不同地理种群拟穴青蟹形态差异和对盐度的生态适应性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以不同地理种群拟穴青蟹幼体、C1和C5期仔蟹为研究对象,从形态特征、养殖性能等方面进行了较为系统的研究,旨在为拟穴青蟹良种选育提供必要的理论基础和技术支持。本研究主要结果如下:
     1 3个地理种群拟穴青蟹幼体对低盐的生态适应性与形态差异的初步研究
     为了解不同地理种群拟穴青蟹幼体的生态习性及形态差异,本研究对采自越南北部、我国广西北海和海南文昌3个地理种群拟穴青蟹人工繁育所获Z1期幼体在实验条件下进行了不同盐度的适应性培育实验。比较了不同地理种群拟穴青蟹幼体在不同盐度条件下的存活率、发育历期及大眼幼体形态性状的差异。结果表明:(1)在同一盐度条件下,3个地理种群拟穴青蟹初孵幼体发育至大眼幼体的存活率呈显著差异(P<0.05)。3个地理种群拟穴青蟹初孵幼体发育至大眼幼体的存活率在盐度为32和29时均较高(20.0%和26.7%、23.3%和23.3%、20.0%和26.7%),但在盐度低于29时,3个地理种群则有较大差异,其中盐度为26时的海南种群发育至大眼幼体的存活率(26.7%)显著高于相同盐度下培育的北海和越南种群(P<0.05)。(2)在盐度为20~32下,越南种群初孵幼体发育至大眼幼体的历期显著短于相同盐度下的海南和北海种群(P<0.05),而海南和北海种群的无显著差异(P≥0.05)。(3)3个地理种群拟穴青蟹大眼幼体的形态性状指标(头胸甲宽、头胸甲长、额缘宽)存在明显差异(P<0.05),其中越南拟穴青蟹大眼幼体各形态性状指标值表现为最大,而北海和海南拟穴青蟹大眼幼体形态指标值较小。
     2中国5个地理种群拟穴青蟹仔蟹形态差异分析
     选取不同地理种群拟穴青蟹C5期仔蟹作为研究对象,应用可量性状数据,以多元统计分析方法对不同地理种群拟穴青蟹仔蟹进行综合分析,比较不同种群间的形态变异特点。据聚类分析结果来看,厦门种群最先和三门种群聚在一起,随后与饶平种群、海南种群聚集,最后才和北海种群聚集。据判别分析结果来看,三门、厦门、饶平、北海及海南种群的判别准确率分别为80.0%、63.3%、70.8%、81.3%和78.1%,平均拟合概率为75.0%,判别准确率较低,各个种群间的错判率较高。这说明5个地理种群间形态出现了一定程度的差异,但这种差异程度较小,而形态差异可能是由于不同种群的遗传差异所致。
     3 5个地理种群拟穴青蟹仔蟹对低盐环境的生态适应性
     为比较不同地理种群拟穴青蟹的生长特性和对环境盐度的适应性,作者将三门、厦门、饶平、北海和海南种群拟穴青蟹仔蟹分别在不同环境盐度条件下养殖,对5个种群的生长发育情况进行了比较。研究结果为:就蜕壳间期而言,5个地理种群拟穴青蟹C2和C3期仔蟹蜕壳间期均无差异显著(P≥0.05),而盐度仅对C3期仔蟹蜕壳间期有显著影响(P<0.05),其中盐度为12时的海南种群C3期仔蟹蜕壳间期最短,为3.6 d。就特定生长率上而言,5个地理种群拟穴青蟹仔蟹在盐度为12时的甲宽和体重特定生长率均高于其它盐度。盐度为12时的海南种群甲宽和体重特定生长率最高,而盐度为6时的北海种群甲宽特定生长率和厦门种群体重特定生长率均是最低。在盐度为6、12和32时,海南种群甲宽和体重特定生长率分别比相同盐度下的北海种群高出20%、10%、5%和19%、10%、11%;分别比相同盐度下的饶平种群高出13%、27%、5%和10%、19%、8%;分别比相同盐度下的厦门种群高出10%、16%、1%和20%、16%、13%;分别比相同盐度下的三门种群高出5%、8%、5%和8%、5%、15%。5个地理种群拟穴青蟹仔蟹的生长随着环境盐度的升高有降低的趋势。就甲宽增量而言,5个地理种群3次蜕壳甲宽增量均存在显著差异(P<0.05),盐度为18时的海南种群C1至C2期仔蟹甲宽增量最大,盐度为6时的最小。在盐度为6、12、24和32时,海南种群的C1至C2期仔蟹甲宽增量分别比相同盐度下的北海种群小11%、6%、13%和12%;分别比相同盐度下的饶平种群小20%、25%、31%和14%;分别比相同盐度下的厦门种群小27%、11%、9%和0%;分别比相同盐度下的三门种群小4%、6%、13%和4%。盐度为12时的海南种群C2至C3期仔蟹甲宽增量最大,盐度为6时的北海种群最小。在盐度为12、18和32时,海南种群C2至C3期仔蟹甲宽增量分别比相同盐度下的北海种群大66%、16%和7%;分别比相同盐度下的饶平种群大28%、22%和4%;分别比相同盐度下的厦门种群大20%、14%和10%;分别比相同盐度下的三门种群大30%、14%和21%。盐度为12时的海南、北海和三门种群C3至C4期仔蟹甲宽平均增量最高,分别为2.77、2.71和2.71 mm;盐度6时的饶平种群最低。在盐度为6和12时,海南种群C3至C4期仔蟹甲宽增量分别比相同盐度下的北海种群大27%和2%;分别比相同盐度下的饶平种群大34%和31%;分别比相同盐度下的厦门种群大20%和7%;分别比相同盐度下的三门种群大13%和2%。
In this study, we take larvae, C1 and C5 juveniles of Scylla paramamosain as main materials, and do study on culture performance and morphometeric difference. Results of this present study will be an important contribution to the biology of this species and will be valuable in the breeding of new variety for the commercial production of the crab juveniles. The major results are as following:
     1 Morphological variations of mud crab, S. paramamosain, larvae collected from different zones and their ecological adaptability to low salinity
     This crab is capable to survive under different salinity conditions due to its wider adaptability. The effects of low-salinity water on larval survival and development of three mud crab populations were investigated in a 3×5 factorial designed experiment in the laboratory. S. paramamosain broodstock were collected from Beihai region (Guangxi province, China), Hainan region (China) and Vietnam in 2009 and these broodstock populations were named as BH, HN and YN respectively. Five different levels of salinity conditions, 20, 23, 26, 29 and 32 were used in the experiment. We transferred newly hatched larvae from seawater (32) in the stock tank directly to 1 L beakers filled with 900 mL seawater, and maintained under the respective salinity conditions throughout the experiment. Seawater was pumped from the Hainan coast. The diluted SW was prepared by mixing the seawater with municipal water. These experimental media were also treated with disinfection by use of chloric disinfectant solution which had been dechlorinated with sodium thiosulfate and were well aerated before use, and contained florfenicol (1 - 2mg/L) or enrofloxacin (1 - 2mg/L). The experiment was conducted under a light-dark cycle of 12L: 12D with a light intensity of 5000-6000 lx using the incandescent bulb as light source. Each treatment was conducted in triplicate with each beaker containing 30 larvae. Every morning during the experiment, larvae were transferred with a large pipette to new beakers filled with freshly prepared feed and water with the desired salinity. Larval mortality and development were recorded daily during the transfer and identifying the stage of the larvae (zoea 2, 3, 4, 5 and megalopa). Differences in morphology at megalopa stage were obtained by measurements of the carapace size.
     The results showed that: the survival rates to megalopa in salinity 29 and 32 from BH and YN were signi?cantly higher, while within salinity 26 - 32 no significant effects on survival of zoeal larvae from HN were detected. The survival rates in salinity 26 from HN were higher than those of the other two populations. A low salinity of 20 led to the lowest larval survival for different populations among the salinities tested. The mean larval development time to megalopa from HN and BH under different salinity conditions ranged from 15.5 to 16.3 days. The shortest average development time to megalopa was observed in YN. Larvae reared at salinity 20 among different populations showed longer intermoult durations. It is worth noting that unusual cases of prolonged development duration and low survival rate were recorded for larvae reared at salinity 20. In summary, S. paramamosain larvae tolerate a broad range of salinity conditions. All these results showed that S. paramamosain collected from different zones had the different ecological adaptabilities to salinity, and local populations were considered as the basic populations to breed new strains.
     2 Analysis on morphological variations among five populations of S. paramamos- ain
     Multivariation analysis methods were used to investigate the morphological variations among the five geographical populations from China Sea areas (Hainan, Beihai, Raoping, Xiamen and Sanmen) according to 14 morphological characters of crab instar 5 (C5) juveniles. The results of cluster analysis showed that the populations from Xiamen and Sanmen formed a common cluster firstly, after that Raoping, Hainan and Beihai joined to the cluster in turn. Accuracy rate of discrimination on five S. paramamosain populations from Hainan, Beihai, Raoping, Xiamen and Sanmen is 78.1%, 81.3%, 70.8%, 63.3% and 80.0%, respectively. The synthetic identification discriminant analysis accuracy was 70.5%. Base on the above, it is suggested that there exist certain differences between different populations, and morphological differences appear to result from genetic differences.
     3 Effect of low-salinity stress on growth, development among five populations of early juvenile mud crabs, S. paramamosain
     Effect of acute low-salinity stress on growth, development of early juvenile mud crabs among five populations of S. paramamosain was conducted. S. paramamosain broodstock were collected from Beihai region, Hainan region, Raoping region, Xiamen region and Sanmen region in 2010. Five different levels of salinity conditions, 6, 12, 18, 24 and 32 were used in the experiment. We transferred crab instar 1 (C1) juveniles from seawater (32) in the stock tank directly to 2.5 L plastic casks filled with 1.5 L seawater, and maintained under the respective salinity conditions throughout the experiment. Each plastic cask contained 1 stage 1 juveniles. Each population consisted of 150 plastic casks. The day of transfer was designated as day 1 in this study. Carapace width and wet weight were measured during each molt, while juvenile mortality and moults were recorded daily. Results demonstrate that salinity significantly affects the specific growth rates (SGR) for carapace length or weight, C3 intermolt duration and carapace width increase at C1 to C2, C2 to C3 or C3 to C4 stages of early juvenile mud crabs (P<0.05). There was significant difference in SGR and carapace width increase between different populations (P<0.05). There was no significant difference in C2 intermolt duration. In each population, the C3 intermolt duration is shorter than other salinities under salinity 12 and the specific growth rates in experiment were the highest under salinity 12. But Hainan population shows the best performance. All populations show the lowest under salinity 6. Under salinity 6, 12 and 32, CWSGR of Hainan population are faster by 20%, 10% and 5% than Beihai population, respectively; by 13%, 27% and 5% than Raoping population, respectively; by 10%, 16% and 1% than Xiamen population, respectively; by 5%, 8% and 5% than Sanmen population, respectively. Under salinity 6, 12 and32, WSGR of Hainan population are faster by 19%, 10% and 11% than Beihai population, respectively; by 10%, 19% and 8% than Raoping population, respectively; by 20%, 16% and 13% than Xiamen population, respectively; by 8%, 5% and 15% than Sanmen population, respectively. At the first molt, the carapace width increase of Hainan population is highest at 18. Under salinity 6, 12, 24 and 32, the carapace width increases of Hainan population are lower by 11%, 6%, 13% and 12% than Beihai population, respectively; by 20%, 25%, 31% and 14% than Raoping population, respectively; by 27%, 11%, 9% and 0% than Xiamen population, respectively; by 4%, 6%, 13% and 4% than Sanmen population, respectively. At C2 to C3 stage, the carapace width increase of Hainan population is highest at 12. Under salinity 12, 18 and 32, the carapace width increase of Hainan are higher by 66%, 16% and 7% than Beihai population, respectively; by 28%, 22% and 4% than Raoping, population respectively; by 20%, 14% and 10% than Xiamen population, respectively; by 30%, 14% and 21% than Sanmen population, respectively. At C3 to C4 stage, the carapace width increase of Hainan, Beihai and Sanmen population, which are best than other treatments, is 2.77, 2.71 and 2.71 mm. Under salinity 6 and 12, the carapace width increase of Hainan are higher by 27% and 2% than Beihai population, respectively; by 34% and 31% than Raoping population, respectively; by 20% and 7% than Xiamen population, respectively; by 13% and 2% population, respectively. In each population, the carapace width increase at C2 to C3 or C3 to C4 stages are lowest at 6. Base on the above, it is suggested that the growth of Hainan is best of all, which indicated that it is a super candidate for further selection. However, from an aquaculture point of view, a salinity range of 12 - 24 was recommended at C1 to C3 stages for early juvenile S. paramamosain, which widened in the later stages for the culture, but different salinity ranges were flexibly applied according to different population and conditions, which should be taken into account.
引文
[1] Wang W J, Kong J, Bao Z M, et al. Isozyme variation in four populations of Penaeus chinensis shrimp [J]. Biodiversity Science, 2001, 9(3): 241– 246.
    [2]李鹏飞,刘萍,李健,等.莱州湾三疣梭子蟹的生化遗传分析[J].海洋水产研究,2007,28(2):90– 96.
    [3]高保全,刘萍,李健,等.三疣梭子蟹野生群体同工酶的遗传多样性分析[J].水产学报,2007,31(1):1– 6.
    [4]谭树华,王桂忠,艾春香,等.斑节对虾养殖群体遗传多样性的同工酶和RAPD分析[J].中国水产科学,2005,12(6):702– 707.
    [5]陈淑吟,吉红九,丁亚平,等.吕泗渔场三疣梭子蟹自然群体同工酶与ISSR遗传多样性分析[J].上海水产大学学报,2008,17(4):406– 410.
    [6]何玉英,刘萍,李健,等.中国明对虾快速生长选育群体的RAPD分析[J].海洋水产研究,2005,26(4):8– 13.
    [7]何玉英,刘萍,李健,等.中国明对虾第一代和第六代人工选育群体的遗传结构分析[J].中国水产科学,2004,11(6):572– 575.
    [8]李锋,林继辉,刘楚吾.凡纳滨对虾引进亲虾及其子一代的遗传多样性研究[J].海洋科学,2006,30(4):64– 68.
    [9]李康,杜晓东,叶富良.斑节对虾两个野生种群RAPD分析[J].湛江海洋大学学报,2005,25(3):79– 81.
    [10]林琪.中国青蟹属种类组成和拟穴青蟹群体遗传多样性的研究[D].厦门:厦门大学,2008.
    [11]王伟继,高焕,孔杰,等.利用AFLP技术分析中国明对虾的韩国南海种群和养殖群体的遗传差异[J].高技术通讯,2005,15(9):84– 89.
    [12]刘爽,薛淑霞,孙金生.黄海和东海三疣梭子蟹(Portunus triuberbuculatus)的AFLP分析[J].海洋与湖沼,2008,39(2):152– 156.
    [13]张天时,刘萍,孟宪红,等.不同对虾种间共用微卫星DNA引物的研究[J].高技术通讯,2003,13(11):80– 85.
    [14]刘萍,孟宪红,何玉英,等.中国对虾(Fenneropenaeus chinensis)黄、渤海3个野生地理群遗传多样性的微卫星DNA分析[J].海洋与湖沼,2004,35(3):252– 257.
    [15]周发林,江世贵,姜永杰,等.中国南海野生斑节对虾5个地理群体线粒体16S rRNA基因序列比较分析[J].水产学报,2009,33(2):208– 214.
    [16]冯冰冰,李家乐,牛东红,等.我国沿海三疣梭子蟹9个野生群体线粒体CR和COI片段比较分析[J].动物学杂志,2008,43(2):28– 36.
    [17]马凌波,张凤英,乔振国,等.中国东南沿海青蟹线粒体COI基因部分序列分析[J].水产学报,2006,30(4):463– 468.
    [18]王玉江,高天翔,韩志强,等.中国和越南青蟹线粒体16S rRNA基因序列分析[J].中国海洋大学学报,2005,35(4):554– 558.
    [19]路心平.青蟹属的系统进化及中国沿海拟穴青蟹的群体遗传结构研究[D].北京:中国科学院研究生院,2008.
    [20]李锋,刘楚吾,黄雅丽.凡纳对虾引进亲本及其子代RFLP分析[J].海洋通报,2005,24(1):31– 34.
    [21]王在照,焦传珍,张晓军,等.中国对虾蜕皮抑制激素全长cDNA的克隆及序列分析[J].遗传学报,2003,30(2):128– 134.
    [22]刘萍,孟宪红,孔杰,等.对虾抗病性状遗传标记的RAPD分析[J].水产学报,2002,26(3):270– 274.
    [23]孟宪红,孔杰,刘萍,等.中国明对虾抗白斑综合症病毒分子标记的筛选[J].中国水产科学,2005,12(1):14– 19.
    [24]董世瑞.形态标记与微卫星标记在中国对虾遗传选育中的应用研究[D].青岛:中国海洋大学,2006.
    [25]于安,路仁杰,王凤敏,等.“黄海1号”中国对虾2006年河北养殖调查报告[J].河北渔业,2007,(3):20– 20.
    [26]姚雪梅,黄勃,赖秋明,等.凡纳滨对虾自交系与杂交系早期生长和存活的比较[J].水产学报,2006,30(6):791– 795.
    [27]童馨,龚世圆,喻达辉,等.凡纳滨对虾不同世代生长性状的变异[J].南方水产,2007,3(6):30– 33.
    [28]孙成波,陈国良,童汉荣,等.美国4个凡纳滨对虾(Litopenaeus vannamei)种群形态差异与判别分析[J].海洋与湖沼,2009,40(1):27– 32.
    [29]黎中宝,李少菁,王桂忠.中国东南沿海锯缘青蟹群体的形态判别分析[J].厦门大学学报(自然科学版),2004,43(1):102– 106.
    [30]高宝全,刘萍,李健,等.三疣梭子蟹4个野生种群形态差异分析[J].中国水产科学,2007,14(2):223– 228.
    [31]李朝霞,李健,王清印,等.中国对虾―黄海1号‖选育群体与野生群体的形态特征比较[J].中国水产科学,2006,13(3):384– 388.
    [32] Gjedrem T, Fimland E. Potential benefits from high health and genetically improved shrimp stocks [A]. In: Browdy C L, Hopkins J S. Swimming Through Troubled Water: Proceeding of the Special Session on Shrimp Farming [C]. Baton Rouge, LA., 1995: 60– 65.
    [33]陈锚,吴长功,相建海,等.凡纳滨对虾的选育与家系的建立[J].海洋科学,2008,32(11):5– 8.
    [34]张天时,孔杰,刘萍,等.中国对虾家系建立及不同家系生长发育的初步研究[J].海洋学报,2007,29(3):120– 124.
    [35]高保全,刘萍,李健,等.三疣梭子蟹(Portunus trituberculatus)不同地理种群内自繁和种群间杂交子一代生长性状的比较[J].海洋与湖沼,2008,39(3):291– 296.
    [36]高保全,刘萍,李健.三疣梭子蟹3个地理种群杂交子一代生长和存活率的比较[J].大连水产学院学报,2008,23(5):325– 329.
    [37]姚雪梅,黄勃,张继涛,等. SPF凡纳滨对虾Fl、F2及杂交代生长和存活比较研究[J].中国水产科学,2007,14(2):326– 330.
    [38] Keenan C P. Aquaculture of mud crab, genus Scylla-past, present and future [A]. In: Keenan C P, Blackshaw A. Mud Crab Aquaculture and Biology: ACIAR Proceedings. Vol.78, Brisbane [C]. Canberra, Australia, 1999: 9– 13.
    [39]古群红,庞德彪,宋盛宪,等.锯缘青蟹无公害养殖技术[M].北京:海洋出版社,2006:22– 25.
    [40]陈弘成,郑金华.蟳苗人工培育之研究:I.温度、盐度对蟳卵孵化及蟳苗存活和成长之影响[J].台湾水产学会会刊,1985,12(2):70– 77.
    [41]马凌波,张凤英,乔振国,等.中国东南沿海青蟹线粒体COI基因部分序列分析[J].水产学报,2006(4):463– 468.
    [42]林琪,李少菁,黎中宝,等.中国东南沿海青蟹属Scylla的种类组成[J].水产学报,2007(2):211– 219.
    [43]施心展.四种青蟹(Scylla spp.)在外部形态及核糖体DNA上之差异[D].高雄:国立中山大学,1999.
    [44]乔振国,马凌波,于忠利,等.我国海水蟹类养殖现状与发展目标[J].渔业现代化,2009,36(3):45– 48.
    [45] He L J, Zhang A B, Weese D, et al. Late Pleistocene population expansion of Scylla paramamosain along the coast of China: A population dynamic response to the Last Interglacial sea level highstand [J]. Journal of Experimental Marine Biology and Ecology, 2010, 385(1– 2): 20– 28.
    [46]中国水产科学研究院东海水产研究所.一种快速鉴定青蟹属4种青蟹的PCR方法:中国,201010140012.6 [P]. 2010– 08– 04.
    [47]中国水产科学研究院东海水产研究所.青蟹种蟹的双层底培育池:中国,200720068248.7 [P]. 2008– 02– 13.
    [48]吕延红,于忠利,王建钢,等.几种营养强化材料应用于拟穴青蟹种苗培育的初步研究[J].海洋渔业,2009,31(3):270– 278.
    [49]王桂忠,林淑君,林琼武,等.盐度对锯缘青蟹幼体存活与生长发育的影响[J].水产学报,1998,22(1):89– 92.
    [50]浜崎活幸.ガザミの安定种苗生产技术の開發に關する研究[J]. Nippon Suisan Gakkishi, 2003, 69(5): 701– 704.
    [51]熊小飞.斑节对虾群种群结构与家系鉴定[D].武汉:华中农业大学,2008.
    [52]陈作志,邱永松.北部湾二长棘鲷的生态分布[J].海洋水产研究,2005,26(3):16– 21.
    [53] Cruz P, Ramirez J L, Garcia G A, et al. Genetic differences between two populations of catarina scallop (Argopecten ventricosus) for adaptations for growth and survival in a stressful environment [J]. Aquaculture, 1998, 166(3-4): 321– 335.
    [54]李晨虹,李思发,邢益于,等.池养长江蟹、辽河蟹生长性能及其遗传-环境交互作用分析[J].水生生物学报,2002,26(4):335– 341.
    [55] Nurdiani R, Zeng C S. Effects of temperature and salinity on the survival and development of mud crab, Scylla serrata (Forssk?l), larvae [J]. Aquaculture Research, 2007, 38(14): 1529– 1538.
    [56] Samuel N J, Soundarapandian P. Effect of salinity on the growth, survival and development of the commercially important portunid crab larvae of Portunus sanguinolentus (Herbst) [J]. Current Research Journal of Biological Sciences, 2010, 2(4): 286– 293.
    [57] Ong K, Costlow J D. The effect of salinity and temperature on the larval development of the stone crab, Menippe mercenaria (Say), reared in the laboratory[J]. Chesapeake Science, 1970, 11(1): 16– 29.
    [58] Nagaraj M. Combined effects of temperature and salinity on the zoeal development of the crab Liocarcinus puber (Decapoda: Portunidae) [J]. Marine Ecology, 1991, 13(3): 233– 241.
    [59] Johns D M. Physiological studies on Cancer irroratus larvae. I. Effects of temperature and salinity on survival, development rate and size [J]. Marine Ecology Progress Series, 1981, 5: 75– 83.
    [60] Kannupandi T, Krishnan T, Shanmugam A. Effect on salinity on the larva of an edible estuarine crab, Thalamita crenata (Crustacea: Decapoda: Portunidae) [J]. Indian Journal Marine Sciences, 1997, 26: 315– 318.
    [61]林琪,李少菁,黎中宝,等.中国东南沿海青蟹属(Scylla)的种类组成[J].水产学报,2007,31(2):211– 219.
    [62]李晨虹,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:形态判别分析[J].水产学报,1999,23(4):337– 342.
    [63]李勇,李思发,王成辉,等.三水系中华绒螯蟹幼蟹形态判别程序的建立和使用[J].水产学报,2001,25(2):120– 126.
    [64] Fernandes T, Brian J V, Ladle R J, et al. Patterns of morphological and genetic variability in UK populations of the shore crab, Carcinus maenas Linnaeus, 1758 (Crustacea: Decapoda: Brachyura) [J]. Journal of Experimental Marine Biology and Ecology, 2006, 329(1): 47– 54.
    [65]董志国,李晓英,阎斌伦,等.中国海五种群三疣梭子蟹的形态差异分析[J].海洋通报,2010,29(4):421– 426.
    [66]何杰,徐跑,朱健.南北水系中华绒螯蟹形态差异分析[J].海洋湖沼通报,2009,(3):79– 86.
    [67] Overton J L, Macintosh D J, Thorpe R S. Multivariate analysis of the mud crab Scylla serrate (Brachyura: Portunidae) from four locations in southeast Asia [J]. Marine Biology, 1997, 128(1): 55– 62.
    [68] Rosenberg M S. Fiddler crab claw shape variation: a geometric morphometric analysis across the genus Uca (Crustacea: Brachyura: Ocypodidae) [J]. Biological Journal of the Linnean Society, 2002, 75(2): 147– 162.
    [69]谢营粱,施兆鸿,徐吟梅.青蟹Scylla sp.养殖研究现状和发展趋势[J].现代渔业信息,2004,19(1):14– 17.
    [70] Evans L H, Jussila J. Freshwater crayfish growth under culture conditions: proposition for a standard reporting approach [J]. Journal of the World Aquaculture Society, 1997, 28(1): 11– 19.
    [71] Hopkins K D. Reporting fish growth: a review of the basics [J]. Journal of the World Aquaculture Society, 1992, 23(3): 173– 179.
    [72]朱春华.不同群体团头鱿生长性能分析[J].湛江海洋大学学报,1998,18(1):15– 18.
    [73]李思发,周碧云,叶猜龙,等.不同群体鳙鱼的生长性能与遗传分析.水生生物学报,1989,13(4):319– 325.
    [74]李思发,蔡正纬,陆伟民,等。长江水系鲢鱼和珠江水系鲢鱼的生长差异[J].水产学报,1984,8(3):211– 218.
    [75]李朝霞,王春德.海湾扇贝自交与杂交子代的生长比较和通径分析[J].中国农学通报,2009,25(8):282– 285.
    [76]王爱民,阎冰,叶力,等.马氏珠母贝不同地理种群内自繁和种群间杂交子一代主要性状的比较[J].水产学报,2003,27(3):200– 206.
    [77]常亚青,刘小林,相建海,等.栉孔扇贝不同种群杂交效果Ⅲ.中国种群与俄罗斯种群及其杂种1~2龄的生长发育[J].海洋学报,2006,28(2):114– 120.
    [78]肖国强,林志华,董迎辉,等.文蛤不同地理群体自繁和互交F1代的早期生长性状[J].水产学报,2010,34(2):255– 263.
    [79]张跃环,闫喜武,霍忠明,等.不同地理群体菲律宾蛤仔生长发育的比较[J].大连水产学院,2009,24(1):34– 39.
    [80]田燚,孔杰,杨翠华.中国对虾2个群体杂交子一代生长和存活率比较[J].科学通报,2006,51(15):1771– 1775.
    [81]徐德昆,林乐峰.不同水系河蟹幼蟹的养成效果分析[J].水产养殖,1997,(1):26– 27.
    [82]羊茜,占家智.辽河蟹与长江蟹生长速度的对比试验[J].淡水渔业,1999,29(10):40– 42.
    [83] Ruscoe I M, Shelley C C, Williams G R. The combined effects of temperature and salinity on growth and survival of juvenile mud crabs (Scylla serrata Forsk?l) [J]. Aquaculture, 2004, 238(1– 4): 239– 247.
    [84]乔振国,张虎,归从时.环境因子变化对锯缘青蟹后期幼体及仔蟹变态存活率的影响[J].海洋渔业,2004,26(1):40– 43.
    [85] Jantrarotai P, Taweechuer K, Pripanapong S. Salinity levels on survival rate anddevelopment of mud crab (Scylla olivacea) from zoea to megalopa and from megalopa to crab stage [J]. Kasetsart Journal (Natural Science), 2002, 36(3): 278– 284.
    [86] Nicholas Romano, Wu X G, Zeng C S. Suvival, growth and osmoregulatory responses of early juvenile mud crab, Scylla serrata subjected to broad salinity range [J].水产学报,2009,33(增刊):36– 36.
    [87] Hai T N, Hassan A B, Law A T, et al. Effects of reduced water salinity on juveniles of mud crab, Scylla serrata [A]. In: Millamena O M, Quinitio E T, Blackshaw A. Proceedings of the International Forum on the Culture of Portunid Crabs, Boracay, Aklan, Philippines, 1– 4 December 1998: IFCPC [C]. Quezon City, Philippines, 2001: 57– 57.
    [88] Charmantier G, Soyez C, Aquacop. Effect of molt stage and hypoxia on osmoregulatory capacity in the penaeid shrimp Penaeus vannamei [J]. Journal Experimental Marine Biology and Ecology, 1994, 178(2): 233– 246.
    [89] Ferraris R P, Parado-Estepa E G, De Jesus E G, et al. Osmotic and chloride regulation in the haemolymph of the tiger prawn Penaeus monodon during molting in various salinity [J]. Marine Biology, 1987, 95(3): 377– 385.
    [90] Chan S M, Rankin S M, Keeley L L. Characterisation of the molt stages in Penaeus vannamei: setogenesis and haemolymph levels of total protein, ecdysteroids, and glucose [J]. The Biological Bulletin, 1988, 175: 185– 192.
    [91] Lignot J H, Cochard J C, Soyez C, et al. Osmoregulatory capacity according to nutritional status, molt stage and body weight in Penaeus stylirostris [J]. Aquaculture, 1999, 170(1): 79– 92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700