螺旋通道型旋转床超重力法制备超细氢氧化镁
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们环保意识的增强和环保法规的日益完善,有机阻燃剂由于对人体和环境均有害,因而绿色环保的无机阻燃剂逐渐受到人们的青睐。普通氢氧化镁由于粒径大,在达到阻燃份额时对聚合物材料的机械性能影响较大,超细粒子的氢氧化镁添加到聚合物中,不仅能减小氢氧化镁的添加量还能增加聚合物的刚性。超细氢氧化镁在热稳定性、抑烟性能、除酸能力方面均优于传统使用的氢氧化铝,在市场上有取代氢氧化铝的优势。氢氧化镁的超细化是发展方向。因此研究开发制备超细纳米级氢氧化镁技术具有重要意义,也是迫切需要。
     用沉淀法制备粒度分布窄、晶型可控的纳米粉体颗粒,混合对其粒度分布和颗粒形貌有重要影响,而在超重力环境下,不同大小分子间的分子扩散和相间传质过程均比常重力场下的要快得多,相间的传递速度比传统的塔器中的提高1—3个数量级,并且大大提高了液泛速率,使得生产强度成倍提高,微观混合和传质过程得到极大强化。
     采用螺旋通道型旋转床(RBHC)制备超细片状氢氧化镁,并研究了加料方式、RBHC的转速、流量、氨镁摩尔比对粒径和形貌的影响,得出优化的工艺条件为:反向加料、转速为1000r/min、流量为300m~3/h、氨镁摩尔比为6∶1。
     通过RBHC超重力沉淀法与水热处理相结合的工艺路线,将超重力场中反应生成氢氧化镁粒子进行水热处理,当氨水浓度为2mol/L,反应物料于150℃水热保温2h,所得样品晶界限明显且为规则的六方片状。在反应条件不变的情况下,将该工艺的沉淀反应与常重力场中的沉淀反应的实验进行对比,结果表明在常重力场中搅拌时间为4h的情况下所得样品粒径分布较宽,为1~100μm。而采用螺旋通道型旋转床超重力反应器在反应时间为0.5h时所得样品的粒径分布小于1μm,说明螺旋通道型旋转床强化了传质过程,大大缩短了微观混合时间,使成核在微观混合均匀的环境中进行。从而使成核过程可控,粒度分布窄化。
     通过对RBHC制备的超细氢氧化镁粉体进行了表面改性研究,考察了改性剂的种类、用量对改性效果的影响,当硬脂酸钠用量为氢氧化镁质量的1%时改性效果较好。当20份氢氧化镁添加到100份聚丙烯中时,对聚丙烯表现出较好的机械性能。通过XRD、SEM、IR、TG、粒度分布等手段对样品进行分析表征。
With the tightening of the current regulations,and the increase in the general a wareness about the risks related to materials flammability,because Organic flame retardants are harmful to the human body and the environment. So the inorganic flameretardants green and environmentally friendly are gradually popular. In the flame retardant market Ordinary Mg(OH)_2 with larger particle size,so high filler contents are required to obtain satisfactory fire properties.However,this high mineral loading resuits in a decrease of the mechanical performance of the materials.while the superfine Mg(OH)_2 added to the polymer,not only can reduce the amount of Mg(OH)_2 can also increase the rigidity of polymer.Traditional use of the inorganic flame retardant is aluminum hydroxide.Magnesium hydroxide in the thermally stable,suppressingfumes and neutralization ability are better than aluminum hydroxide(Al(OH)_3).as well as the advantage to replace traditional Al(OH)_3.So superfine Mg(OH)_2 become the trend. Therefore research and development of ultra-fine or nano magnesium hydroxide preparation technology is of great significance,also an urgent need.
     To prepared superfine Mg(OH)_2 by precipitation which with narrow particle size distribution and controlled shape,mixing process play an important role.Under ultragravity enviroment, the molecule diffuse and mass transfer is more quickly than normal gravity enviroment.which can generate an acceleration 1~3 orders of magnitude larger than the gravitational acceleration on the earth,and the improvement of throughout and the reinforce of process of microcosmic mixing and material transmission.
     The lamellar shaped and superfine Mg(OH)_2 was prepared using ammonia magnesium-decoposition in Rotating Bed With Helix Channels(RBHC).Several parameters were investigated such as addition method,the speed of RBHC,the plow,the influence of NH_3/Mg~(2+) molal ratio on yield and morphological strucrure.The optimizing condition is reversed precipitation,speed of 1000r/min,flow of 300m~3/h and NH_3/Mg~(2+)molal ratio was 6.
     Through the RBHC high gravity precipitation method with a combination of water treatment technology line,the superfine Mg(OH)_2 precipitate in RBHC high-gravity reactor,and the recrystallized is carried out by hydrothermal treatment. The sam ples is hexagonal plate with clear crystal boundaries and morphology rules.When theammonia concentration of 2mol/L and the hydrothermal treatment of 2h at 150℃. The ratio of raw materials and the reaction temperature unchanged, Compared with a particle size of Mg(OH)_2 of 1~100μm for 4h in three-necked flask,the Mg(OH)_2 preparedin RBHC is with a particle size of Mg(OH)_2 of 0~1μm for 0.5h. The resultsshow that the RBHC intensifys the mass transfer process,greatly reducing the micro-mixing time.Nucleation is controlled in the uniform micro-environment so the Mg(OH)_2 with narrow particle size distribution and controlled shape is prepared.
     In this paper ,on the study of the level and the kind of coating reagents appliesto magnesium hydroxide.prepared by RBHC.The experimental results showed thatthe toughness of the compositematerials and the dispersion of inorganic fillers reached the best when the level of stearic acid was 1%.And the mechanical propertiesshowed better.when amount of magnesium hydroxide of 20% polypropylene.The prepared product was characterized by scanning electron microscpoe(SEM), Laser granularity X-ray diffraction(XRD)and thermogravimetric analysis-differential scanningcalorimetry(TGA/DSC),Infra-red spectrum(IR),particle size distribution(PSD).
引文
[1]胡庆福.镁化合物生产与应用[M].北京:化工工业出版社,2004,316-317.
    [2]H Y Li,Y F Chen,Y S Xie.Photo-crosslinking polymerization to prepare polyanhydride nee le-like hydroxyapatite biodegradable nanocomposite for orthopedic application[J].Material Le tter,2003,57:2848-2854.
    [3]M E Spahr,P Bitterli,R Nesper,et al.Nielsen.Redox-active nanotubes of vanadium oxide[J].Angew Chem.,1998,101:1339-1342.
    [4]姜述芹,于秀娟,周保学,等.含镉废水的氢氧化镁净化研究[J].哈尔滨工业大学学报,2004,36(8):1080-1083.
    [5]J L Booster,A Van Sandwijk,M A Reuter.Conversion of magnesium fluoride to magnesium hydroxide[J].Minerals Engineering,2003,16:273-281.
    [6]Yijiang Zhao,Yi Tan,Fook-Sin Wong,et al.Formation of Mg(OH)_2 dynamic membranes for oilywater separation:effects of operating conditions[J].Desalination,2006,191:344-350.
    [7]Jichao Kang,Steven P,Schwendeman.Comparison of the effects of Mg(OH)2 and sucroseon thestability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide)implants[J].Biomaterials,2002,23:239-245.
    [8]Composition of a product to preserve perishable foodstuffs[P]5955004,1999.9.21
    [9]向兰,吴会军,金永成,等.阻燃型氢氧化镁制备技术评述[J].海湖盐与化工,2001,30(5):2-3.
    [10]X F Wu,G S Hu,B B Wang,et al.Synthesis and characterization of superfine magnesium hydroxide with monodispersity[J].Cryst.Growth,2008,310:457-461.
    [11]R Giorgi,C Bozzi,L Dei et al.Nanoparticles of Mg(OH)_2 synthesis and application to paper conservation[J].Langrnuir,2005,21:8495-8501.
    [12]C Henrist,K Traina,C Hubert.et al.Morphological study of magnesium hydroxide nanoparticl es precipitated in dilute aqueous solution[J].Cryst.Growth,2003,249:321-330.
    [13]K Chhor,J F Bocquet,C Pommier.Syntheses of submicron magnesium oxide powders[J].Materials Chemistry and Physics,1995,40:63-68.
    [14]许并社.材料科学概论[M].北京工业大学出版社,2002,163-165.
    [15]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2005,42-43.
    [16]Yadong LI,Meng SUI,Yi DING,et al.Preparation of Mg(OH)_2 nanorods[J].Advance Materials,2000,12(11):818-821.
    [17]欧育湘.阻燃高分子材料[M].国防工业出版社,2000,57-101.
    [18]任淑英.阻燃剂及其发展方向[J].聚合物与助剂,2008,(6):25-29.
    [19]M Sain,S H Park,F Suhara,et al.Flame retardant and mechanical properties of natural fibre -PP composites containing magnesium hydroxide[J].Polymer Degradation and Stab ility,2004,83:363-367.
    [20]M.J.Solomon,A S Almusallam,K F Seefeldt,et al.Rheology of polypropylene/clayhybrid mat erials[J].Macromolecules,2001,34:1864-1872.
    [21]J Lv,L Z Qiu,B J Qu.Controlled synthesis of MH nanoparticles with different morphologic al structures and related properties in flame retardant ethylene-vinyl acetate blends[J].Nanot echnology,2004,15:1576-1581.
    [22]Y H Hu,S F Li.The effects of magnesiumhydroxide on flash pyrolysis of polystyrene[J].A nal.Appl.Pyrolysis,2007,78:32-39.
    [23]Rothon R N.Particulate-Filled Polymer Composites[M].Longmans,Harlow,1995:12-19.
    [24]R N Rothon,P R Hornsby.Flame retardant effects of magnesium hydroxide[J].Polymer Degr adafion and Stahiliry,1996,54:383-385.
    [25]李志强.氨合成-水热改性法制备氢氧化镁阻燃剂[J].北京航空航天大学学报,2006,32(6):662-666.
    [26]贾楷.阻燃剂化学及其应用[M].上海科技文献出版社,1988,82-84.
    [27]李腊梅,佟芍朋,周政懋.我国阻燃行业状况[J].精细与专用化学品,2007,15(23):26-31.
    [28]王爱丽.青海主要镁产品的生产现状及展望[J].盐业与化工,2008,37(5):40-43.
    [29]吕永梅.我国无机阻燃剂的研究及应用进展[J].塑料助剂,2004(4):1-3.
    [30]陶勇.氢氧化镁阻燃剂的表面改性研究现状[J].中国非金属矿工业导刊,2008(5):13-16.
    [31]周卫平,买买提江.氢氧化镁阻燃剂制备技术[J].无机盐工业,1997(4):25-27.
    [32]戴焰林.纳米级Mg(OH)_2阻燃剂的制备及表面改性研究[D].上海:上海大学硕士论文,2003,19-20.
    [33]HG/T3607-2007,工业氢氧化镁[S].北京:化学工业出版社,2007.
    [34]魏炳举,张万峰.一种极具发展前景的镁系产品—氢氧化镁[J].海湖盐与化工,2003,32(1):26-33.
    [35]郭如新.氢氧化镁应用近期进展[J].海湖盐与化工,1997,27(5):39-44.
    [36]Mike O'Driscoll.Caustic magnesia markets:playing with fire[J].Industrial Minerals,1994(318):23-45.
    [37]Akihiko Gyoja.On the regularity of prehomogeneous vector space[J].Proceeding of the Japan Academy,1992,68:341-344.
    [38]姬连敏,李丽娟,聂峰,等.国内氢氧化镁阻燃剂的研究现状[J].盐湖研究,2007,15(2):62-72.
    [39]M.J.Solomon,A S Almusallam,K F Seefeldt,et al.Rheology of polypropylene/clay hybrid m aterials[J].Macromolecules,2001,34:1864-1872.
    [40]J Lv,L Z Qiu,B J Qu.Controlled synthesis of MH nanoparticles with different morphologic alstructures and related properties in flame retardant ethylene-vinyl acetate blends[J].Nanote chnology,2004,15:1576-1581.
    [41]Y H Hu,S F Li.The effects of magnesiumhydroxide on flash pyrolysis of polystyrene[J].A nal.Appl.Pyrolysis,2007,78:32-39.
    [42]Laia Haurie,Ana Ines Fernandez,Jose Ignacio Velasco,et al.Thermal stability and flame ret ardancy of LDPE/EVA blends filled with synthetic hydromagnesite/aluminium hydroxide/mo ntmorillonite and magnesium hydroxide/aluminium hydroxide/montmorillonite mixtures[J].Pol ymer Degradation and Stability,2007,92:1082-1087.
    [43]Suqin Chang,Tingxiu Xie,Guisheng Yang.Effects of polystyrene-encapsulated magnesium h ydroxide on rheological and flame-retarding properties of HIPS composites[J].Polymer Degr adation and Stability,2006,91:3266-3273.
    [44]Laurent Clerc,Laurent Ferry,Eric Leroy,et al.Influence of talc physical properties on thefire retardingbehaviour of(ethyleneevinyl acetate copolymer/magnesium hydroxide/talc) composit es[J].Polymer Degradation and Stability,2005,88:504-511.
    [45]Mouzheng Fu,Baojun Qu.Synergistic flame retardant mechanism of fumed silica in ethylen e-vinyl acetate/magnesium hydroxide blends[J].Polymer Degradation and Stability,2004,85:633-639.
    [46]Zhenzhong Li,Baojun Qu.Flammability characterization and synergistic effects of expandabl e graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends[J].Polym er Degradation and Stability,2003,81:401-408.
    [47]Zhengzhou Wang,Baojun Qua,Weicheng Fan.Effects of PE-g-DBM as a compatiblizer on m echanicalproperties and crystallization behaviors of magnesium hydroxide-based LLDP E b1ends[J].Polymer Degradation and Stability,2002,76:123-128.
    [48]Yunfeng Yang,Xiangfeng Wu,Guofeng Hu,et al.Effect of stearic acid on synthesis of magn esium hydroxide via direct precipitation[J].Journal of crystal Growth,2008,310:3557-3560.
    [49]Baggaley R G,Hornsby P R,Yahya R,et al.Surface analysis of zinc Hydroxy stannate-coated Hydrated fillers[J].Fire and Materials,1997,21:179-184.
    [50]李少康.无机镁铝阻燃剂及其应用发展趋势浅析[J].无机盐工业,2003,35(3):11-12.
    [51]Tomohito Kameda,Hidenori Takeuchi,Toshiaki Yoshioka.Hybrid inorganic/organic composites oMg-Al layered double hydroxides intercalated with citrate,malate,nd tartrate prepared by co-precipitation[J].Materials Research Bulletin,2009,44:840-845.
    [52]Koverzanova E V,Usachev S V,Shlkna N G,et al.Specific features of thermal degradationof dolyprofpylene in the presence of Magnesium Hydroxide[J].Applied Chemistry,2004,77(3):445-448.
    [53]Fangzhi Zhang,Hong Zhang,Zhixing Su.Surface treatment of magnesium hydroxide to impr ove its dispersion in organic phase by the ultrasonic technique[J].Applied Surface Science,2007,253:7393-7397.
    [54]J P Lv,L Z Qiu,B J Qu.Controlled growth of three morphological structures of magnesium hydroxide nanoparticles by wet precipitation method[J].Cryst Growth,2004,267:676-684.
    [55]王相田,郑乾,汪瑾,等.高纯纳米氢氧化镁制备工艺[J].化工学报,2005,56(7):1260-136
    [56]Wu J M,Yan H,Zhang X H,et al.Magnesium hydroxide nanoparticles synthesized in water-i n-oimicroemulsions[J].Journal of Colloid and interface science,2008,324:167-171.
    [57]景殿策,王宝何,张伟,等.纳米氢氧化镁的制备及热分解动力学研究[J].中国粉体技术,2006(5):25-27.
    [58]宋云华,陈建铭,刘立华,等.超重力技术制备纳米氢氧化镁阻燃剂的应用研究[J].化工矿物与加工,2004(5):19-23.
    [59]陈建峰.超重力技术及应用—新一代反应与分离技术[M].化学工业出版社,2003,103-105.
    [60]周继承,伍极光,熊双喜.旋转床超重力多相反应器[P].中国:ZL02224172.2003,8.
    [61]张昭,彭少方,刘栋吕.无机精细化工工艺学[M].北京:化学工业出版社,2000,136-237.
    [62]易求实.反向沉淀法制备纳米Mg(OH)_2阻燃剂的研究[J].化学试剂,2001,23(4):197-228.
    [63]黄凯,郭学益,张多默.超细粉末湿法制备过程中粒子粒度和形貌控制的基础理论[J].粉末冶金材料科学与工程,2005,10(6):319-324.
    [64]Mullin J W.Crystallization,3rd ed[M].London:Butterworth Heinemann Press,1997:45-64.
    [65]戴焰林,宏玲,施利毅.沉淀-共沸蒸馏法制备纳米Mg(OH)_2的研究[J].上海大学学报(自然科学版),2003,9(5):402-409.
    [66]Jianming WU,Hong YAN,Xuhu ZHANG,et al.Mgnesium Hydroxide nanoparticles synthesize d inwater-in-oil microemulsions[J].Jouralof Colloid and Interface Science,2008,324:167-171.
    [67]何清玉,郭锴,赵炳国,等.超重力法制备超细二氧化硅及影响因素的研究[J].北京化工大学学报2006,33(1):16-19.
    [68]Wu X F,Hu G H,Wang B B,et al.Synthesis and characterization of superfine magnesium h ydroxide with monodispersity[J].Crystal Growth,2008,310:457-461.
    [69]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].科学出版社,2001,9-74.
    [70]Hua Gui,Xiaohong Zhang,Weifu Dong,et al.Flame ratardant synergism of rubber and Mg(O H)_2 in EVA composites[J].Polymer commmunication,2007,48:2537-2541.
    [71]Yunfeng YANG,Xiangfeng WU,Guosheng HU,et al.Effects of stearic acid on synthesis of magenesium Hydroxide via direct precipitationp[J].Powder Technology,2008,188:128-132.
    [72]Hong Yan,Xuehu Zhang,Jianming Wu,et al.The use of CTAB to improve the crystallinity a nd dispersibility of ultrafine magnesium hydroxide by hydrothermal route[J].Powder Techno logy,2008,188:145-151.
    [73]吴会军,向兰,朱冬生.高纯微细氢氧化镁的水热法制备[J].华南理工大学学报(自然科学版),2003,31(6):88-90.
    [74]金永成,向兰,金涌.溶液组成对氢氧化镁水热改性的影响[J].海湖盐与化工,2002,31(1):1-4.
    [75]黄仲涛.工业催化[M].化学工业出版社,1994,80-90.
    [76]张清辉,郑水林,张强.氢氧化镁/氢氧化铝复合阻燃剂的制备及其在EVA材料中的应用[J].北京科技大学学报,2007,29(10):1027-1030.
    [77]中云飞.阻燃剂氢氧化镁[J].山西化工,1990(4):14-17.
    [78].刘立华,张建扬,张连瑞,等.氢氧化镁阻燃剂的应用现状及前景展望[J].化工科技市场2006,29(3):29-31.
    [79]徐宝强.阻燃级超微氢氧化镁的制备研究[D].云南,昆明理工大学硕士论文,2005,58-59.
    [80]Peng Liu,Jinshan Guo.Organo-modified magnesium hydroxide nano-needle and its polystyre ne nanocomposite[J].Nanoparticle Research,2007,9:669-673.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700