黄海小黄鱼种群特征及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随全球海洋渔业资源的全面衰退和生态系统的不断退化,海洋渔业资源的管理理念正在发生深刻变化;特别是在高强度的捕捞之后,充分了解鱼类生物学特征、种群动态及其对环境变化的响应机制就成为资源合理利用的重要前提。
     小黄鱼(Larimichthys polyactis Bleeker,1877)是我国重要的海洋经济鱼类之一,广泛分布于渤海、黄海和东海,是底拖网作业的主要捕捞对象之一,60年代中期以后,由于捕捞强度的不断增大,资源量开始大幅下降,其群体结构和生物学特征也发生了很大的变化,个体小型化、低龄化趋势逐渐加剧。
     本研究根据1960、1985、1998、2008年和2009年在黄海中南部的小黄鱼底拖网调查资料,研究了黄海中南部小黄鱼的种群结构和生物学特征及其年际变化情况,初步讨论了小黄鱼生物学特征对人类捕捞活动和环境变化的响应情况。主要结果如下:
     首先,根据1960、1985、1998和2008年以及2009年黄海中南部渔业资源底拖网调查数据,研究了小黄鱼群体结构及其年际、季节变化情况,并对产卵群体的年际变化特征进行了分析。结果表明,黄海中南部小黄鱼的体长、体重组成及其年龄结构均具有逐渐减小的趋势,且年代间差异显著,体长频率分布逐渐由双峰态向单峰态转变;对吕泗渔场产卵群体的结构分析表明:2009年3个月份(3月、4月、5月)的平均体长、优势体长组并无显著差异;产卵群体的年间变化分析显示,平均体长、平均体重亦均具有逐渐减小的趋势。
     其次,利用2008年7~12月中旬黄海中南部的底拖网调查资料,研究了2~7月龄小黄鱼当年幼鱼的生长情况,阐述了耳石生长与体长、体重生长的关系,通过决定系数(R2)和残差平方和(RSS)两项指标,比较和论述了7种生长方程对小黄鱼当年幼鱼生长描述的拟合程度。结果表明:从7月到12月,小黄鱼当年幼鱼的体长月均增加1.32±0.57 cm,体重月均增加4.34±0.65 g;体长-体重关系式为W=3.76×10-5L2.8303,幂指数b接近于3;通过研究耳石的长度、重量与体长、体重的关系,发现耳石的长度和重量与体长、体重关系密切,在三种回归方式(Liner、Power、Quadratic)中,乘幂函数的相关性最好;采用七种生长方程对小黄鱼当年幼鱼的生长进行拟合,从决定系数R2及残差平方和RSS的数值来看,VBGF(Von Bertalanffy生长方程)、LGF(Logistic生长方程)、GGF(Gompertz生长方程)三种数学模型的拟合度较为接近,而Logarithmic、Inverse、Quadratic以及Cubic四种生长方程的拟合度较为接近且拟合效果明显好于VBGF、LGF、GGF;七种拟合模型中,Cubic生长方程对小黄鱼当年幼鱼生长的拟合度最高。
     第三,根据2008年4月到2009年3月在黄海南部海域底拖网采集的小黄鱼样品的生物学资料,研究了黄海中南部小黄鱼群体的生长、死亡情况,通过Beverton-Holt模型评价了资源的利用状况,并与临界体长、拐点体长等进行比较,确定了最适开捕体长。结果显示:(1)小黄鱼的体长和体重关系式为W=0.0268×L2.814;(2)应用FiSAT软件拟合的von Bertalanffy生长方程参数为L∞= 27 cm, k=0.45 a-1, t0=-0.47 a;(3)总死亡系数Z=2.40,自然死亡系数M=0.77,捕捞死亡系数F=1.63,开发率E=0.68;(4)在现行的捕捞死亡系数F=1.63下,Yw/R达到最大值时开捕年龄和开捕体长分别为1.41 a和15.42 cm;拐点年龄和体长为1.83 a和17.41 cm;临界年龄和体长为1.70 a和16.82 cm。现阶段小黄鱼资源已处于过度开发状态,综合考虑渔民利益和资源修复需要,建议黄海南部小黄鱼的最适开捕规格定为14.83 cm。
     最后,根据1960年、1985年、1998年和2008年4个年份在黄海中南部进行底拖网调查获得的小黄鱼生物学资料,对其生物学特征及其年代际变化进行分析,并运用灰色关联分析法和计算相关系数研究摄食等级、渔船功率以及海表温度3因素对小黄鱼生物学特征年代际变化的影响程度。结果表明,黄海中南部小黄鱼的生物学特征在4个年代间发生了明显变化,其个体生长加快、渐近体长减小、体重生长拐点提前、死亡系数增大;灰色关联分析显示,渔船功率、摄食等级和海表温度与黄海中南部小黄鱼生物学特征年代际变化的关联度分别为0.7238,0.6903,0.6396。综合各因素的关系,捕捞因素是造成小黄鱼生物学特征年代际变化的最主要原因。
With the recession of world marine fishery resource and the degradation of ecosystem, the management ideology of marine fishery resource is undergoing profound changes; particularly under the high intensity fishing environment, it is very important to fully understand fish biological characteristics, the dynamics of populations and their response to environmental changes, which is the important prerequisite for rational utilization of fishery resource.
     Small yellow croaker (Pseudosciaena polyatics bleeker) is a warm-temperate species and one of the most important commercial marine fish in our country, and is widely distributed in the Bohai Sea, the Yellow Sea and the East China Sea. It is the main target fish of bottom trawl fishery. Since the mid-1960s, its resource amount greatly declined for the increase of fishing intensity, its population structure and biological characteristics had also changed greatly, such as individual miniaturization and low age structure of population.
     Based on the data of small yellow croaker collected from the bottom trawl surveys carried out by R/V Beidou in the central and southern Yellow Sea in 1960, 1985,1998,2008 and 2009, the population structure and biological characteristics and their interannual variabilities were analyzed, as well as the responses of small yellow croaker biological chaacteristics to fishing pressure and environmental changes. The main results were as follws:
     First of all, based on the data collected by the bottom trawl surveys in the central and southern Yellow Sea in 1960,1985,1998,2008 and 2009, the population structure of small yellow croaker and its interannual and seasonal variations were analyzed, especially for the interannual variations of spawning stock. The result showed that the body length and body weight of small yellow croaker population in the central and southern Yellow Sea gradually decreased, age structure became simpler, and the significant differences of these characteristics were found during different years. According to the analysis of small yellow croaker spawning stock structure in Lusi fishing ground, no significant differences were found in the average body length and dominant body length group in March, April and May 2009, however, the average body length of spawnning stock gradually decreased, the distribution of body length frequency changed from double peak to single peak.
     Secondly, according to the biological data of small yellow croaker collected by the bottom trawl surveys in the central and southern Yellow Sea from July to December in 2008, the growth of small yellow croaker juveniles aged 2-7months was studied, the relationships amont the growth of otolith, body length and body weight were elucidated, the fitting degree of seven growth equation to the growth of small yellow croaker juveniles by two indicators (R2 and RRS). The results showed that the average monthly increase of body length and body weight were 1.32±0.57 cm and 4.34±0.65 g from July to December, respectively. The relationship between body length and body weight was W=3.76×10-5L2.8303, the exponent b was 2.8303. According to the analysis of the relationships among the length and weight of otolith, and body weight and body length of smal yellow croaker, the length and weight of otolith was closely connected with the body length and body weight. The power function is the best model to describe the relationship between the otolith growh with the body length and body weight. von Bertalanffy growth function(VBGF), Logistic growth function(LGF), Gompertz growth function(GGF), Logarithmic growth function(LF), Inverse growth function(IGF), Quadratic growth function(QGF) and Cubic growth function(CGF) were chosen to describe the growth of yearling small yellow croaker. Based on the value of R2 and RSS criterion, the VBGF、LGF、GGF had the similar fitness, the Logarithmic、Inverse、Quadratic、Cubic had the similar fitness, and their fitness was better than those of VBGF. LGF、GGF. The Cubic function had the highest fitness to describe the growth of yearling small yellow croaker
     Thirdly, based on the biologipal characteristics data collected from the bottom trawl surveys in the southern Yellow Sea from April in 2008 to March in 2009, the growth and mortality of small yellow croaker were estimated by the FiSATⅡsoftware, and stock status was evaluated by Beverton-Holt model, combined with the critical body length and the body length of growth inflexion, the optimal capture size was determined. The result showed that:(1) the relationship between body length and body weight of small yellow croaker was W=0.0268 L2.814; (2) growth parameters of the von Bertalanffy growth equation by FiSAT software were as follows:L∞=27.00 cm,k=0.45a-1 and t0=-0.47 a; (3) the total mortality coefficient (Z) was 2.40, the natural mortality coefficient (M) was 0.77, the fishing mortality coefficient (F) was 1.63, and exploration rate (E) was 0.68; (4) Under the fishing mortality coefficient F= 1.63, when Yw/R reached the maximum value, the optimum capture age and size were 1.41a and 15.42 cm, respectively. The age and body length of growth inflextion for small yellow croaker were 1.83a and 17.41cm, respectively, and the critical age and body length were 1.70a and 16.82 cm, respectively. In the present, the fishery resource of small yellow croaker was overexploited, combined with the benefits of fishemen and the demands of fishery resource restoration, we suggest that the optimum catchable size of small yellow croaker in the Southern Yellow Sea is 14.83 cm in the future.
     Finally, based on biological characteristics data collected by the bottom trawl surveys in the central and southern Yellow Sea in 1960,1985,1998 and 2008, the biological characteristics and their decadal changes of small yellow croaker were analyzed, the gray correlation analysis and correlation coefficient were used to study the effects of sea surface temperature, fishing vessels power and the feeding intensity on the decadal changes of biological characteristics. The result showed that significant changes were found in biological characteristics of smal yellow croaker during different decades, such as the growth rate increased, asymptotic bodylength decreased, the inflexion of body weight decreased, and the mortality rate increased. According to the analysis of gray correlation analysis, the correlation degrees of fishing vessels, feeding intensity and sea surface temperature with the biological characteristics were 0.7238,0.6903 and 0.6396, respectively. From above-mentioned, the decadal changes of small yellow croaker biological characteristics were mainly caused by fishing.
引文
[1]丁良模.黑潮关键区的海面放热量对长江地区梅雨降水的影响.海洋学报,1992,14(3):47~54
    [2]丁峰元,林龙山,李建生,等.东海区北部小黄鱼生殖群体分布及与水团关系.自然资源学报,2007,22(6):1013~1017
    [3]于克俊.长江口余流和盐度的二维数值计算.海洋与湖沼,1990,21(1):92~96
    [4]川崎健.中上层渔业资源(李大成,张如玉,译者).北京:农业出版社,1986.
    [5]马骏.洪湖黄颡鱼生物学研究.见:中国科学院水生生物研究所洪湖课题研究组,编.洪湖水体生物生产力综合开发及湖泊生态环境优化研究.北京:海洋出版社,1991.153~161
    [6]区又君,廖锐,李加儿,等.驼背鲈的年龄与生长特征.水产学报,2007,31(5):628
    [7]文良印,谭玉钧,王武.水温对草鱼鱼种摄食、生长和死亡的影响.水产学报,1998,22(4):371~374
    [8]毛汉礼,甘子钧,蓝淑芳.长江冲淡水及其混合问题的初步研究.海洋与湖沼,1963,5(3):183~205
    [9]水柏年.小黄鱼个体生殖力及其变化的研究.浙江海洋学院学报,2000,19(1)59~68
    [10]水柏年.黄海南部、东海北部小黄鱼的年龄与生长研究.浙江海洋学院学报:自然科学版,2003,22(1):16~20
    [11]王从敏,翁学传.夏季台湾暖流水对长江冲淡水扩展方向的影响——Fuzzy关系方程的一种应用.见:海洋与湖沼论文集.北京:科学出版社,1986.13~19
    [12]王寿兵.用灰色关联分析研究渔获量及其相关因子间的关系.实验研究,1991,18:28~30
    [13]王宝璋.国内外对鱼类耳石日轮的研究和应用.水产科技情报,1995,22(3):132~135
    [14]王金潮.珠江广东鲂的年龄、生长及其最大持续渔获量.水产学报,1990,14(4):314~319
    [15]王保栋,刘峰,王桂云.南黄海溶解氧的平面分布及其季节变化,海洋学报,1999,21(4):48~52
    [16]王贻观,马珍影,尤红宝.小黄鱼分布洄游的初步研究(摘要).见:渔业资源论文 选集.北京:农业出版社,1965.9~11
    [17]王涵生.海水盐度对牙鲆仔稚鱼的生长、存活及白化率的影响.海洋与湖沼,1997,28(4):399~405
    [18]王雪辉,邱永松,杜飞雁.南海北部深水金线鱼生物学及最适开捕体长.应用生态学报,2005,16(2):2428~2434
    [19]王辉武,于非,吕连港,等.冬季黄海暖流区的空间变化和年际变化特征.海洋科学进展,2009,27(2):140~146
    [20]邓景耀,赵传絪.海洋渔业生物学.北京:农业出版社,1991.164~200
    [21]邓景耀,姜卫民,杨纪明,等.渤海主要生物种间关系及食物网的研究.中国水产科学,1997,4(4):3~6
    [22]邓景耀,赵传絪.海洋渔业生物学.北京:农业出版社,1991.164~200
    [23]韦钦胜,葛人峰,王保栋,等.南黄海冷水域西部溶解氧垂直分布最大值现象的成因分析.海洋学报,2009,31(4):69~76
    [24]韦晟,姜卫民.黄海鱼类食物网的研究.海洋与湖沼,1992,23(2):182~192
    [25]兰永伦,罗秉征,等.大黄鱼耳石、体长与年龄的关系.海洋与湖沼,1996,27(3):323~329
    [26]叶孙忠.闽南、台湾浅滩渔场二长棘鲷的生长特性.水产学报,2004,28(6):664~667
    [27]叶昌臣,唐启升,秦裕江.黄海鲱鱼和黄海鲱鱼渔业.水产学报,1980,4(4):339~352
    [28]叶昌臣.小黄鱼.见:邓景耀,赵传絪等,编海洋渔业生物学.北京:农业出版社,1991.164~200
    [29]任一平,高天翔,刘群,等.黄海南部小黄鱼Pseudosciaena plyactis Bleeker渔获群体结构与繁殖特性的初步研究.海洋湖沼通报,2001,1(1): 41~46
    [30]刘效舜,吴敬南,韩祖光,等.黄渤海区渔业资源调查与区划.北京:海洋出版社,1990.191~192
    [31]华元湍,胡传林.鱼种重量与长度相关公式的生物学意义及其应用.见:中国鱼类协会,编.鱼类学论文集,北京:科学出版社,1981.125~131
    [32]吕耀平.影响越冬罗非鱼死亡率环境因子的灰色关联分析.水产科学,2005,24(8):14~15
    [33]孙双文,万彪.黑潮对中国近海热盐输运的季节和年际变化.华东师范大学学报(自然科学版),2009,3:99~104
    [34]孙耀,张波,陈超,等.摄食水平和饵料种类对三种海洋鱼类生长和生长效率的影响.中国水产科学,2000,7(3):41~44
    [35]孙耀,张波,唐启升.摄食水平和饵料种类对黑鳃能量收支的影响.海洋水产研究,2001,22(2):32~37
    [36]朱伟军,孙照渤.冬季黑潮区域SST异常对北太平洋风暴轴的影响.应用气象学报,2000,11(2):145~153
    [37]朱建荣,李永平,沈焕庭.夏季风场对长江冲淡水扩展影响的数值模拟.海洋与湖沼,1997,28(1):72~78
    [38]朱建荣,沈焕庭.长江冲淡水扩展机制.上海:华东师范大学出版社,1997.132~177
    [39]朱德山,王为祥,张国祥,等.黄海鲐鱼渔业生物学研究——黄渤海鲐鱼洄游分布的研究.海洋水产研究,1982,4:17~32
    [40]江蓓洁,鲍献文,吴德星.北黄海水团温、盐多年变化特征及影响因素.海洋学报,2007,29(4):1~5
    [41]汤毓祥,邹娥梅,李兴宰,等.南黄海环流的若干特征.海洋学报,2000,22(1):1216
    [42]严利平,李建生,沈德刚,等.黄海南部、东海北部小黄鱼饵料组成和摄食强度的变化.海洋渔业,2006,28(2):117~122
    [43]严利平,李建生,沈德刚,等.黄海南部、东海北部小黄鱼饵料组成和摄食强度的变化.海洋渔业,2006,28(2):117~122
    [44]何美峰,李新辉,谭细畅,等.西江广东鲂的年龄鉴定及生长研究.淡水渔业,2007,37(3):55~57
    [45]吴佩秋.小黄鱼不同产卵类型卵巢成熟期的组织学观察.水产学报,1981,5(2):161~168
    [46]吴清江.长吻鮠的种群生态学及最大持续渔获量的研究.水生生物学集刊,1975,5(3):237~405
    [47]宋昭彬,曹文宣.鱼类耳石微结构特征的研究与应用.水生生物学报,2001,25(6):613~619
    [48]张元奎,贺先明.春季北黄海西部冷水团强度的年际差异及其预报.海洋湖沼通报,1981,1:19~22
    [49]张以垦,杨玉玲.夏季北黄海冷水团多年变化特征分析.海洋预报,1996,13(4) 15~21
    [50]张其永,林秋眠,林尤通,等.闽南-台湾浅滩渔场鱼类食物网研究.海洋学报,3(2):275~290
    [51]张国华,但胜国,苗志国,等.六种鲤科鱼类耳石形态以及在种类和群体识别中的应用.水生生物学报,1999,23(6):683~688
    [52]李大鹏,庄平,严安生,等.光照、水流和养殖密度对史氏鲟摄食、行为和生长的影响.水产学报,2004,28(1):54~61
    [53]李坤平.1981—1983年黑潮弯曲和厄尔尼诺事件的个例分析.海洋学报,1992,14(1):5~10
    [54]李坤平.黄海冷水团对海洋变动的响应.海洋学报,1991,13(6):779~783
    [55]李城华,沙学绅,尤锋梭,等.梭鱼仔鱼耳石日轮形成及种群日龄的鉴定.海洋与湖沼,1993,24(4):345~349
    [56]李城华.东海带鱼生物学:卵巢周年变化的初步研究.海洋与湖沼,1982,13(5):461~472
    [57]李星颉,陈赛斌.鱼类生长的数学描述.浙江水产学院学报,1983,2(1):29~39
    [58]杜碧兰.东海及外缘海域表层海水温度的谱分析.海洋预报服务,1984,1(1):1~7
    [59]杨军山,陈毅峰,何德奎,等.错鄂裸鲤年轮和生长特性的探讨.水生生物学报,2002,26(4):378~387
    [60]杨纪明.渤海无脊椎动物的食性和营养级的研究.现代渔业信息,2001,16(9)16
    [61]沈国英,施并章.海洋生态学.北京:科学出版社,2002.118~121
    [62]沈建忠,曹文宣,崔奕波,等.鲫耳石重量与年龄的关系及其在年龄鉴定中的应用.水生生物学报,2002,26(6):662~668
    [63]邱顺林,陈大庆.长江鲥鱼世代分析及资源量初步评估.淡水渔业,1988,(6):3~5
    [64]邱望春,蒋定和,朱启琴.小黄鱼卵子及仔鱼前期的形态研究.见:海洋渔业资源论文选集.北京:农业出版社,1962.28~33
    [65]邱盛尧.黄渤海蓝点马鲛当年幼鱼的生长特征.水产学报,1993,17(1):14~15
    [66]陈大纲.渔业资源生物学.北京:中国农业出版社,1997.34~35
    [67]陈丕茂.南海北部主要捕捞种类开捕规格的研究.水产学报,2004,28(4):393~399
    [68]陈佩熏.梁子湖鲤鱼鳞片年轮的标志及其形成日期.水生生物学集刊,1959,3: 256~261
    [69]陈国宝,邱永松.南海北部陆架区蓝圆鲹的生长、死亡及合理利用研究.台湾海峡,2003,22(4):458~464
    [70]陈毅峰,何德奎,曹文宣,等.色林错裸鲤的生长.动物学报,2002,48(5):667~676
    [71]陈毅峰.色林错裸鲤的年龄鉴定.动物学报,2002,48(4):527~533
    [72]周发绣.黄海陆架表层水温的低频振动.山东海洋学报,1987,17(4):22~27
    [73]周永东,徐汉祥,刘子藩,等.东海带鱼群体结构变动的研究.浙江海洋学院学报(自然科学版),2002,21(4):314~320
    [74]周俊,文华,何瑞国,等.中华鲟摄食不同水平的两种糖后淀粉酶活性的变化.大连水产学院学报,2007,22(1):27~30
    [75]孟田湘.山东半岛南部产卵场鱼幼体日龄组成与生长.海洋水产研究,2004,25(2):1~5
    [76]宓崇道,钱世勤,秦忆琴.东海绿鳍马面魨繁殖习性的初步研究.见:东海水产研究所,编.东海绿鳍马面魨论文集.上海:学林出版社,1982.81~89
    [771 易伯鲁,余志堂.葛洲坝水利枢纽与四大家鱼.武汉:湖北科技出版社,1988.1~43
    [78]林龙山,程家骅,任一平.东海区小黄鱼种群生物学特征的分析.2004,11(4):333~337
    [79]林龙山,程家骅.东海区小黄鱼渔业生物学现状的分析.2004,34(4):565~570
    [80]林龙山.东海区小黄鱼现存资源量分析.海洋渔业,2004,26(1):19~22
    [81]林金表.南海北部大陆架外海底拖网鱼类资源状况的初步探讨.南海北部大陆架外海底拖网鱼类资源调查报告集,1979.43~129
    [82]林景祺.小黄鱼幼鱼和成鱼的摄食习性及其摄食条件的研究.见:海洋渔业资源论文选集.北京:农业出版社,1962.34~43
    [83]线薇薇,朱鑫华.摄食水平对褐牙鲆(Paralichthys olivaceus)幼鱼生长影响的初步研究.青岛海洋大学学报,2000,30(3):453~458
    [84]罗秉征,卢继武,黄颂芳.东海带鱼春、夏和秋季产卵群体的生殖周期特性和种群问题.动物学报,1985,31(4):348~358
    [85]郑元甲,陈雪忠,程家骅,等.东海大陆架生物资源与环境.上海:科学与技术出版社.2003
    [86]郑文莲,徐恭昭.浙江岱衢洋大黄鱼Pseudosciaena crocea(Richardson)个体生殖力的 研究.海洋科学集刊,1962,2:59~78
    [87]金显仕,赵宪勇,孟田湘,等.黄、渤海生物资源与栖息环境.北京:科学出版社,2005.308~320
    [88]金显仕.黄海小黄鱼(Pesudosciaena polyactics)生态和种群动态的研究.中国水产科学,1996,3(1):33~45
    [89]姜卫民,韦晟,孙建明.黄海高眼鲽食性及摄食季节变化的研究.海洋水产研究,1989,10:9~15
    [90]柳卫海,郭振华,詹秉义.东海区小黄鱼资源利用现状分析.上海水产大学学报,]999,8(2):106~110
    [91]费鸿年,张诗全.水产资源学.北京:中国科学技术出版社,1990.246~285
    [92]赵传絪,陈永法,洪港船.东海区渔业资源调查和区划.上海:华东师范大学出版社,1990
    [93]赵保仁.长江冲淡水的转向机制问题.海洋学报,1991,13(5):600~610
    [94]赵宪勇.黄海鳀鱼种群动力学特征及其资源可持续利用:[博士学位论文].青岛:中国海洋大学,2006
    [95]郝世超,黄璞祎,于洪贤.摄食水平对杂交鲟生长的影响.东北林业大学学报,2008,36(12):43~45
    [96]唐启升,叶懋中等.山东近海渔业资源开发与保护.北京:农业出版社,1990.95
    [97]唐启升,叶懋中,等.山东近海渔业资源开发与保护.北京:农业出版社,1990.70~80
    [98]唐启升.中国专属经济区海洋生物资源与栖息环境.北京:科学出版社,2006.35~45
    [99]唐启升.黄海鲱鱼的性成熟、生殖力和生长特性的研究.海洋水产研究,1980,1:59~76
    [100]夏世福,刘效舜.海洋水产资源调查手册.上海:上海科学技术出版社,1981.
    [101]殷名称.鱼类仔鱼期的摄食和生长.水产学报,1995,19(4):335~340
    [102]袁业立,郭炳火,孙湘平.泛黄海区的物理海洋特征.黄渤海海洋,1993,11(3):1~5
    [103]袁业立.黄海冷水团环流.海洋与湖沼,1979,23(1):7~13
    [104]袁蔚文.南海北部主要经济鱼类的生长方程和临界年龄.见:南海水产研究所,编.南海水产研究文集.广州:广东科技出版社,1989.61~76
    [105]袁耀初,苏纪兰,赵金山.东中国海陆架环流的单层模式.海洋学报,1982,4(1) 1~11
    [106]郭旭鹏,金显仕,戴芳群.渤海小黄鱼生长特征的变化.中国水产科学,2006,13(2):243~248
    [107]郭炳火,邹娥梅,熊学军,等.黄海、东海水交换季节变异.海洋学报(增刊),2000,22:13~23
    [108]顾玉荷.长江冲淡水转向原因的探讨.海洋与湖沼,1985,16(5):354~363
    [109]高磊,李道季.黄、东海西部营养盐浓度近几十年的变化.海洋学报,2009,33(5):64~68
    [110]崔奕波,刘建康,华俐.摄食水平和食物种类对金鱼生长及氮磷排泄的影响.水生生物学报,1991,15(3):200~205
    [111]常剑波.网湖似刺鳊鮈的种群生长和死亡的研究.水生生物学报,1994,18(3):230~239
    [112]梁银铨,胡小健,黄道明,等.长薄鳅年龄与生长的研究.水利渔业,2007,27(3):29~31
    [113]阎俊岳.东海及邻近地区百年来的温度变化.海洋学报,1997,19(6):121~126
    [114]富丽静,解玉浩,李勃,等.大银鱼耳石日轮与生长的研究.中国水产科学,1997,4(2):21~26
    [115]曾玲,金显仕,李富国,等.渤海小黄鱼生殖力及其变化.海洋科学,2005,29(5):80~82
    [116]程家骅,严利平,林龙山,等.东海区伏季休渔渔业生态效果的分析研究.中国水产科学,1999,6(4):81~85
    [117]程家骅,林龙山,凌建忠,等.东海区小黄鱼伏季休渔效果及其资源合理利用探讨.中国水产科学,2004,11(6):554~560
    [118]舒黎明,邱永松.南海北部花斑蛇鲻生长死亡参数估计及开捕规格.湛江海洋大学学报,2004,24(3):30~35
    [119]谢小军.嘉陵江南方大口鲇的年龄与生长的研究.生态学报,1986,7(4):359~367
    [120]窦硕增,杨纪明,陈大刚.渤海石鲽、星鲽、高眼鲽及焦氏舌鳎的食性.水产学报,1992a,16(2):162~166
    [121]窦硕增,杨纪明.黄河口黄盖鲽的食性及摄食的季节性变化.海洋学报,1992b,14(6):103~112
    [122]解玉浩,李勃,富丽静,等.鳙仔-幼鱼耳石日轮与生长的研究.中国水产科学,1995,2(2):34~42
    [123]解玉浩,李勃,富丽静.鸭绿江香鱼耳石日轮与生长的研究.动物学报,1995,41(2):125~133
    [124]解玉浩,李勃.池沼公鱼耳石日轮的观察研究.海洋与湖沼,1995,26(4):402~407
    [125]詹秉义,楼冬春,钟俊生,等.绿鳍马面鲀资源评析与合理利用.水产学报,1986,10(4):409~418
    [126]詹秉义.渔业资源评估.北京:中国农业出版社,1995.42~43
    [127]廖经榜,刘兴泉,薛亚.北黄海冷水团形成机制的初步探讨,1.模式解.中国科学B,1991,20(12):1312~1317
    [128]管秉贤.东海海流结构及涡旋特征概述.海洋科学集刊,1986,27:1~22
    [129]管秉贤.黄海冷水团的水温变化以及环流特征的初步分析.海洋与湖沼,1963,5(4):255~284
    [130]蔡荣硕,陈际龙,黄荣辉.我国近海和邻近海的海洋环境对最近全球气候变化的响应.大气科学,2006,30(5):1025~1027
    [131]薛莹,金显仕,张波,等.黄海中部小黄鱼食物组成和摄食习性的季节变化.中国水产科学,2004,11(3):238~240
    [132]薛莹,金显仕,张波,等.黄海中部小黄鱼摄食习性的体长变化和昼夜变化.中国水产科学,2004,11(5):421~423
    [133]薛莹,金显仕.鱼类食性和食物网研究评述.海洋水产研究,2003,11(3):237~240
    [134]Amundsen P. A., Gabler H. M., Staldvik F. J. A new approach to graphical analysis of feeding strategy from stomach contents data—modification of the Costello (1990) method. Journal of Fish Biology,1996,48(4):607~614
    [135]Appelget J., Smith Jr. L. L. The determination of the channel catfish, Ictalurus lacustris. Transactions of the American Fisheries Society,1951,80(2):119~139
    [136]Bagenal T. B. The relationship between food and fecundity in brown trout Salmo trutta L. Journal of Fish Biology,1969,1(2):167~182
    [137]Bagenal T. H. The fecundity of witches in the Firth of Clyde. Journal of the Marine Biological Association of the UK,1963,43:401~407
    [138]Baker F. A., Wilson K., Vangent V. Testing assumptions of otolith radiometric aging with two long-lived fishes from the northern Gulf of Mexico. Canadian Journal Fisheries and Aquatic Science,2001,58(6):1244~1252
    [139]Barnabe G. Biological basis of fish culture. In:Barnabe, G. eds. Aquaculture. Biology and Ecology of Cultured Species. New York:Ellis Horwood,1994,227~372
    [140]Beardsley R. C., Limeburner R., Yu H. et al. Discharge of the Changjiang (Yangzte River) into the East China Sea. Continental Shelf Research,1985,4(1-2):17~26
    [141]Bianchi G., Gislason H., Grahma K. et al. Impact of fishing on size composition and diversity of demersal fish communities. ICES Journal of Marine Science,2000,57(3): 558~571
    [142]Blaber S. J. M., Bulman C. M. Diets of fishes of the upper continental slope of eastern Tasmania: content, calorific values, dietary overlap and trophic relationship. Marine Biology,1987,95(3):345~356
    [143]Boisclair D., Leggett W. C. The importance of activity in bioenergetics models applied to actively foraging fishes. Canadian Journal Fisheries and Aquatic Science,1989,46(11): 1859~1867
    [144]Bowering W. R., Lilly G. R. Greenland halibut (Reinhardtius hippoglossoides) off southern Labrador and northeastern Newfoundland (Northwest Atlantic) feed primarily on capelin (Mallot us villosus). Netherlands Journal of Sea Research,1992,29 (123):211~222
    [145]Buit M. H. D. Food and feeding of cod (Gadus morhua L.) in the Celtic Sea. Fisheries Research,1995,22(3-4):227~241
    [146]Bye V. J. Fish reproduction:strategies and tactics. London: Academic Press,1984. 187~205
    [147]Carlander K. D. A history of scale age and growth studies of northern American freshwater fish. In summerfelt R. C., Hall G E., eds. Age and Growth Ames Iowa, Iowa: Iowa State University Press,1987.1~21
    [148]Casimiro Q. V., Manuel O. N. M. Growth and hatching dates of juvenile Pacific sardine Sardinops caeruleus in the Gulf of California. Fisheries Research,2000,48(2):99~106
    [149]Chen Y., Harvey H. H. Growth, abundance, and food supply of white sucker. Transactions of the American Fisheries Society,1995,124:262~271
    [150]Chiu T. S., Chen C. S. Growth and temporal variation of two Japanese anchovy cohorts during their recruitment to the East China Sea. Fisheries Research,2001,53:1~15
    [151]Clay D. A comparison of different methods of age determination in sharptooth catfish clarias gariepinus. Journal of the limnological Society of South Africa,1982,8(2):61~70
    [152]Correia A., Antunes C., Coimbra J. Aspects of the early life history of the European conger eel (Conger conger) inferred from the otolith microstructure of metamorphic larvae. Marine Biology,2004,140 (1):165~173
    [153]Cushing D. H. Fisheries Ecology:A study in population dynamics. Wisconsin:University of Wisconsin Press,1968.54
    [154]Daly H. I., Pierce G. J., Santos M. B. et al. Cephalopod consumption by trawl caught fish in Scottish and English Channel waters. Fisheries Research,2001,52(1-2):51~64
    [155]Devries D. R., Frie R. V. Determination of age and growth. In Murphy B. R., Willis D. W. eds. Fisheries, Techniques, Bethesda, Maryland:American Fisheries Society,1996. 483~512
    [156]Dieckmann U., Heino M. Fishing drives rapid evolution. Swedish Research for Sustainability,2004, NO.3-4:18~19
    [157]Duarte L. O., Garcia C. B. Diet of the mutton snapper Lutjanus analis (Cuvier) from the Gulf of Salamanca, Colombia, Caribbean Sea. Bulletin of Marine Science, 1999,65(2):453~465
    [158]Elliott J. M. The growth rate of brown trout (Salmo trutta L.) fed on maximum rations. Journal of Animal Ecology,1975,44:805~821
    [159]FAO. Review of the state of world's marine fishery resources. Part 1. The Marine Resources. FAO Circular,1992,710(8):235
    [160]Fox M. G., Flowers D. D. Effects of Fish density on Growth, survival, and Food Consumption by Juvenile Walleyes in Rearing Ponds. Transactions of the American Fisheries Society,1990,119:112~121
    [161]Fox M. G., Keast A. Effects of overwinter mortality on reproductive life history characteristics of pumpkinseed (Lepomis gibbosus) populations. Canadian Journal Fisheries and Aquatic Science,1991,48(9):1792~1799
    [162]Fuita T., Kitagawa D., Okuyama Y., et al. Diets of the demersal fishes on the shelf off Iwate, northern Japan. Marine Biology,1995,123(2):219~233
    [163]Gamito S. Growth models and their use in ecological modeling :an application to a fish population. Ecological Modelling,1998,113:83~94
    [164]Gayanilo F. C., Sparre P., Pauly D. The FAO-ICLARM Stock Assessment Tools (FiSAT) User's Guide. Rome:FAO,1994,126
    [165]Geoden G. B. A monograph of the coral trout Plectropomus leopardus. Research Bulletin of the Fisheries Service Queensland,1978,1:42
    [166]Grubert M. A., Wadley V. A., White R. W. G., et al. Diet and feeding strategy of Octopus maorum in southeast Tasmania. Bulletin Marine Science,1999,65(2):441~451
    [167]Gulland J. A. Fish stock assessment:a manual of basic method. FAO/Wiley Series on Food and Agriculture,1984,8(1):68~69
    [168]Gulland J. A. Manual of methods for fish stock assessment. Part 1.Fish population analysis. FAO Manual in Fisheries Science.1969,4(23):154
    [169]Heino J. Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity Conservation,2002,11(1):137~147
    [170]Heino M. Management of evolving fish stocks. Canadian Journal of Fisheries and Aquatic Sciences,1998,55(8):1971~1982
    [171]Heino M., Godo O. R. Fisheries-induced selection pressures in the context of sustainable fisheries. Bulletin of Marine Science,2002,70(2):639~656
    [172]Hutchings J. A. Collapse and recovery of marine fishes. Nature,2000,406:882~885
    [173]Hutchings J. A., Myers R. A. Timing of cod reproduction:international variability and the influence of temperature. Marine Ecology Progress Series,1994,108:21~31
    [174]Hyslop E. J. Stomach contents analysis-a review of methods and their application. Journal of Fish Biology,1980,17:411~429
    [175]Jackson J. B. C., Kirby M. X., Berger W. H., et al. Historical overfishing and the recent collapse of the coastal ecosystems. Science,2001,293:629~638
    [176]Jin X. Biology and population dynamics of small yellow croaker in the Yellow Sea.1996, 2(1):1~14
    [177]Krebs C.J. The experimental analysis of distribution and abundance. Harper Collins College Publishers,1994,4:801
    [178]Lam T. J. Environment influence on gonadal activity in fish. In:Hoar W. S., eds, fish physiology, London:Academic Press.1983.65~166
    [179]Law R. Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science, 2000,57:659~668
    [180]Law R., Grey D. R. Evolution of yields from populations with age-specific cropping. Evolutionary Ecology,1989,3:343~359
    [181]Le Cren E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca Fluviatilis). Animal Ecology,1951,20:210~219
    [182]Leslie P. H., Chitty D. The estimation of population parameters from data obtained by means of the capture-recapture method. Ⅰ. The maximum likelihood equations for estimating the death rate. Biometrika,1951,38:269~292
    [183]Lie H. J. On the Huanghai (Yellow) Sea circulation:a review by current measurement. Acta Oceanologica Sinica,1999,18(3):355~374
    [184]Linke T. E., Platell M. E., Potter I. C. Factors influencing the partitioning of food resources among six fish species in a large embayment with juxtaposing bare sand and seagrass habitats. Journal of Experimental Marine Biology and Ecology,2001,266:193~217
    [185]Maclnnis A. J., Corkum L. D. Age and growth of round goby Neogobius melanostomus in the upper Detroit River. Transactions of the American Fisheries Society,2000,129(3): 852~858
    [186]Miller R. J. Saturation of crab traps:reduced entry and escapement. ICES Journal of Marine Science,1979,38(3):338~345
    [187]Morte S., Redon M. J. Feeding ecology of two megrims Lepidorhombus boscii and Lepidorhombus whiffiagonis in the western Mediterranean(Gulf of Valencia, Spain). Journal of the Marine Biological Association of the UK,1999,79(1):161~169
    [188]Olsen E. M., Heino M., Lilly G. R. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature,2004,428:932~935
    [189]Oozeki Y., Watanabe Y. Comparison of somatic growth and otolith increment growth in laboratory reared larvae of Pacific saury, Cololabis saira, under different temperature conditions. Marine Biology,2000,136(2):349~359
    [190]Pauly D. ELEFANⅡ:User's instruction and program listings. ICLARM, Manila.1980
    [191]Pauly D. Length-converted catch curve. A powerful tool for fisheries research in the tropics (Part Ⅰ). Fishbyte,1983,1(2):9~13
    [192]Pauly D. Length-converted catch curve. A powerful tool for fisheries research in the tropics (Part Ⅱ). Fishbyte,1984,2(1):17~19
    [193]Pauly D. Length-converted catch curve. A powerful tool for fisheries research in the tropics (PartⅢ:Conclusion). Fishbyte,1984,2(3):9~10
    [194]Pauly D. Length-converted catch curves and the seasonal growth of fishes. Fishbyte,1990, 8(3):33~38
    [195]Pauly D. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stock. ICES Journal of Marine Science,1980,39 (2): 175~192
    [196]Pauly D., Christensen V, Dalsgaard J. et al. Fishing down marine food webs. Science, 1998,279:860~863
    [197]Pauly D., Christensen V., Froese, R. et al. Fishing down aquatic food webs. American Scientist,2000,88:46~51
    [198]Pope J. G. An investigation of the accuracy of virtual population analysis using cohort analysis. Int. Comm. Northwest. Atl. Fish. Res. Bull.,1972,9:65~74
    [199]Powles P. M., Warlen, S. M. Estimation of hatch periods for yellow perch, based on otolith readings from juvenile (age-0). American Fisheries Society,1988,5:60~67
    [200]Ratz H. J., Stein M. Variation in growth and recruitment of Atlantic Cod (Gadus morhua) off Greenland during the second half of the twentieth century. Journal of Northwest Atlantic Fish Science,1999,25:161~170
    [201]Reznick D. N. Plasticity in age and size at maturity in male guppies (Poecilia reticulata): an experimental evaluation of alternative models of development. Journal Evolutionary Biology,1990,3(3-4):185~203
    [202]Richard K., Wallace J. R. An assessment of diet-overlap indexes. Transactions of the American Fisheries Society,1981,110(1):72~76
    [203]Ricker W. E. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada,1975,191:1~382
    [204]Robinson C. L. K. The consumption of euphausiids by the pelagic fish community off southwestern Vancouver Island, British Columbia. Journal of Plankton Research,2000,22 (9):1649~1662
    [205]Roff D. A. The evolution of life history parameters in teleosts. Canadian Journal Fisheries and Aquattic Science,1984,41:989~1000
    [206]Runstorm A. L., Vondracek B., Jennings C. A. Population statistics for paddlefish in the Wisconsin river. Transactions of the American Fisheries Society,2001,130(4):546~556
    [207]Russell N. R., Wootton R. J. Appetite and growth compensation in the European minnow, Phoxinus phoxinus(Cyprinidae), following short periods of food restriction. Environment Biology of Fishes,1992,34(3):277~285
    [208]Saville A. Survey methods of appraising fishery resources. FAO Fisheries Technical Papers,1977,171:76
    [209]Secor D. H., Dean J. M. Recent Developments in Fish Otolith Research. Columbia: University of South Carolina Press,1995
    [210]Shin Y. J., Rochet M. J., Jennings S. et al. Using size-based indicators to evaluate the ecosystem effects of fishing. ICES Journal of Marine Science,2005,62:384~396
    [211]Silberschneider V., Gray C. A., Stewart J. Age, growth, maturity and the over-fishing of the iconic sciaenid. Fisheries Research,2008,95:220~229
    [212]Smith S. E. Timing of vertebral band, deposition in tetracyline-injected leopard sharks. Transactions of the American Fisheries Society,1984,113(3):308~313
    [213]Sneed K. E. A method for calculating the growth of channel catfish Ictalurus lacustris Punctatus. Transactions of the American Fisheries Society,1951,80(2):174~183
    [214]Steams S. C. Crandall R. C. Plasticity for age and size at sexual maturity: a history response to unavoided stress. In Potts G. W., Wotton R. J., eds. Fish Reproduction. London: Academic Press,1984.13~33
    [215]Stergiou K. I. Overfishing, tropicalization of fish stocks, uncertainty and ecosystem management:resharpening Ockham's razor. Fisheries Research,2002,55:1~9
    [216]Stunz T., Linton B. C. Age and growth of southern flounder in Texas waters, with emphasis on Matagorda Bay. Transactions of the American Fisheries Society,2000,129:119~125
    [217]Sumaila U. R. Markets and fishing down marine food webs phenomenon. Bulletin,1998, 11(3-4):25~26
    [218]Tanasichuk R. W. Implications of interannual variability in euphausiid population biology for fish production along the southwest coast of Vancouver Island:a synthesis. Fisheries Oceanography,2002,11(1):18~30
    [219]Tirasin E. M., Jorgensen T. An evaluation of the precision of diet description. Marine Ecology,1999,182:243~252
    [220]Tonn W. M., Holopainen I. S., Paszkowski C. A. Density-dependent effects and regulation of crucian carp populations in single-species ponds. Ecology,1994,75(3):824~834
    [221]Tonn W. M., Paszkowski C. A., Holopainen I. S. Piscivory and recruitment: mechanisms structuring prey populations in small lakes. Ecology,1992,73:951~958
    [222]Townshend T. J., Wootton R. J. Effects of food supply on the reproduction of the convict cichlid, Cichlasoma nigrofasciatum. Journal of Fish Biology,1984,24:91~104
    [223]Trippel E. A. Age at maturity as a stress indicator in fisheries. Bioscience,1995,45: 759~771
    [224]Victor B. C., Brothers E. B. Age and growth of the fallfish Semotilus corporalis with daily otolith increments as a method of annulus verification. Canadian Journal of Zoology,1982, 60:2543~2550
    [225]Walsh M. R., Munch S. B., Chiba S. et al. Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. Ecology Letters,2006,9:142~148
    [226]Weatherly A. H. Growth and Ecology of Fish Populations. London:Academic Press,1972
    [227]Wieland K. Jarre-Teichmann A. Horbowa K. Changes in the timing of spawning of Baltic cod:possible causes and implications for recruitment. ICES Journal Marine Science,2000, 57(2):452~46
    [228]Wootton R. J. Ecology of teleost fishes. London:Chapman & Hall,1990.1~404
    [229]Wootton R. J. Energy costs of egg production and environmental determination of fecundity in teleost fishes. In: Miller P. J. eds. Fish Phenology: anabolic adaptiveness in teleosts London:Academic Press,1979.443
    [230]Wootton R. J. Environmental factors in fish reproduction. In Richter C. J. J., Goos H. J. Th., eds. Proceedings of the International Symposium on Reproductive physiology of Fish Wageningen, Netherlands:Pudoc Press,1982.210~219
    [231]Yamamura O., Inada T., Shimazaki K. Predation on Euphausia pacifica by demersal fishes: predation impact and influence of physical variability. Marine Biology,1998,132: 195~208
    [232]Zamarro J. Feeding behaviour of the American plaice(Hippolossoides platessoides)on the Southern Grand Bank of Newfoundland. Netherland Journal of Sea Research,1992, 29(1-3):229~238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700