态,并进行相关性分析。其次,对与SLE强相关的C4 GCNs行病例-病例(如有关节炎的患者和无关节炎的患者)分析确定基因拷贝数相关的临床表型,然后再行病例-对照(如有关节炎的患者/无关节炎的患者和正常对照)分析,进一步确定基因拷贝数对不同临床表型所贡献的风险大小。用SPSS11.0软件进行统计分析P < 0.05认为有统计学意义。
     结果:1)C4 GCNs在正常人群中的分布:总C4基因拷贝数为2-8;其中C4A基因拷贝数为0-6,C4B基因拷贝数为0-5。2个拷贝的C4A和C4B占多数。C4A的拷贝数分布为:< 2的拷贝数样本为7.25%;2拷贝数样本为69.71%;> 2拷贝数样本为23.04 %。C4B的拷贝数分布:< 2的拷贝数样本为20.16%;2拷贝数样本为66.43%;> 2拷贝数样本为13.41%。4拷贝数的总C4为63.56%,其中2C4A-2C4B约占51.94 %。
     2)C4基因拷贝数在SLE患者中的分布:2个拷贝的C4A和C4B仍占多数。C4A的拷贝数分布偏向高拷贝侧:<2的拷贝数样本为13.10%;2拷贝数样本为67.10%;>2拷贝数样本为19.81%;C4B的拷贝数分布偏向低拷贝侧:<2的拷贝数样本为13.10%;2拷贝数样本为63.42% ;>2拷贝数样本为19.81%。通过与对照样本比较分析,在SLE患者中,低C4A基因拷贝数(<2)为SLE患者的危险因素(P=1.97×10~(-5);OR: 1.93;95%CL:1.42-2.62);高C4A基因拷贝数(>2)没有显著性意义(P=0.08);而C4B GCN与SLE无明显相关。C4基因拷贝数在SLE患者中:低拷贝(< 4)为SLE患者的危险因素(P=8.69×10-3;OR: 1.38; 95%Cl:1.09-1.76);高拷贝数(>4)反而为SLE患者的保护性因素(P=0.04;OR: 0.79; 95%Cl:0.63-0.99)。C4基因拷贝数的增减主要与C4A GCN有关,与C4B GCN无明显关系。
     3)C4AGCN与血管炎有关(P=6.05×10-3);C4A基因对多个临床表型均有贡献;未发现总C4基因拷贝数变异与某一临床表型相关;但对多个临床表型均存在不同程度的遗传压力。
     结论:本项研究不仅分析了C4 GCNs在中国汉族正常人群中的分布,而且进一步验证了C4 GCNs与SLE的相关性,同时也说明C4 GCNs在SLE的发病机制中起到重要作用;另外通过与欧洲人群SLE的C4 GCNs研究结果进行比较,发现影响SLE易感性的遗传变异在不同人种间存在差异,遗传异质性可能在SLE的易感性方面起着重要作用;进一步与临床表型的分析,C4A基因拷贝数可能与关节炎的发生密切相关,C4A和C4基因拷贝数变异对多个临床表型均存在不同程度的遗传压力。该项研究将加深我们对CNV遗传基础的认识,也为将来SLE机制研究提供启示。
Introduction: Systemic lupus erythematosus (SLE) is a prototypic systemic autoimmune disease, characterized by a diverse array of autoantibody production, complement activation, immune complex deposition, tissues and organs damage influenced by both genetic and environmental factors. It can affect multiple systems and organs of the body and it is difficulty to give clinical diagnosis and treatment because of diverse clinical manifestations and differences between the patients. SLE affects predominantly in women (prevalence ratio of women to men is 9 to 1) and particularly during childbearing years. The pathogenesis of SLE has not yet been fully elucidated. It was concluded that genetic and environmental factors lead to the occurrence of the disease. There are marked disparities in incidence and prevalence of SLE patients worldwide, which varies in different ethnic and geographical populations. The prevalence of SLE ranges from 31 to 70 cases per 100,000 persons among Chinese and 7 to 71 in European populations. The ethnic and genetic heterogeneity may contribute to the complexity of its clinical manifestation.
     Copy number variation (CNV) and single nucleotide polymorphism (SNP) are two important human variations of human diversity in the genetic basis. At present, tag SNPs-based analysis of genome-wide association studies(GWAS)in European and Asian populations have identified more than thirty robust susceptibility genes and/or loci. However, susceptibility genes that were identified by SNP-GWAS can only explain a small part of the relative risk of disease, and interpretate of 2% to 15% disease pathogen. Even if more large-scale, large sample size been analyzed, they will still not explain all the main reason of genetic risk factors. After the boom of SNP-GWAS, many research institutions concerned that how to further identified the residual value data of SNP chip. CNV analysis is part of the late GWAS using microarray data. We found uncertain results of CNV through illumine-610 chip platform, which result in stagnation of leaning CNV using the platform. In order to further understand and analysis of CNV, we have analyzed C4 CNV which strong correlation with SLE though candidate gene approach.
     Many progresses in the area of CNV allow us to re-examine the necessity and feasibility studies beween the clinical phenotype and disease CNP. Recently, it was found that the number of susceptibility genes in many different populations of SLE patients through SLE GWAS study. The study not only provide direct evidence for genetic factors in SLE, but also learn the the pathogenesis of SLE from level of the genome, which provides an important clues to learn SLE. Furthermore, the studies of the genotype-phenotype on the SLE have emerged, the results not only implied that SLE is a heterogeneous disease, but also demonstrated that genetic factors have an important role in the pathogenesis of SLE. The correlation of gene copy number variations and disease phenotype indicates that gene copy number related to disease clinical phenotype. Here, we performed the analysis to explore the relationships between clinical phenotype and gene copy number variations in Chinese Han population, it is important to further explore the C4 copy number variation in the pathogenesis of SLE and further clarify the role of the pathogenesis of systemic lupus erythematosus.
     Object: 1) To find the distribution status of C4 gene copy number (C4GCNs) in the Chinese Han population. 2) To analyze the correlation with SLE in the Chinese Han population. 3)To investigate their relationships of C4 gene copy number variation with disease clinical phenotypes, to further clarify susceptibility genes underline the pathogenesis of SLE , then to establish the appropriate animal models and confirm the association with specific phenotypes which providing evidence from functional studies.
     Methods: First, we recruited all samples of SLE patients and controls from two hospitals (1099 cases and 1254 cases of SLE patients with normal controls) in this study, which according to the same standards for collection, TaqMan quantitative PCR (TaqMan-based qRT-PCR) were to performed to identified C4 GCNs the distribution status in the normal population and correlation analysis with SLE population. Second, we performed case-only analyses (e.g. presence of arthritis versus no arthritis) to identify which subphenotypes were associated with gene copy number. Then, we also performed subphenotype-control analyses (e.g. presence of arthritis or negative of arthritis versus health controls) to examine the risk conferred by the gene copy number on different subtypes of SLE. Furthermore, we performed case-only analyses (e.g. presence of arthritis versus no arthritis) to identify which subphenotypes were associated with gene copy number. P values were estimated using SPSS11.0 software, which below 0.05 were considered to be statistically significant.
     Results: 1) The results showed that the GCN varied from 2 to 8 for total C4, from 0 to 6 for C4A, and from 0 to 5 for C4B in the normal population. Two copies of C4A are the most common counts of GCN. The distribution of C4A copy number: the frequency of <2 copy number is 7.25%; 2 copy number is 69.71 %; > 2 copy number is 23.04%, the distribution of C4B copy number: the frequency of <2 copy number is 20.16%; 2 copy number is 66.43 %;> 2 copy number is 13.41%. Four copies of total C4 is 63.56%, of which 2C4A-2C4B is about 51.94%.
     2) It was found that the distribution of C4 gene copy number in SLE patients. The frequencies of two copies of C4A(69.71%) and C4B(66.43%)genes are in the majority. The C4A GCN distribution is skewed towards the side of high copy number (<2, 13.10%; 2, 67.10 %;> 2, 19.81%), C4B GCN distribution is skewed towards the low side of copy number (<2, 13.10%; 2, 63.42 %;> 2, 19.81). Compared with the control sample analysis, low C4A GCN (<2) is a risk factor in SLE patients (P = 1.97×10~(-5); OR: 1.93; CL: 1.42-2 .62), higher C4A GCN (> 2) is no significant differences (P = 0.08). However, C4B is not clearly related to SLE. Low copy number (<4) for the risk factor in patients with SLE (P = 8.69×10~(-3); OR: 1.38; 95%CL: 1.09-1 .76); high copy number (> 4) is a protective factor for SLE (P = 0.04; OR: 0.79; 95% CL: 0.63-0.99). Furthermore, there was significantly increase or decrease in the frequencies of the C4 GCN due to the variations of C4A but not C4B in SLE cases. 3) Significant associations were found for C4A gene copy number variation with arthritis (P = 6.05×10~(-3)), we examine the risks conferred by the C4A gene copy number on different subtypes of SLE; Significant associations were not found for C4 gene copy number variation with any clinical phenotype, however, we examine the risks conferred by C4 gene copy number on different subtypes of SLE.
     Conclusion: This study not only unfolds C4 GCNs in the Chinese normal population, but also validates that the C4 gene copy number was associated with SLE, and also identified that C4GCNs play an important role in the pathogenesis of SLE. Compared with the C4GCNs in European populations of SLE, we found that the susceptibility of copy number variation to SLE is difference in different ethnic, and the genetic heterogeneity of SLE susceptibility may play an important role. Through further analysis the clinical features, our study suggested that C4 gene copy number might be associated with arthritis, and C4 and C4A gene copy number play important roles in the development of SLE in Chinese Han population, which can conferred the risks on clinical features.The study will not only deepen our understanding of the genetic basis of the CNV, but also provide for the future mechanism to SLE.
引文
1. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358:929-39.
    2. Lau CS, Yin G, Mok MY. Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 2006; 15: 715-9.
    3. Zeng QY, Chen R, Darmawan J et al. Rheumatic diseases in China. Arthritis Res Ther 2008; 10: R17.
    4. Wang J, Yang S, Chen JJ et al. Systemic lupus erythematosus: a genetic epidemiology study of 695 patients from China. Arch Dermatol Res 2007; 298: 485-91.
    5. Wong M, Tsao BP. Current topics in human SLE genetics. Springer Semin Immunopathol 2006; 28: 97-107.
    6. Qin L, Lv J, Zhou X et al. Association of IRF5 gene polymorphisms and lupus nephritis in a Chinese population. Nephrology (Carlton); 15: 710-3.
    7. Kwok SK, Ju JH, Cho CS et al. Thrombotic thrombocytopenic purpura in systemic lupus erythematosus: risk factors and clinical outcome: a single centre study. Lupus 2009; 18: 16-21.
    8. Huang JL, Yeh KW, Yao TC et al. Pediatric lupus in Asia. Lupus; 19: 1414-8.
    9. Harley JB, Alarcon-Riquelme ME, Criswell LA et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204-10.
    10. Hom G, Graham RR, Modrek B et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358: 900-9.
    11. Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550-5.
    12. Graham RR, Cotsapas C, Davies L et al. Genetic variants near TNFAIP3 on 6q23are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1059-61.
    13. Musone SL, Taylor KE, Lu TT et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1062-4.
    14. Han JW, Zheng HF, Cui Y et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1234-7.
    15. Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number in the human genome. Nature 2006; 444: 444-54.
    16. Fiegler H, Redon R, Andrews D et al. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 2006; 16: 1566-74.
    17. Khaja R, Zhang J, MacDonald JR et al. Genome assembly comparison identifies structural variants in the human genome. Nat Genet 2006; 38: 1413-8.
    18. Freeman JL, Perry GH, Feuk L et al. Copy number variation: new insights in genome diversity. Genome Res 2006; 16: 949-61.
    19. Shelling AN, Ferguson LR. Genetic variation in human disease and a new role for copy number variants. Mutat Res 2007; 622: 33-41.
    20. Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 2007; 8: 639-46.
    21. Cronin S, Blauw HM, Veldink JH et al. Analysis of genome-wide copy number variation in Irish and Dutch ALS populations. Hum Mol Genet 2008; 17: 3392-8.
    22. Stefansson H, Rujescu D, Cichon S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232-6.
    23. Blauw HM, Veldink JH, van Es MA et al. Copy-number variation in sporadicamyotrophic lateral sclerosis: a genome-wide screen. Lancet Neurol 2008; 7: 319-26.
    24. Matarin M, Simon-Sanchez J, Fung HC et al. Structural genomic variation in ischemic stroke. Neurogenetics 2008; 9: 101-8.
    25. Marshall CR, Noor A, Vincent JB et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477-88.
    26. Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 2007; 131: 1235-47.
    27. Wu YL, Yang Y, Chung EK et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet Genome Res 2008; 123: 131-41.
    28. Wu YL, Savelli SL, Yang Y et al. Sensitive and specific real-time polymerase chain reaction assays to accurately determine copy number variations (CNVs) of human complement C4A, C4B, C4-long, C4-short, and RCCX modules: elucidation of C4 CNVs in 50 consanguineous subjects with defined HLA genotypes. J Immunol 2007; 179: 3012-25.
    29. Yang Y, Chung EK, Wu YL et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 2007; 80: 1037-54.
    30. Kamatani Y, Matsuda K, Ohishi T et al. Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population. J Hum Genet 2008; 53: 64-73.
    31. de Haas M, Kleijer M, van Zwieten R et al. Neutrophil Fc gamma RIIIb deficiency,nature, and clinical consequences: a study of 21 individuals from 14 families. Blood 1995; 86: 2403-13.
    32. Molokhia M, Fanciulli M, Petretto E et al. FCGR3B copy number variation is associated with systemic lupus erythematosus risk in Afro-Caribbeans. Rheumatology (Oxford).
    33. Li X, Ptacek TS, Brown EE et al. Fcgamma receptors: structure, function and role as genetic risk factors in SLE. Genes Immun 2009; 10: 380-9.
    34. Aitman TJ, Dong R, Vyse TJ et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851-5.
    35. Fanciulli M, Norsworthy PJ, Petretto E et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 2007; 39: 721-3.
    36. Willcocks LC, Lyons PA, Clatworthy MR et al. Copy number of FCGR3B, which is associated with systemic lupus erythematosus, correlates with protein expression and immune complex uptake. J Exp Med 2008; 205: 1573-82.
    37. Bournazos S, Bournazou I, Murchison JT et al. Copy Number Variation of FCGR3B Is Associated with Susceptibility to Idiopathic Pulmonary Fibrosis. Respiration; 81: 142-9.
    38. Mamtani M, Rovin B, Brey R et al. CCL3L1 gene-containing segmental duplications and polymorphisms in CCR5 affect risk of systemic lupus erythaematosus. Ann Rheum Dis 2008; 67: 1076-83.
    39. Liu S, Yao L, Ding D et al. CCL3L1 copy number variation and susceptibility to HIV-1 infection: a meta-analysis. PLoS One; 5: e15778.
    40. Mamtani M, Matsubara T, Shimizu C et al. Association of CCR2-CCR5 haplotypes and CCL3L1 copy number with Kawasaki Disease, coronary artery lesions, and IVIG responses in Japanese children. PLoS One; 5: e11458.
    1. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358: 929-39.
    2. Hopkinson ND, Doherty M, Powell RJ. Clinical features and race-specific incidence/prevalence rates of systemic lupus erythematosus in a geographically complete cohort of patients. Ann Rheum Dis 1994; 53: 675-80.
    3. Wang J, Yang S, Chen JJ et al. Systemic lupus erythematosus: a genetic epidemiology study of 695 patients from China. Arch Dermatol Res 2007; 298: 485-91.
    4. Zeng QY, Chen R, Darmawan J et al. Rheumatic diseases in China. Arthritis Res Ther 2008; 10: R17.
    5. Danchenko N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 2006; 15: 308-18.
    6. Lau CS, Yin G, Mok MY. Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 2006; 15: 715-9.
    7. Harley JB, Alarcon-Riquelme ME, Criswell LA et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204-10.
    8. Hom G, Graham RR, Modrek B et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358: 900-9.
    9. Kozyrev SV, Abelson AK, Wojcik J et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 211-6.
    10. Graham RR, Cotsapas C, Davies L et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1059-61.
    11. Musone SL, Taylor KE, Lu TT et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet2008; 40: 1062-4.
    12. Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344: 1058-66.
    13. Walport MJ. Complement. Second of two parts. N Engl J Med 2001; 344: 1140-4.
    14. Hauptmann G, Grosshans E, Heid E. Lupus erythematosus syndrome and complete deficiency of the fourth component of complement. Boll Ist Sieroter Milan 1974; 53: suppl:228.
    15. Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 2004; 22: 431-56.
    16. Yang Y, Chung EK, Zhou B et al. Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J Immunol 2003; 171: 2734-45.
    17. Yang Z, Mendoza AR, Welch TR et al. Modular variations of the human major histocompatibility complex class III genes for serine/threonine kinase RP, complement component C4, steroid 21-hydroxylase CYP21, and tenascin TNX (the RCCX module). A mechanism for gene deletions and disease associations. J Biol Chem 1999; 274: 12147-56.
    18. Wu YL, Yang Y, Chung EK et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet Genome Res 2008; 123: 131-41.
    19. Wu YL, Savelli SL, Yang Y et al. Sensitive and specific real-time polymerase chain reaction assays to accurately determine copy number variations (CNVs) of human complement C4A, C4B, C4-long, C4-short, and RCCX modules: elucidation of C4 CNVs in 50 consanguineous subjects with defined HLA genotypes. J Immunol 2007; 179: 3012-25.
    20. Dangel AW, Mendoza AR, Baker BJ et al. The dichotomous size variation ofhuman complement C4 genes is mediated by a novel family of endogenous retroviruses, which also establishes species-specific genomic patterns among Old World primates. Immunogenetics 1994; 40: 425-36.
    21. Yu CY, Belt KT, Giles CM et al. Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. Embo J 1986; 5: 2873-81.
    22. Yang Y, Chung EK, Wu YL et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 2007; 80: 1037-54.
    23. Shen L, Wu LC, Sanlioglu S et al. Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J Biol Chem 1994; 269: 8466-76.
    24. Schaller JG, Gilliland BG, Ochs HD et al. Severe systemic lupus erythematosus with nephritis in a boy with deficiency of the fourth component of complement. Arthritis Rheum 1977; 20: 1519-25.
    25. Clark RA, Klebanoff SJ. Role of the classical and alternative complement pathways in chemotaxis and opsonization: studies of human serum deficient in C4. J Immunol 1978; 120: 1102-8.
    26. Kamatani Y, Matsuda K, Ohishi T et al. Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population. J Hum Genet 2008; 53: 64-73.
    27. Yamada H, Watanabe A, Mimori A et al. Lack of gene deletion for complement C4A deficiency in Japanese patients with systemic lupus erythematosus. J Rheumatol 1990; 17: 1054-7.
    28. Hong GH, Kim HY, Takeuchi F et al. Association of complement C4 and HLA-DR alleles with systemic lupus erythematosus in Koreans. J Rheumatol 1994; 21: 442-7.
    29. Chung EK, Yang Y, Rennebohm RM et al. Genetic sophistication of human complement components C4A and C4B and RP-C4-CYP21-TNX (RCCX) modules in the major histocompatibility complex. Am J Hum Genet 2002; 71: 823-37.
    30. Fernando MM, Boteva L, Morris DL et al. Assessment of complement C4 gene copy number using the paralog ratio test. Hum Mutat; 31: 866-74.
    31. McCarroll SA. Extending genome-wide association studies to copy-number variation. Hum Mol Genet 2008; 17: R135-42.
    32. Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number in the human genome. Nature 2006; 444: 444-54.
    33. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1725.
    34. Sarzi-Puttini P, Atzeni F, Iaccarino L et al. Environment and systemic lupus erythematosus: an overview. Autoimmunity 2005; 38: 465-72.
    35. Croker JA, Kimberly RP. Genetics of susceptibility and severity in systemic lupus erythematosus. Curr Opin Rheumatol 2005; 17: 529-37.
    36. Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550-5.
    37. Wong KK, deLeeuw RJ, Dosanjh NS et al. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 2007; 80: 91-104.
    38. Urbain J. [Gene duplication and the evolution of proteins]. Rev Fr Etud Clin Biol 1969; 14: 735-40.
    39. Aitman TJ, Dong R, Vyse TJ et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851-5.
    40. Ghiran IC, Zeidel ML, Shevkoplyas SS et al. Systemic lupus erythematosus serumdeposits C4d on red blood cells, decreases red blood cell membrane deformability, and promotes nitric oxide production. Arthritis Rheum; 63: 503-12.
    41. Mitchell DA, Pickering MC, Warren J et al. C1q deficiency and autoimmunity: the effects of genetic background on disease expression. J Immunol 2002; 168: 2538-43.
    42. Blanchong CA, Zhou B, Rupert KL et al. Deficiencies of human complement component C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. J Exp Med 2000; 191: 2183-96.
    43. Schur PH, Sandson J. Immunologic factors and clinical activity in systemic lupus erythematosus. N Engl J Med 1968; 278: 533-8.
    44. Fielder AH, Walport MJ, Batchelor JR et al. Family study of the major histocompatibility complex in patients with systemic lupus erythematosus: importance of null alleles of C4A and C4B in determining disease susceptibility. Br Med J (Clin Res Ed) 1983; 286: 425-8.
    45.赵武述陈仁,卞志强.现代临床免疫学北京人民军医出版社1994: 66-77.
    46.张宏宇陈,王宗发,等.广东籍汉族人系统性红斑狼疮的易感性与补体C4 零基因相关分析.中华风湿病学杂志1999; 3: 20-2.
    47. Christiansen FT, Zhang WJ, Griffiths M et al. Major histocompatibility complex (MHC) complement deficiency, ancestral haplotypes and systemic lupus erythematosus (SLE): C4 deficiency explains some but not all of the influence of the MHC. J Rheumatol 1991; 18: 1350-8.
    48. Yu CY, Campbell RD. Definitive RFLPs to distinguish between the human complement C4A/C4B isotypes and the major Rodgers/Chido determinants: application to the study of C4 null alleles. Immunogenetics 1987; 25: 383-90.
    1. Arnett FC Shulman LE. Studies in familial systemic lupus erythematosus[J].Medicine (Baltimore), 1976, 55(4):313-22.
    2. Lau CS, Yin G, Mok MY. Ethnic and geographical differences in systemic lupus erythematosus: an overview. Lupus 2006; 15: 715-9.
    3. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40: 1725.
    4.张学军.皮肤性病学.人民卫生出版社2008; 7: 149-54.
    5. Alarcon-Segovia D, Alarcon-Riquelme M E, Cardiel M H, et al., Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort[J].Arthritis Rheum, 2005. 52(4):1138-47.
    6. Deapen D, Escalante A, Weinrib L, et al., A revised estimate of twin concordance in systemic lupus erythematosus[J]. Arthritis Rheum, 1992. 35(3):311-8.
    7. Harley IT, Kaufman KM, Langefeld CD et al. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet 2009; 10: 285-90.
    8. Han JW, Zheng HF, Cui Y et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1234-7.
    9. Gateva V, Sandling JK, Hom G et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1228-33.
    10. Yang Y, Chung EK, Wu YL et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupuserythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 2007; 80: 1037-54.
    11. Fanciulli M, Norsworthy PJ, Petretto E et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 2007; 39: 721-3.
    12. Mamtani M, Rovin B, Brey R et al. CCL3L1 gene-containing segmental duplications and polymorphisms in CCR5 affect risk of systemic lupus erythaematosus. Ann Rheum Dis 2008; 67: 1076-83.
    13. Taylor KE, Remmers EF, Lee AT et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet 2008; 4: e1000084.
    14. Salloum R, Franek BS, Kariuki SN et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients. Arthritis Rheum; 62: 553-61.
    15. Lim MK, Sheen DH, Kim SA et al. IAN5 polymorphisms are associated with systemic lupus erythematosus. Lupus 2009; 18: 1045-52.
    16. Namjou B, Gray-McGuire C, Sestak AL et al. Evaluation of C1q genomic region in minority racial groups of lupus. Genes Immun 2009; 10: 517-24.
    17. Gonzalez E, Kulkarni H, Bolivar H et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005; 307: 1434-40.
    18. Aitman TJ, Dong R, Vyse TJ et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851-5.
    19. Hollox EJ, Huffmeier U, Zeeuwen PL et al. Psoriasis is associated with increased beta-defensin genomic copy number. Nat Genet 2008; 40: 23-5.
    20. Sebat J, Lakshmi B, Malhotra D et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445-9.
    21. Weiss LA, Shen Y, Korn JM et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667-75.
    22. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237-41.
    23. Stefansson H, Rujescu D, Cichon S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232-6.
    24. Fellermann K, Stange DE, Schaeffeler E et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 2006; 79: 439-48.
    25. McKinney C, Merriman ME, Chapman PT et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis 2008; 67: 409-13.
    26. Yang TL, Chen XD, Guo Y et al. Genome-wide copy-number-variation study identified a susceptibility gene, UGT2B17, for osteoporosis. Am J Hum Genet 2008; 83: 663-74.
    27. McCarroll SA, Bradner JE, Turpeinen H et al. Donor-recipient mismatch for common gene deletion polymorphisms in graft-versus-host disease. Nat Genet 2009; 41: 1341-4.
    28. Harley I T, Kaufman K M, Langefeld C D, et al., Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies[J]. Nat Rev Genet, 2009. 10(5):285-90.
    29. Dodds, A.W. and S.K. Law, The complement component C4 of mammals. Biochem J, 1990. 265(2): p. 495-502.
    30. Martinez, O.P., et al., Genetics of human complement component C4 and evolution the central MHC. Front Biosci, 2001. 6: p. D904-13.
    31.Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 2007;8: 639-46.
    32.Kramer, J., et al., A marked drop in the incidence of the null allele of the B gene of the fourth component of complement (C4B*Q0) in elderly subjects: C4B*Q0 as a probable negative selection factor for survival. Hum Genet, 1991. 86(6): p. 595-8.
    33.Kramer, J., et al., C4B*Q0 allotype as risk factor for myocardial infarction. Bmj, 1994. 309(6950): p. 313-4.
    34. Kramer, J., et al., Frequencies of certain complement protein alleles and serum levels of anti-heat-shock protein antibodies in cerebrovascular diseases. Stroke, 2000. 31(11): p. 2648-52.
    35. Ault, B.H., et al., Association of Henoch-Schonlein purpura glomerulonephritis with C4B deficiency. J Pediatr, 1990. 117(5): p. 753-5.
    36. Bishof, N.A., T.R. Welch, and L.S. Beischel, C4B deficiency: a risk factor for bacteremia with encapsulated organisms. J Infect Dis, 1990. 162(1): p. 248-50.
    37. Chapel, H.M., et al., Combined familial C7 and C4B deficiency in an adult with meningococcal disease. Clin Exp Immunol, 1987. 67(1): p. 55-8.
    38. Rupert, K.L., et al., The molecular basis of complete complement C4A and C4B deficiencies in a systemic lupus erythematosus patient with homozygous C4A and C4B mutant genes. J Immunol, 2002. 169(3): p. 1570-8.
    39. Christiansen, F.T., et al., Complement allotyping in SLE: association with C4A null. Aust N Z J Med, 1983. 13(5): p. 483-8.
    40. Fan, Q., B. Weill, and M. Delpech, Study of C4A mRNA in mononuclear blood cells from a patient with SLE and C4A homozygous deficiency without C4A gene deletion. Clin Exp Rheumatol, 1994. 12(6): p. 657-60.
    41. Traustadottir, K.H., et al., C4A deficiency and elevated level of immune complexes: the mechanism behind increased susceptibility to systemic lupus erythematosus. J Rheumatol, 2002. 29(11): p. 2359-66.
    42. Welch, T.R., et al., The phenotype of SLE associated with complete deficiency ofcomplement isotype C4A. J Clin Immunol, 1998. 18(1): p. 48-51.
    43. Dodds AW, Law SK. The complement component C4 of mammals. Biochem J 1990; 265: 495-502.
    44. Jenhani F, Bardi R, Gorgi Y, Ayed K, Jeddi M: C4 polymorphism in multiplex families with insulin dependent diabetes in the Tunisian population: standard C4 typing methods and RFLP analysis. J Autoimmun 1992, 5:149-160.
    45. Gilliam BE, Wolff AE, Moore TL. Partial C4 deficiency in juvenile idiopathic arthritis patients. J Clin Rheumatol 2007; 13: 256-60.
    46. van Zeben D, Giphart MJ, Christiansen FT et al. Properdin factor B and complement factor C4 allotypes in rheumatoid arthritis: results of a follow-up study. Hum Immunol 1992; 33: 148-51.
    47.Wu YL, Yang Y, Chung EK et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet Genome Res 2008; 123: 131-41.
    48. Chung, E.K., et al., Genetic sophistication of human complement components C4A and C4B and RP-C4-CYP21-TNX (RCCX) modules in the major histocompatibility complex. Am J Hum Genet, 2002. 71(4): p. 823-37.
    49. Szilagyi, A., et al., Real-time PCR quantification of human complement C4A and C4B genes. BMC Genet, 2006. 7: p. 1.
    50. Mo R, Kato Y, Nonaka M, et al. Fourth component of Xenopus laevis complement: cDNA cloning and linkage analysis of the frog MHC.Immunogenetics. 1996;43(6):360-9.
    51. Deng S, Zhang GF, Kasumov T, et al. Interrelations between C4 ketogenesis, C5 ketogenesis, and anaplerosis in the perfused rat liver.J Biol Chem. 2009 Oct 9;284(41):27799-807.
    52.Bugdaci MS, Alkim C, Karaca C, et al., Could Complement C4 be an Alternative toBiopsy for Chronic Hepatitis B Histopathologic Findings? J Clin Gastroenterol. 2011 May-Jun;45(5):449-55.
    53. Bishof, N.A., T.R. Welch, and L.S. Beischel, C4B deficiency: a risk factor for bacteremia with encapsulated organisms. J Infect Dis, 1990.162(1): p. 248-50.
    54. Yang, Y. Chung, E. K. Zhou, B. Diversity in intrinsic strengths of the human complement system: serum C4 protein concentrations correlate with C4 gene size and polygenic variations, hemolytic activities, and body mass index. J Immunol, 2003.171(5):p2734-45.
    55. Sjolander, S., A. Bolmstedt, L. Akerblom, P. , et al., N-linked glycans in the CD4-binding domain of human im-munodeficiency virus type 1 envelope glycoprotein gp160 are essential for the invivo priming of T cells recognizing an epitope located in their vicinity. Virology,1996.215: 124–133.
    56. Block SR, Winfield JB, Lockshin MD, et al. Studies of twins with systemiclupus erythematosus. A review of the literature and presentation of 12 additionalsets[J]. Am J Med, 1975, 59(4): p. 533-52.
    57. Jonsen A, Bengtsson AA, Nived O, et al. Gene-environment interactions in theaetiology of systemic lupus erythematosus[J]. Autoimmunity, 2007, 40(8): p.613-7.
    58. Zhou Y Lu Q. DNA methylation in T cells from idiopathic lupus and drug-induced lupus patients[J]. Autoimmun Rev, 2008, 7(5): p. 376-83.
    59. Han J W, Zheng H F, Cui Y, et al., Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus[J]. Nat Genet, 2009.
    60. He CF, Liu YS, Cheng YL, et al., TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus. 2010 Sep;19(10):1181-6.
    61. Cai L Q, Wang Z X, Lu W S, et al., A single-nucleotide polymorphism of theTNFAIP3 gene is associated with systemic lupus erythematosus in Chinese Han population[J]. Mol Biol Rep, 2009.
    62. Aksoy R, Duman T, Keskin O, Düzgün N, et al., No association of PTPN22 R620 W gene polymorphism with rheumatic heart disease and systemic lupus erythematosus. Mol Biol Rep. ,2011,Mar 8.
    63. Taylor KE, Remmers EF, Lee AT, et al., Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus [J]. PLoS Genet,2008,4(5):e1000084.
    64. Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al., Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis Rheum. 2004,50(8):2590-7.
    65. Bentley RW, Pearson J, Gearry RB, et al., Association of higher DEFB4 genomic copy number with Crohn's disease Am J Gastroenterol. 2010,105(2):354-9.
    66.卢丽萍,麻宏伟,姜俊,等。脊髓性肌萎缩临床表型与SMN2基因拷贝数变化的相关性研究。2007,24(2);p:144-147.
    1. Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358: 929-39.
    2. Zeng QY, Chen R, Darmawan J et al. Rheumatic diseases in China. Arthritis Res Ther 2008; 10: R17.
    3. Lau CS, Yin G, Mok MY. Ethnic and geographical differences in systemic lupuserythematosus: an overview. Lupus 2006; 15: 715-9.
    4. Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 2005; 52: 1138-47.
    5. Deapen D, Escalante A, Weinrib L et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35: 311-8.
    6. Cooper GS, Parks CG, Treadwell EL et al. Occupational risk factors for the development of systemic lupus erythematosus. J Rheumatol 2004; 31: 1928-33.
    7. Parks CG, Cooper GS, Nylander-French LA et al. Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: a population-based, case-control study in the southeastern United States. Arthritis Rheum 2002; 46: 1840-50.
    8. Harley JB, Alarcon-Riquelme ME, Criswell LA et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 2008; 40: 204-10.
    9. Hom G, Graham RR, Modrek B et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 2008; 358: 900-9.
    10. Graham RR, Kozyrev SV, Baechler EC et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006; 38: 550-5.
    11. Graham RR, Cotsapas C, Davies L et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1059-61.
    12. Musone SL, Taylor KE, Lu TT et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008; 40: 1062-4.
    13. Han JW, Zheng HF, Cui Y et al. Genome-wide association study in a Chinese Hanpopulation identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41: 1234-7.
    14. Pearson TA, Manolio TA. How to interpret a genome-wide association study. Jama 2008; 299: 1335-44.
    15. Zhu M, Zhao S. Candidate gene identification approach: progress and challenges. Int J Biol Sci 2007; 3: 420-7.
    16. Griffiths A MJ, Suzuki D, et al. An Introduction to Genetic Analysis. New York: W.H. Freeman and Company 1993.
    17. Edberg JC, Langefeld CD, Wu J et al. Genetic linkage and association of Fcgamma receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum 2002; 46: 2132-40.
    18. Moser KL, Neas BR, Salmon JE et al. Genome scan of human systemic lupus erythematosus: evidence for linkage on chromosome 1q in African-American pedigrees. Proc Natl Acad Sci U S A 1998; 95: 14869-74.
    19. Prokunina L, Castillejo-Lopez C, Oberg F et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666-9.
    20. Harley JB, Kelly JA, Kaufman KM. Unraveling the genetics of systemic lupus erythematosus. Springer Semin Immunopathol 2006; 28: 119-30.
    21. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-7.
    22. Frazer KA, Ballinger DG, Cox DR et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851-61.
    23. Lander ES, Linton LM, Birren B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860-921.
    24. Gateva V, Sandling JK, Hom G et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupuserythematosus. Nat Genet 2009; 41: 1228-33.
    25. Yang W, Shen N, Ye DQ et al. Genome-wide association study in Asian populations identifies variants in ETS1 and WDFY4 associated with systemic lupus erythematosus. PLoS Genet; 6: e1000841.
    26. Hampe J, Franke A, Rosenstiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007; 39: 207-11.
    27. Altshuler D, Daly M. Guilt beyond a reasonable doubt. Nat Genet 2007; 39: 813-5.
    28. Chakravarti A. Population genetics--making sense out of sequence. Nat Genet 1999; 21: 56-60.
    29. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet 2001; 17: 502-10.
    30. Ahituv N, Kavaslar N, Schackwitz W et al. Medical sequencing at the extremes of human body mass. Am J Hum Genet 2007; 80: 779-91.
    31. Cohen JC, Kiss RS, Pertsemlidis A et al. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 2004; 305: 869-72.
    32. Fanous AH, Kendler KS. Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Mol Psychiatry 2005; 10: 6-13.
    33. McClellan JM, Susser E, King MC. Schizophrenia: a common disease caused by multiple rare alleles. Br J Psychiatry 2007; 190: 194-9.
    34. Liu PY, Zhang YY, Lu Y et al. A survey of haplotype variants at several disease candidate genes: the importance of rare variants for complex diseases. J Med Genet 2005; 42: 221-7.
    35. Pritchard JK. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 2001; 69: 124-37.
    36. Pritchard JK, Cox NJ. The allelic architecture of human disease genes: commondisease-common variant...or not? Hum Mol Genet 2002; 11: 2417-23.
    37. A haplotype map of the human genome. Nature 2005; 437: 1299-320.
    38. Knight JC. Regulatory polymorphisms underlying complex disease traits. J Mol Med 2005; 83: 97-109.
    39. Wang J, Yang S, Chen JJ et al. Systemic lupus erythematosus: a genetic epidemiology study of 695 patients from China. Arch Dermatol Res 2007; 298: 485-91.
    40. Wong M, Tsao BP. Current topics in human SLE genetics. Springer Semin Immunopathol 2006; 28: 97-107.
    41. Jonsen A, Bengtsson AA, Nived O et al. Gene-environment interactions in the aetiology of systemic lupus erythematosus. Autoimmunity 2007; 40: 613-7.
    42. Zhou Y, Lu Q. DNA methylation in T cells from idiopathic lupus and drug-induced lupus patients. Autoimmun Rev 2008; 7: 376-83.
    43. Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. Bioessays 2005; 27: 637-46.
    44. Hinds DA, Kloek AP, Jen M et al. Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet 2006; 38: 82-5.
    45. Wong KK, deLeeuw RJ, Dosanjh NS et al. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 2007; 80: 91-104.
    46. Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 2007; 8: 639-46.
    47. Mitchell DA, Pickering MC, Warren J et al. C1q deficiency and autoimmunity: the effects of genetic background on disease expression. J Immunol 2002; 168: 2538-43.
    48. Yu CY. The complete exon-intron structure of a human complement component C4A gene. DNA sequences, polymorphism, and linkage to the 21-hydroxylase gene. JImmunol 1991; 146: 1057-66.
    49. Yu CY, Belt KT, Giles CM et al. Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. Embo J 1986; 5: 2873-81.
    50. Wu YL, Yang Y, Chung EK et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet Genome Res 2008; 123: 131-41.
    51. Yang Y, Chung EK, Wu YL et al. Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 2007; 80: 1037-54.
    52. Kyogoku C, Dijstelbloem HM, Tsuchiya N et al. Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002; 46: 1242-54.
    53. Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum 2002; 46: 1563-71.
    54. Karassa FB, Trikalinos TA, Ioannidis JP. The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int 2003; 63: 1475-82.
    55. Chen JY, Wang CM, Ma CC et al. Association of a transmembrane polymorphism of Fcgamma receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum 2006; 54: 3908-17.
    56. Su K, Wu J, Edberg JC et al. A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression andassociates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 2004; 172: 7186-91.
    57. Blank MC, Stefanescu RN, Masuda E et al. Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum Genet 2005; 117: 220-7.
    58. Olferiev M, Masuda E, Tanaka S et al. The role of activating protein 1 in the transcriptional regulation of the human FCGR2B promoter mediated by the -343 G -> C polymorphism associated with systemic lupus erythematosus. J Biol Chem 2007; 282: 1738-46.
    59. Aitman TJ, Dong R, Vyse TJ et al. Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 2006; 439: 851-5.
    60. Fanciulli M, Norsworthy PJ, Petretto E et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nat Genet 2007; 39: 721-3.
    61. Shostakovich-Koretskaya L, Catano G, Chykarenko ZA et al. Combinatorial content of CCL3L and CCL4L gene copy numbers influence HIV-AIDS susceptibility in Ukrainian children. Aids 2009; 23: 679-88.
    62. Modi WS. CCL3L1 and CCL4L1 chemokine genes are located in a segmental duplication at chromosome 17q12. Genomics 2004; 83: 735-8.
    63. Mamtani M, Rovin B, Brey R et al. CCL3L1 gene-containing segmental duplications and polymorphisms in CCR5 affect risk of systemic lupus erythaematosus. Ann Rheum Dis 2008; 67: 1076-83.
    64. Liu S, Yao L, Ding D et al. CCL3L1 copy number variation and susceptibility to HIV-1 infection: a meta-analysis. PLoS One; 5: e15778.
    65. Ahuja SK, Kulkarni H, Catano G et al. CCL3L1-CCR5 genotype influences durability of immune recovery during antiretroviral therapy of HIV-1-infected individuals. Nat Med 2008; 14: 413-20.
    66. Gonzalez E, Kulkarni H, Bolivar H et al. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005; 307: 1434-40.
    67. Shalekoff S, Meddows-Taylor S, Schramm DB et al. Host CCL3L1 gene copy number in relation to HIV-1-specific CD4+ and CD8+ T-cell responses and viral load in South African women. J Acquir Immune Defic Syndr 2008; 48: 245-54.
    68. Mamtani M, Matsubara T, Shimizu C et al. Association of CCR2-CCR5 haplotypes and CCL3L1 copy number with Kawasaki Disease, coronary artery lesions, and IVIG responses in Japanese children. PLoS One; 5: e11458.
    69. Burns JC, Shimizu C, Gonzalez E et al. Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J Infect Dis 2005; 192: 344-9.
    70. McKinney C, Merriman ME, Chapman PT et al. Evidence for an influence of chemokine ligand 3-like 1 (CCL3L1) gene copy number on susceptibility to rheumatoid arthritis. Ann Rheum Dis 2008; 67: 409-13.
    71. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 335-76.
    72. Kelly DJ, Liu S, Ge L et al. Cross-Race Preferences for Same-Race Faces Extend Beyond the African Versus Caucasian Contrast in 3-Month-Old Infants. Infancy 2007; 11: 87-95.
    73. Vyse TJ. Understanding lupus: fishing genes out of mice and men. Immunity 2008; 28: 8-10.
    74. Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol 2004; 172: 2731-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700