内嵌式正弦波永磁同步电机设计及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电机因其高功率密度、高效率、功率因数可调等优点而受到广泛关注。内嵌式正弦波永磁同步电机也是其中一员。与其他类型的永磁电机相比较,内嵌式正弦波永磁同步电机由于将永磁体嵌入到转子铁芯内部,因此结构更紧凑、极弧系数易于实现控制,每极能够提供更大磁通。机械装备加工行业的共同特点是需要高性能的伺服控制系统及高性能电机。本文以机械装备加工行业用内嵌式正弦波永磁同步电机为研究对象,全面阐述了内嵌式正弦波永磁同步电机电磁计算及电机设计、优化设计的全过程。
     首先提出了一种考虑定转子开槽及充分考虑电机内部漏磁的改进型等效磁路模型。气隙磁密值的精确估算及电机基本电磁参数设计的合理性是进行电机优化设计的基础。该等效磁路模型的改进之处一是考虑了定转子槽对磁路的影响,二是详细分析了由永磁体在转子铁芯内部的位置不同所导致的永磁体端部漏磁及极间漏磁。同时考虑由于磁场分布变化及饱和对磁路计算的影响,采用场路结合法对相关参数进行修正。之后通过改进型等效磁路法编写电机电磁计算程序,计算结果与有限元分析结果相比较验证了该等效磁路的正确性,为电机优化设计基本电磁参数的获取打下基础。
     提出将提高产品品质的稳健设计方法Taguchi方法应用到电机参数优化设计当中。Taguchi方法是一种局部优化设计方法,与传统的局部优化设计方法相比,能够实现多目标优化、获取多参数优化的最佳组合。首先建立实验正交矩阵,通过有限元方法求解该矩阵,并采用统计等数学手段分析所有设计参数对单一目标或多目标优化的最佳组合。通过改进型等效磁路法确定基本的电机电磁参数,选取齿槽转矩最小及最大平均转矩最大为优化目标,研制一台纺织机用20kW内嵌式正弦波永磁同步电机样机。样机及数据测试结果显示了该方法的有效性。
     全局优化设计是电机优化设计的一种发展趋势。遗传算法由于其内在的并行搜索机制及易于编程实现等优点,在电机优化设计中的应用也日趋广泛。详细分析了遗传算法具体的实现步骤及各类改进措施,选择改进型自适应遗传算法和小生境遗传算法并将其应用到内嵌式正弦波永磁同步电机优化设计当中,着重分析了增广目标函数的获取及适应度值的程序求解法。
     遗传算法能够逼近最优值,尽管各类改进型遗传算法能跳出局部最优解,但运算时间及迭代代数会增加。而Taguchi方法的优势在于用最少的试验次数获取函数值并借助于信噪比的分析可获得各参数的最佳组合。提出了一类新型混合型遗传算法,将局部优化设计方法与全局优化设计方法结合起来。该方法将Taguchi方法嵌入到遗传算法的交叉运算之后,借助于Taguchi方法的优势,能产生性能更优的个体,这样能保证遗传算法的进化方向而跳出局部最优解,同时缩短了选优的时间和迭代代数。选取效率作为优化目标,研制一台锻压机用30kW内嵌式正弦波永磁同步电机样机。样机及性能测试数据验证了该方法的有效性。
With the advantages of high power density, high efficiency, adjustability of power factor,Permanent Magnet Synchronous Motor (PMSM) was received extensive attention. InteriorPermanent Magnet Synchronous Motor (IPMSM) is one of them. Compared to other types ofPermanent Magnet Motor (PMM), IPMSM is more compaction, easier to control thecoefficient of pole-arc and can provide more magnetic flux of each pole for the case ofembedded the permanent magnet to the rotor steel. The common characteristic of machinery,equipment and processing industry is that they all need high performance of servo controlsystem and high performance motor. This paper looks IPMSM which used in machinery,equipment and processing industry as a subject investigated, represents the course ofelectromagnetic calculation, motor designing and optimal designing of IPMSM overall.
     First of all, it gives an improved equivalent magnetic circuit which considered theinfluence of the slots of stator and rotor and considered the internal leakage flux of motor. Theaccurate estimation of air gap flux density and the rationality of the designing of motor’selectromagnetic parameters are the basic to the optimal designing of motor. There exists twoimprovements of the equivalent magnetic circuit, first is considering the effect of slotted instator and rotor, second is detailing the leakage flux of the end of permanent magnet andamong the poles caused by the different location which lay out the permanent magnet intorotor steel. To program for the electromagnetic calculation based on the improved equivalentmagnetic circuit and running it, result is then obtained. Compared to the result of FiniteElement Analysis (FEA), it can provide the veracity of the equivalent magnetic circuit whichis the basic of the optimal designing of motor for obtaining the electromagnetic parameters.
     Secondly, it presents the Taguchi method for optimize the parameters of motor whichused to heighten the quality of products and which is a method for robust designing. Taguchimethod is an optimal designing method for local optimization. Compared to other traditionalmethod for local optimization, it can realize the optimization for several objectives and canobtain the optimal combination of several parameters. It builds the orthogonal array for experiment first, then solves the array by FEA, and obtains the optimal combination of severalparameters for single objective or several objectives. The prototype of20kW IPMSM whichused for a spinner is then manufacturing which to obtain the basic electromagnetic parametersby the equivalent magnetic circuit and to choose the minimum of the cogging torque and themaximum of the average torque for optimal objective. The prototype test shows the validity ofthe Taguchi method.
     It a development trend of applying the global optimization for motor designing. GeneticAlgorithm (GA) is widely used in optimal designing of motor with the advantage of parallelsearch and easier to program. This details the course of realization and improvements of GA,chooses the Improved Adaptive GA (IAGA) and Niche GA (NGA) for optimize IPMSM,analyzes the acquisition of the argument objective function and obtain the fitness value byprogram solving.
     GA can approach the optimum value for using the improved GA which can be out oflocal optimum value, but it increases the calculated times and iterating gap. The advantage ofTaguchi method is that it can obtain the parameters optimum combination by analysis ofsignal to noise ratio using the minimum times of experiment. This paper presents a newhybrid GA which embedded the Taguchi method into GA after crossover operator, which canguarantee GA be out of local optimize and then decrease the times for optimizing anditerating gap, then the prototype of30kW IPMSM using for dieing machine is manufacturingwhich selecting the efficiency as the optimization target. The prototype test shows the validityof the Taguchi method.
引文
[1]“十二五规划课题组”.中国:”十二五”规划研究[J].华经纵横,2010:1-51
    [2]节能减排.百度文库,2011
    [3]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997
    [4]王秀和.永磁电机[M].北京:中国电力出版社,2007
    [5] Gieras J.F., Wing M.. Permanent Magnet Synchronous Motor Technology [M]. New York:Marcel Dekker, Inc.,2002
    [6]电机发展史.百度文库,2011
    [7]许德良,刘长山.稀土永磁材料的应用于技术设备[J].河北工业科技,2011,28(2):129-131
    [8]李健,梁建,刘旭光.钕铁硼永磁材料性能测试技术研究[J].太原理工大学学报,2006,37(4):430-433
    [9]杨应昌.新型各向异性稀土永磁材料产业化开发进展[J].新材料产业,2011,2:40-43
    [10]邱国平,邱明.永磁直流电机实用设计及应用技术[M].北京:机械工业出版社,2009
    [11]Nillsen K.R., Nysveen A.,赵东阳(译).大型永磁同步电机在北欧国家的研究活动调查[J].海外瞭望,2009,5:45-50
    [12]刘增磊,程小华.无刷直流电动机发展与现状[J].防爆电机,2007,42(3):1-5
    [13]Lan Z.Y., Yang X.Y.. Analysis of an Improved Magnetic Circuit in Interior PermanentMagnet Synchronous Motors[C]. Proceedings of IEEE Conference on ElectricalMachines and Systems, Tokyo, Japan,2009:1-4
    [14]徐俊峰,冯江华.永磁同步传动系统的应用概况[J].大功率变流技术,2010,1:38-44
    [15]王巍,郭宏,李艳明,等.电气双余度无刷直流电动机转子极弧系数研究[J].电机与控制学报,2009,13(6):862-866
    [16]陈春光,孟大伟,于喜伟.三相交流永磁同步电动机转子漏磁场分析与计算[J].防爆电机,2009,44(3):1-4
    [17]黄守道,欧金生,高剑,等.稀土永磁同步电动机场路结合设计方法[J].微电机,2007,40(11):4-7
    [18]梁华,李顺铭,严登俊.稀土永磁同步电动机优化设计分析[J].南京理工大学学报,2002,26(增刊):138-142
    [19]傅丰礼,唐孝镐.异步电动机设计手册[M].北京:机械工业出版社,2006
    [20]陈世坤.电机设计[M].北京:机械工业出版社,2000
    [21]吴海鹰.永磁电机电磁计算[J]. ANSYS中国用户论文集,2004
    [22]兰志勇,杨向宇,郑超迪,等.内嵌式永磁同步电机设计中改进型磁路分析[J].微电机,2010,43(11):14-17
    [23]王兴华,励庆孚.永磁无刷直流电机磁阻转矩的解析计算方法[J].中国电机工程学报,2002,22(10):104-108
    [24]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].南京:东南大学,2003
    [25]盛剑霓.工程电磁场数值分析[M].西安:西安交通大学出版社,1991.
    [26]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1982.
    [27]高本庆.时域有限差分法[M].北京:国防工业出版社,1995
    [28]Yee K.S. Numerical solution of initial boundary value problems involving Maxwell'sequations in isotropic media [J]. IEEE Trans. Antennas Propagat,1966, AP-14:302-307
    [29]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998
    [30]张涛,朱熀秋,孙晓东,等.基于场路耦合时步有限元法的高速无轴承永磁同步电机电磁分析[J].武汉大学学报(工学版),2011,44(5):645-649
    [31]最优化问题.百度文库,2011
    [32]范镇南,韩力.电机优化设计技术发展情况[J].电机与控制应用,2006,33(8):3-7
    [33]方瑞明.电机智能设计方法[M].北京:科学出版社,2010
    [34]最速下降法.百度文库,2012
    [35]牛顿迭代法.百度文库,2012
    [36]金明.基于改进鲍威尔法的电力变压器优化设计[J].变压器,1999,36(10):12-14
    [37]单纯形法.百度文库,2012
    [38]王瑾.模拟退火法在电机全局优化设计中的应用[J].黄冈职业技术学院学报,2008,10(3):15-18
    [39]徐衍亮,唐任远.模拟退火算法在永磁同步电动机优化设计中的应用[J].电工技术杂志,2000,2:8-10
    [40]吕德刚.改进自适应遗传算法在防爆高能电机优化设计中的应用[D].哈尔滨:哈尔滨理工大学,2007
    [41]朱朝艳,王建波,王学志,等.改进遗传算法的研究现状分析[J].吉林水利,2010,第7卷,第338期:1-5
    [42]孟大伟,徐磊,吕海鹏.基于小生境遗传算法的YYK系列高压电机优化设计[J].哈尔滨理工大学学报,2010,15(2):1-4
    [43]Zhang Y.C., Yu H.T., Xia J., et al. Optimization of Linear Induction Machines Based on aNovel Adaptive Genetic Algorithm[J]. Journal of Southeast University(English Edition),2009,25(2):203-207
    [44]李景川,励庆孚,丁国兴.基于遗传算法的大中型异步电机优化设计[J].大电机技术,1998,3:33-38
    [45]吴建华.基于遗传算法的开关磁阻电机优化设计[J].电工技术学报,1996,11(2):6-10
    [46]龙永文.基于遗传算法的永磁无刷直流电机优化设计研究[D].南京:东南大学,2005
    [47]陈金涛,辜承林.基于遗传算法的永磁直流电机优化设计[J].微电机,2006,39(8):17-20
    [48]康艳琴,上官璇峰,肖佳乐.基于遗传算法的圆筒形直线感应电机优化设计[J].煤矿机电,2004,4:39-45
    [49]康艳琴.基于遗传算法的圆筒形直线感应电机优化设计研究[D].焦作:河南理工大学,2008
    [50]邱琳,刘长红,姚若萍.基于遗传算法的直线同步电机优化设计[J].大电机技术,2003,2:1-4
    [51]于力.基于遗传算法的中小型同步电机优化设计[D].长沙:湖南大学,2007
    [52]石山,励庆孚,王兴华.基于自适应遗传算法的无刷直流电机的优化设计[J].西安交通大学学报,2002,36(12):1215-1218
    [53]卢琴芬,陈宇,叶云岳,等.遗传模拟退火算法在圆筒形直线感应电机优化设计中的应用[J].中小型电机,2002,29(5):17-19
    [54]周克定.遗传算法的基本理论及其在电机优化设计中的应用[J].湖北工学院学报,1995,10(4):1-6
    [55]李鲲鹏,胡虔生.遗传算法电机优化设计简介[J].湖北工学院学报,1995,10(4):32-22
    [56]张兴政.遗传算法在稀土永磁屏蔽电机优化设计中的应用[J].沈阳电力高等专科学校学报,1999,1(2):4-6
    [57]李俊玲.遗传算法在圆筒形直线电机优化设计中的应用[D].沈阳:沈阳工业大学,2008
    [58]吕德刚,王国良,孟大伟,等.自适应遗传算法在防爆型高能量密度电机优化设计中的应用[J].中小型电机,2002,42(1):7-10
    [59]Tsai J.T., Liu T.K., Chou J.H.. Hybrid Taguchi-Genetic Algorithm for Global NumericalOptimization[J]. IEEE Trans. On Evolutionary Computation,2004,8(4):365-377
    [60]Bianchi N, Bolognani S.. Design optimization of electric motors by genetic algorithms [J].IEE Proc-Electr. Power Appl.,1998,145:475~483
    [61]Cho D.H., Jung H.K., Chung T.K., et al. Design of a Short-Time Rating InteriorPermanent Magnet Synchronous Motor Using a Niching Genetic Algorithm[J]. IEEETransactions on Magnetics,2000,36(4):1936-1940
    [62]包广清,郑文鹏,江建中.一种改进粒子群算法在横向磁通永磁电机优化中的应[J].电机与控制应用,2008,35(8):27-31
    [63]张小玲.粒子群算法在圆筒形直线感应电机优化设计中的应用[D].沈阳:沈阳工业大学,2010
    [64]夏永明,付子义,袁世鹰,等.粒子群优化算法在直线感应电机优化设计中的应用[J].中小型电机,2002,29(6):14-16
    [65]乔静秋,陈旭东,杨仕友,等.基于Tabu算法的轮毂式永磁电机优化研究[J].浙江大学学报(工学版),2002,36(6):713-717.
    [66]孟大伟,吕海鹏,徐磊.自适应蚁群算法在YKK系列中型高压电机优化设计中的应用[J].大电机技术,2010,3:1-4
    [67]Dorigo M., Gambardella L.M.. Ant Colony System: A Cooperative Learning Approach tothe Traveling Salesman Problem [J]. IEEE Trans. On Evolutionary Computation,1997,1(1):53-66.
    [68]张向峰,李皎洁,王致杰.一种免疫进化算法及其收敛性的研究[J].上海电机学院学报,2009,12(1):11-14
    [69]Qin R., Rahman M.A.. Magnetic Equivalent Circuit of PM Hysteresis SynchronousMotor [J]. IEEE Trans. On Magnetics,2003,39(5):2998-3000
    [70]Moallem M., Dawson G.E.. An Improved Magnetic Equivalent Circuit Method forPredicting the Characteristics of Highly Saturated Electromagnetic Devices [J]. IEEETrans. On Magnetics,1998,34(5):3632-3635
    [71]Cale J., Sudhoff S.D., Tan L.Q.. Accurately Modeling EI Core Inductors Using aHigh-Fidelity Magnetic Equivalent Circuit Approach [J]. IEEE Trans. On Magnetics,2006,42(1):40-46
    [72]Sudhoff S.D., Kuhn B.T., Corzine K.A., et al. Magnetic Equivalent Circuit of InductionMotors[J]. IEEE Trans. On Energy Conversion,2007,22(2):259-270
    [73]Sixdenier F., Raulet M.A., Marion R., et al. Dynamical Models for Eddy Current inFerromagnetic Cores Introduced in an FE-Tuned Magnetic Equivalent Circuit of anElectromagnetic Relay [J]. IEEE Trans. On Magnetics,2008,44(6):866-869
    [74]Choi H.C., Kim D.H., Il-Han Park I.H., et al. A New Design Technique of MagneticSystems Using Space Mapping Algorithm[J]. IEEE Trans. On Magnetics,2001,37(5):3627-3630
    [75]Takeda Y., Sanada M., Morimoto S., et al. Linear Pulse Motor with Interior PermanentMagnet Mover[J]. IEEE Trans. On Industry Applications,1994,30(1):141-145
    [76]Chen J.Y., Nayar C.V., Longya Xu L.Y.. Design and Finite-Element Analysis of anOuter-Rotor Permanent-Magnet Generator for Directly Coupled Wind Turbines[J]. IEEETrans. On Magnetics,2000,36(5):3802-3809
    [77]Rasmussen K.F., Davies J.H., Miller T. J. E..et al. Analytical and Numerical Computationof Air-Gap Magnetic Fields in Brushless Motors with Surface Permanent Magnets[J].IEEE Trans. On Industry Applications,2000,36(6):1547-1554
    [78]Homayoun M.K., Jafar M., Hamid A. T.. A Comprehensive Method for the Calculation ofInductance Coefficients of Cage Induction Machines[J]. IEEE Trans. On EnergyConversion,2003,18(2):187-193
    [79]Koenig A.C., Williams J.M., Pekarek S.D.. Evaluation of Alternative EvolutionaryProgramming Techniques for Optimization of an Automotive Alternator[J]. IEEE Trans.On Vehicular Technology,2006,55(3):933-942
    [80]Vlado Ostavic. A Simplified Approach to Magnetic Equivalent-Circuit Modeling ofInduction Machines[J]. IEEE Trans. On Industry Electronics,1998,24(2):308-316
    [81]Vlado Ostovic, Miller J.M., Garg V.K., et al. A Magnetic-Equivalent-Circuit-BasedPerformance Computation of a Lundell Alternator[J]. IEEE Trans. On IndustryElectronics,1999,35(4):825-830
    [82]陈俊峰.永磁电机[M].北京:机械工业出版社,1982
    [83]Mathcad教程.百度文库,2010
    [84]Kim S.I., Lee J.Y., Kim Y.K., et al. Optimization for Reduction of Torque Ripple inInterior Permanent Magnet Motor by Using the Taguchi Method[J]. IEEE Trans. OnMagnetics,2005,41(5):1796-1799
    [85]Omekanda A.M.. Robust Torque and Torque-per-Inertia Optimization of a SwitchedReluctance Motor Using the Taguchi Methods[J]. IEEE Trans. On Industry Applications,2006,42(2):473-478
    [86]Wang H.T., Liu Z.J., Chen S.X., et al. Application of Taguchi Method to Robust Designof BLDC Motor Performance[J]. IEEE Trans. On Magnetics,1999,35(5):3700-3702
    [87]Hwang C.C., Li P.L., Chuang F.C., et al. Optimization for Reduction of Torque Ripple inan Axial Flux Permanent Magnet Machine[J]. IEEE Trans. On Magnetics,2009,45(3):1760-1763
    [88]Hwang C.C., Lyu L.Y., Liu C.T., et al. Optimal Design of an SPM Motor Using GeneticAlgorithms and Taguchi Method[J]. IEEE Trans. On Magnetics,2008,44(11):4325-4328
    [89]Kim W.H., Kim K.C., Kim S.J., et al. A Study on the Optimal Rotor Design of LSPMConsidering the Starting Torque and Efficiency[J]. IEEE Trans. On Magnetics,2009,45(3):1808-1811
    [90]Low T.S., Chen S.X., Gao X.K.. Robust Torque Optimization for BLDC SpindleMotors[J]. IEEE Trans. On Industry Electronics,2001,48(3):656-663
    [91]Matoglu E., Pham N., Araujo D.N., Statistical Signal Integrity Analysis and DiagnosisMethodology for High-Speed Systems[J]. IEEE Trans. On Advanced Packaging,2004,27(4):611-629
    [92]Chen, S.X., Low T., Bruhl B.. The Robust Design Approach For Reducing CoggingTorque In Permanent Magnet Motors[J]. IEEE Trans. On Magnetics,1998,34(4):2135-2137
    [93]Brisset S., Gillon F., Vivier S., et al. Optimization with Experimental Design: AnApproach Using Taguchi’s Methodology and Finite Element Simulations[J]. IEEE Trans.On Magnetics,2001,37(5):3530-3533
    [94]Yung Ting Y., Huang J.S., Chuang F.K., et al. Dynamic Analysis and Optimal Design of aPiezoelectric Motor[J]. IEEE Trans. On Ultrasonics, fekroelecthics and FrequencyControl,2003,50(6):601-613
    [95]Luo R.C., Tzou J.H.. Implementation of a New Adaptive Slicing Algorithm for the RapidPrototyping Manufacturing System[J]. IEEE Trans. On Mechatronics,2004,9(3):593-600
    [96]Liu Y.T., Fung R.F., Wang C.C.. Application of the Nonlinear, Double-Dynamic TaguchiMethod to the Precision Positioning Device Using Combined Piezo-VCM Actuator.IEEE Trans. On Ultrasonics, fekroelecthics and Frequency Control,2007,54(2):240-250
    [97]Medina A., Arrillaga J.. Simulation of Multilimb Power Transformers in the HarmonicDomain[J]. IEE Proceedings-C,1992,139(3):269-276
    [98]梁敏. Taguchi方法在供应商选择中的应用[J].工业经济技术,2010,29(6):116-118
    [99]徐刚,唐传祥,孟凡宝,等.基于Taguchi算法的双层贴片宽带天线优化方法[J].电波科学学报,2009,24(6):1060-1064
    [100]兰志勇,杨向宇,王芳媛,等. Taguchi方法在内嵌式正弦波永磁同步电机优化设计中的应用[J].电工技术学报,2011,26(12):37-42
    [101]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,2005
    [102]刘国强,赵凌志,蒋继娅. ANSOFT工程电磁场有限元分析[M].北京:电子工业出版社,2005
    [103] Maxwell_2D. www.ansoft.com
    [104] Getting started a2D transient linear motion problem. www.ansoft.com
    [105]陈国良,王煦法,庄正权.遗传算法及其应用[M].北京:人民邮电出版社,1996
    [106]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [107] Bianchi N., Bolognani S.. Design optimizationg of electric motors by geneticalgorithms[J]. IEE Proc-Electr. Power Appl,1998,145:475~483
    [108]许孝卓,汪旭东.基于改进型小生境遗传算法的永磁直线同步电机优化研究[C].全国直线电机学术年会,2006:62-67
    [109] Gen M., Cheng R.. Genetic Algorithms and Engineering Design[M]. New York: Wiley,1997
    [110] GB/T1029-2005,三相同步电机试验方法[S].中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700