人成牙本质样细胞L型钙离子通道α_1亚基D亚型特异性基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙本质是构成牙齿的主体,在生理情况下只有矿化过程,不存在类似于骨组织的吸收和改建过程,牙本质的形成细胞——成牙本质细胞具有终身形成牙本质的能力,也是牙本质发生损伤,龋损时的修复细胞。因此,以成牙本质细胞为研究对象,可以直观的反映牙本质的形成和修复机制,并在一定程度上可以反映人类矿化细胞在组织矿化过程中的作用机制。
     成牙本质细胞是位于牙髓组织外周的高柱状细胞,来源于外胚间充质细胞。成牙本质细胞具有分泌和合成所有牙本质基质成分的功能,在牙本质的形成过程中起重要的作用。同时成牙本质细胞还具有矿化的功能,但矿化所需的钙离子是怎样到达矿化前沿?这种钙离子的转运是怎样调控的?1988年Lundgren T等首次发现小鼠成牙本质细胞膜和线粒体内膜上有钙离子通道,此后学者们开始对牙齿尤其是成牙本质细胞中的钙离子通道进行研究,但到目前为止,关于这方面的研究报道还很少。
     本研究首先从人成牙本质样细胞中克隆出L型钙离子通道α_1亚基D亚型的特异性基因,并对其进行测序鉴定,经与己登录的人L型钙离子通道α_1亚基D亚型基因序列比对,证实克隆出的基因片段为人成牙本质样细胞L型钙离子通道α_1亚基D亚型的特异性基因;随后构建了该特异
Dentin is the principal part of a tooth, unlike bone, under physiological condition, no absorption and reconstruction but mineralization course exists in dentin. Dentin formation is a consecutive process in whole life of a tooth and odontoblast cells are responsible for it through secretion and mineralization of dentin matrix. Thus, taking odontoblast cells as research target would help to better understand the mechanisms of dentinogenosis and to some extent provide valuable information in the formation of human mineralized tissues.
    Odontoblast cells, closely neighbor dentin, form a monolayer lining the periphery of dental pulp, and stretch cell processes into dentinal tubules. Odontoblasts are derived from embryonic connective cells that are called ectomesenchymal cells because of their well-established origin from the neural crest. Odontoblasts play a key role during the formation of dentin owing to their abilities of secreting and synthesizing the all the matrix constituents of the dentin. In addition, the odontoblasts seem to be instrumental in mineral formation. The essential question is how the Ca~(2+) ions are transported to the mineralization front, and how this transportation is regulated. Earlier evidence indicates that it is important of the transcellular route of Ca~(2+) transport during dentinogenesis. If this is the case, a set of
引文
[1] Lundgren T, Nilsson M, Ritchie HH, Linde A Junctional proteins and Ca~(2+) transport in the rat odontoblast-like cell line MRPC-1. Calcif Tissue Int 2001; 68:192-201.
    [2] Allard B, Couble ML, Magloire H, Bleicher F. Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem 2000; 275: 25556-61.
    [3] Cobourne MT, Sharpe PT. Tooth and jaw: molecular mechanisms of patterning in the first branchial arch. Archives of Oral Biology 2003; 48: 1-14.
    [4] Thesleff I. Epithelial-mesenchymal signaling regulating tooth morphogenesis. Journal of Cell Science 2003; 116: 1647-1648.
    [5] Veis A. Amelogenin splice gene products: Potential signaling molecules. Cellular and Molecular Life Sciences 2003; 60: 30-55.
    [6] Ruch JV. Tooth crown morphogenesis and cytodifferentiations: candid questions and critical comments. Connect Tissue Res 1995; 32:1-8.
    [7] Ruch JV, Lesot H, Begue-Kim C. Odontoblast differentiation. Int J Dev Bio, 1995; 39: 51-68.
    [8] Lesot H, Lisi S, Peterkova R, et al. Epigenetic signals during odontoblast differentiation. Adv Dent Res 2001; 15:8-13
    [9] 金岩主编.口腔颌面组织胚胎学.西安:陕西科学技术出版社,2002
    [10] 凌均棨.牙髓病学.北京:人民卫生出版社,1998:14-33
    [11] About I, Camps J, Mitsiadis TA, et al. Influence of resinous monomers on the differentiation in vitro of human pulp cells into odontoblasts. J Biomed Mater Res, 2002, 12:55-58.[12] Linde A. Dentin and Dentinogenesis. Floride: CRC Press Inc, 1984
    [13] Butler WT, Ritchie H. The nature and functional significience of dentin extracellular matrix protein. Int J Dev Biol 1995; 39: 169-79
    [14] Bonucci E. Crystal ghosts and biological mineralization: Fancy spectres in an old castle, or neglected structures worthy of belief?. Journal of Bone Mineral and Metabolism 2002; 20: 249-265.
    [15] Arana-Chavez VE, Katchburian E. Development of tight junctions between odontoblasts in early dentinogenesis as revealed by freeze-fracture. The Anatomical Record 1997; 248: 332-338.
    [16] Joao SM., Arana-Chavez VE. Expression of connexin 43 and ZO-1 in differentiating ameloblasts and odontoblasts from rat molar tooth germs. Histochemistry and Cell Biology 2003; 119: 21-26.
    [17] Joao SM, Arana-Chavez VE. Tight junctions in differentiating ameloblasts and odontoblasts differentially express ZO-1, occludin and claudin-1 in early odontogenesis of rat molars. The Anatomical Record, 2004; 274: 561-570.
    [18] Arana-Chavez VE, Katchburian E. Freeze-fracture studies of the distal plasma membrane of rat odontoblasts during their differentiation and polarization. European Journal of Oral Sciences, 1998;106:132-136.
    [19] Butler WT, Ritchie HH. The nature and functional significance of dentin extracellular matrix proteins.International Journal of Developmental Biology 1995; 39:169-179.
    [20] He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Materials 2003; 2: 552-558.
    [21] Papagerakis P, Berdal A, Mesbah M, Peuchmaur M, Malaval L,??Nydegger J. Investigation of osteocalcin, osteonectin, and dentin sialophosphoprotein in developing human teeth. Bone 2002; 30:377-385.
    [22]Smith AT, Cassidy N, Perry H, et al. Reactionary dentinogenesis. International Journal of Developmental Biology 1995; 39: 273-280.
    [23]Veis A, Perry A. The phosphoprotein of the dentin matrix. Biochemistry 1967; 6:2409-2412
    [24]Dickson IR, Dimuzio MT, Volpin D, et al. The extraction of phosphoproteins from bovine dentin. Calcif Tissue Res 1975; 19:51-56.
    [25]Begue-kirn C, Ruch JV, Ridall AL, et al. Comparative analysis of mouse DSP and DPP expression in odontoblasts, preameloblasts, and experimentally induced odontoblast-like cells. Eur J Oral Sci 1998;106:254-257.
    [26]Vries IGD, Quatier E, Steireghem V, et al. Characterization and immunocytochemical localization of dentin phosphoprotein in rat and bovine teeth. Archs Oral Biol 1986, 31:74-78.
    [27]Jontell M, Linde A. Non-collagenous proteins of predentine from dentinogenically active bovine teeth. Biochem, 1983; 214:769-773.
    [28]Tagaki Y, Veis A. Isolation of phosphophoryn from human dentin organic matrix. Calcif Tissue Int 1984; 36:259-264.
    [29]Gorter de Vries I, Quartier E, Van Steirteghem A. Characterization and immunocytochemical localization of dentine phosphoprotein in rat and bovine teeth. Arch Oral Biol 1986; 31:57-61.
    [30]Rahima M, Tsay TG; Andujar M. Localization of phosphophoryn in rat incisor dentin using immunocytochemical techniques. J Histochem Cytochem 1988; 36:153-155.
    [31] Fujisawa R, Kuboki Y. Affinity of bone sialoprotein and several other bone and dentin acidic proteins to collagen fibrils. Calcif Tissue Int 1992; 51: 438-441.
    [32] Stetler-Stevenson WG, Veis A. Type Ⅰ collagen shows a specific binding affinity for bovine dentin phosphophoryn. Calcif Tissue Int, 1986; 38: 135-138.
    [33] Marsh ME. Self-association of calcium and magnesium complexes of dentin phosphophoryn. Biochemistry 1989; 25: 339-341.
    [34] Zanetti M, de Bernard B, Jontell M. Ca~(2+)-binding studies of the phosphoprotein from rat-incisor dentine. Eur J Biochem 1981; 113: 541-543.
    [35] Linde A, Lussi A, Crenshaw MA. Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int 1989; 44: 286-288.
    [36] Boskey AL, Maresca M, Doty S. Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner 1990; 11: 55-58.
    [37] Traub W, Jodalkin A, Arad T. Dentin phosphophoryn binding to collagen fibrils. Matrix 1992; 12: 197-200.
    [38] Butler WT. Dentin specific proteins. Methods Enzymo, 1987; 145: 290-292.
    [39] D'Souza RN, Bronckers ALJJ, Happonen RP. Developmental expression of a 53kD dentin sialoprotein in rat tooth germs. J Histochem Cytochem 1992; 40: 359-362.
    [40] Begue-Kim C, Krebshach PH, Bartlett JD. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation.??EurJOral Sci 1998; 106: 963-965.
    [41] Ritchie HH, Berry JE, Somerman MJ, et al. Dentin sialoprotein (DSP) transcripts: developmentally sustained expression in odontoblasts and transient expression in ameloblasts. EurJ Oral Sci 1997;105: 405-407.
    [42] George A, Sabasy B, Simonian PAL et al. Characterization of a novel dentin matrix phosphoprotein. J Biol Chem 1993; 268: 12642-12646.
    [43] George A, Silberstein R, Veis A, et al. In situ hybridization shows DMP1 to be a developmentally regulated dentin-specific protein produced by mature odontblasts. Connect Rissue Res 1995;33: 389-94.
    [44] Hirst KL, Ibaraki-O'Connor, Young MF, et al. Cloning and expession analysis of the bovine matrix acidic phosphoprotein gene. J Dent Res 1997;76: 754-760.
    [45] MacDougall M, Gu TT, Luan X, et al. Identification of a novel isoform of mouse dentin matrix protein l: spatial expression in mineralized tissues. JBone Miner Res 1998;13:422-31
    [46] MacDougall M, Simmons D, Luan XH, et al. Dentin phosphoprotein and dentin sailoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. J Bio Chem 1997; 272: 835-837.
    [47] Bleicher F, Couble ML, Farges JC, et al. Senquential expression of matrix protein genes in developing rat teeth. Matix Biol 1999; 18:133-143.
    [48] 张蓉,肖明振,赵守亮等. 小鼠牙胚、软骨组织中牙本质涎磷蛋白基因的克隆.牙体牙髓牙周学杂志 2001;11:213-215.[49] Yamaguchi T, Chattopadhyay N, Brown EM.G protein-coupled extra-cellular Ca~(2+)-sensing receptor (CAR) :Roles in cell signaling and control of diverse cellular fimcitions:Adv Pharmaco12000; 47:209-213.
    [50] Van Breemen C, Aronson P, Loutzenhiser R. Sodium-calcium interaction in mammalian smooth muscle. Pharmacol Rev1978; 30:167-208.
    [51] 魏文利,关永源,孙家钧.血管平滑肌和内皮细胞Ca~(2+)机制及其与CT通道的关系.中国药理学通报 1999;15:212-215.
    [52] 李玉秀.不同组织L型钙离子通道的研究概况.国外医学生理病理科学与临床分册 2000;20:464-467.
    [53] Lee HC.A signalling pathway involving cyclic ADP-ribose, cGMP and Nitric Oxide. NIPs 1994; 9:134-137.
    [54] Suzuki H. Electrical responses to smooth muscle cerlls of the rebbit car artery to adenosine triphosphate. J physiol 1985; 359:401-415.
    [55] Benham CD, Bolton TB, Byrne NG, et al. Action of externally applied adenosine triphosphate on single smooth muscle cells dispersed from rabbit ear artery. J Physiol 1987; 387:473-488.
    [56] Benham CD, Tsien RW.A novel receptor-operated Ca~(2+)-permeable channel activated by ATP in smooth muscle. Nature1987; 328:275-278.[57]Xiong Z, Kitamura K, Kuriyama H. ATP activates cationic currents and modulates the calcium current through GTP-binding proteins in rabbit portal vein. JPhysiol 1991; 440:143-165.
    [58] Loirand G, Pacavd P.Mechanism of the ATP-indnced rise in cytosolic Ca~(2+) in freshly isolated smooth muscle cells from human saphenous vein. P flugers AVCH 1995; 430:429-436.
    [59] Komori S, Bolton TB. Role of G-proteins in muscarinic receptor inward and outward currents in rabbit jejunal smooth muscle. J Physiol 1990;??427:395-419.
    [60] Komori S, Kawai M, Takewaki T, et al. GTP-binding protein involvement inmembrane currents evoked by cavbachol and histamine in guinea-pig ileal muscle. J Phsiol 1992; 450:105-126.
    [61] Wang YX, Kotlikoff MI. Signalling pathway for histamine activation ofnon-selective cation channels in equine tracheal myocytes. J Physiol 2000; 523:131-138.
    [62] Kim SJ, Ahn SC, KimKW, et al. Role ofcalmodulin in the activation of carbachol-actionic current in guinea-pig gastric antral myocytes. P flugers Arch 1995; 430:757-762.
    [63] Aromolaran AS, Albert AP, Large WA. Evidence for myosin light chain kinasemediating noradrenaline-evoked cation current in rabbit portal vein myocytes. JPhysiol2000; 524:853-863.
    [64] Albert AP, Aromolaran AS, Large WA. Agents that increase tyrosine phosphorylation activatea non-selective cation current in single rabbit portal vein smooth muscle cells. J Physiol 2000; 530:207-217.
    [65] Wang YX, Dhulipala PDK, Benovic JL, et al .Coupling of M_2 muscarinic receptors to membrane ion channels via a phosphoinositide3-kinaseyand a typical protein kinase C. J Biol Chem 1999; 274:13859-13864.
    [66] Helliwell RM, Large WA. Dual effect of external Ca~(2+) on noradrenaline-action current in rabbit portal vein smooth muscle cells. J Physiol 1996; 492:75-88.
    [67] Putney JW. A model of receptor-regulated calcium entry. Cell Calcium 1986; 7:1-12.
    [68] Putney JW. Capacitative calcium entry revisited. Cell Calcium 1990; 7: 611-624.[69] Harteneck C, Plant TD, Schvilz G. From worm to man: three subfamilies of TRP channels. Trends Neurosci 2000; 23:159-166.
    [70] Clapham DE, Runnels LW, Sturubing C. The tprion channel family. Nature Neurosci 2001; 2:387-396.
    [71] Mc Fadzean, A Gibson. Receptor and store operated Ca~(2+) entry in smooth muscle. British J of Pharmacology 2002; 135:1-13.
    [72] Brtme B, Dimmeler S, Vedia C M, et al. Nitric Oxide:a signal for ADP-ribosy lation of proteins. Life Science 1994; 54:61-70.
    [73] 崔婕,薛绍白.胞内钙的稳态调节.细胞生物学杂志1995;17:97-102.
    [74] Berridge MJ. Inositol trisphosphate and calcium signaling. Nature 1993;361:315-325
    [75] Putney JW. Capacitative Calcium Entry, Edition (Austin, TX: R.G. Landes Company). 1997, 362-363
    [76] Catterall WA, Curtis BM. Molecular properties of voltage-sensitive calcium channels. Soc Gen Physiol Ser 1987; 41: 201-213.
    [77] Campbell KP, Leung AT, Sharp AH. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neuroscim 1988; 11: 425-430.
    [78] Catterall WA, Curtis BM. Molecular properties of voltage-sensitive calcium channels. Soc Gen Physiol Ser 1987; 41: 201-213.
    [79] Glossmann H, Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol 1990; 114: 1-105.
    [80] Tanabe T, Takeshima H, Mikami A, et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987;, 328: 313-318.
    [81] Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional??expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340: 230-233.
    [82] Mori Y, Friedrich T, Kim MS, et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350: 398-402.
    [83] Starr TV, Prystay W, Snutch TP. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 1991; 88: 5621-5625.
    [84] Dubel SJ, Starr TV, Hell J, et al. Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. Proc Natl Acad Sci USA 1992; 89: 5058-5062.
    [85] Williams ME, Brust PF, Feldman DH, et al. Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science 1992; 257: 389-395.
    [86] Williams ME, Feldman DH, McCue AF, et al. Structure and functional expression of α_1, α_2,andβsubunits of a novel human neuronal calcium channel subtype. Neuron 1992; 8: 71-84.
    [87] Soong TW, Stea A, Hodson CD, et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 1993; 260:1133-1136.
    [88] Fisher SE, Ciccodicola A, Tanaka K, et al. Sequence-based exon prediction around the synaptophysin locus reveals a gene-rich area containing novel genes in human proximal Xp. Genomics 1997; 45: 340-347.
    [89] Cribbs LL, Lee JH, Yang J, et al. Cloning and characterization of alphalH from human heart, a member of the T-type Ca~(2+) channel gene??family. Circulation Research 1998; 83: 103-109.
    [90] Piedras-Renteia ES, Tsien RW. Antisense oligonucleotides against alphalE reduce R-type calcium currents in cerebellar granule cells. Proc NatlAcadSci USA 1998; 95: 7760-7765.
    [91] Lee JH, Daud AN, Cribbs LL, et al. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosei 1999; 19: 1912-1921.
    [92] Glossmann H, Striessnig J, Hymel L. Purified L-type calcium channels: only one single polypeptide (α_1-subunit) carries the drug receptor domains and is regulated by protein kinases. Biomed Biochim Acta 1987; 46: S351-356.
    [93] Takahashi M, Seagar MJ, Jones JF, et al. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc NatlAcadSci USA 1987; 84: 5478-5482.
    [94] Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron 1994; 12:1183-1194.
    [95] Hofrnann F, Biel M, Flockerzi V. Molecular basis for Ca~(2+) channel diversity. Annu Rev Neurosci 1994; 17: 399-418.
    [96] De Waard M, Gumett CA, Campbell KP. Structural and functional diversity of voltage-activated calcium channels. In Ion Channels, T Narahashi, ed. (New York: Plenum Press), 1996, pp. 41-87.
    [97] Dippel WW, Chen PL, McArthur NH, et al. Calcium involvement in luteinizing hormone-releasing hormone release from the bovine infundibulum. DomestAnirn Endocrinol 1995; 12: 349-354.
    [98] Walker D, De Waard M. Subunit interaction sites in voltage-dependent Ca~(2+) channels: role in channel function. Trends in Neurosciences 1998;??21: 148-154.
    [99] Birnbaumer L, Campbell KP, Catterall WA, et al. The naming of voltage-gated calcium channels. Neuron 1994; 13: 505-506.
    [100] Singer D, Biel M, Lotan I, et al.The roles of the subunits in the function of the calcium channel. Science 1991; 253: 1553-1557
    [101] Krizanova O, Varadi M, Schwartz A, et al. Coexpression of skeletal muscle voltage-dependent calcium channel alpha l and beta cDNAs in mouse Ltk-cells increases the amount of alpha l protein in the cell membrane. Biochern Biophys Res Commun 1995;211 : 921-927
    [102] Massa E, Kelly KM, Yule DI, et al. Comparison of fura-2 imaging and electrophysiological analysis of murine calcium channel alpha 1 subunits coexpressed with novel beta 2 subunit isoforms. Mol Pharmacol 1995; 47: 707-716
    [103] Chamet P, Lory P, Bourinet E, et al. cAMP-dependent phosphorylation of the cardiac L-type Ca channel: a missing link? Biochimie 1995; 77:957-62.
    [104] Hans MG, Scaletta L, Occhino JC. The effects of antirat nasal septum cartilage antisera on facial growth in the rat. Am J Orthod Dentofacial Orthop 1996; 109: 607-15.
    [105] Guy HR, Conti F. Pursuing the structure and function of voltage-gated channels.Trends Neurosci 1990; 13:201-6.
    [106] Miller CR, Joyce P, Waits LP. A new method for estimating the size of small populations from genetic mark-recapture data. Mol Ecol 2005; 14:1991-2005.
    [107] Ellis SB, Williams ME, Ways NR, et al. Sequence and expression of mRNAs encoding the α1 and α_2 subunits of a DHP-sensitive calcium??channel. Science 1988; 241: 1661-1664.
    [108] De Jongh KS, Warner C, Catterall WA. Subunits of purified calcium channels α_2 and δ are encoded by the same gene. J Biol Chem 1990; 265: 14738-14741.
    [109] Klugbauer N, Lacinova L, Marais E, et al. Molecular diversity of the calcium channel alpha-delta subunit. J Neurosci 1999; 19:684-691.
    [110] Jay SD, Sharp AH, Kahl SD, et al. Structural characterization of the dihydropyridine-sensitive calcium channel α_2-subunit and the associated δpeptides. J Biol Chem 1991; 266: 3287-3293.
    [111] Hofmann F, Biel M, Flockerzi V. Molecular basis for Ca~(2+) channel diversity. Annu Rev Neurosci 1994; 17:399-418.
    [112] Angelotti T, Hofrnann F. Tissue-specific expression of splice variants of the mouse voltage-gated calcium channel alpha-delta subunit. Febs Letters 1996; 397:331-337.
    [113] Bosse E, Regulla S, Biel M, et al. The cDNA and deduced amino acid sequence of the γ subunit of the L-type calcium channel from rabbit skeletal muscle. Febs Lett 1990; 267: 153-156.
    [114] Jay SD, Ellis SB, McCue AF, et al. Primary structure of the γ subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1990; 248: 490-492.
    [115] Eberst R, Dai S, Klugbauer N, Hofinarm F. Identification and functional characterization of a calcium channel gamma subunit. Pflugers Archiv European Journal of Physiology 1997; 433: 633-637.
    [116] Letts VA, Felix R, Biddlecome GH, et al. The mouse stargazer gene encodes a neuronal Ca~(2+)-channel gamma subunit [see comments]. Nature Genetics 1998; 19: 340-347.[117] Black JL, Lennon VA. Identification and cloning of putative human neuronal voltage-gated calcium channel gamma-2 and gamma-3 subunits: neurologic implications. Mayo Clinic Proceedings 1999; 74: 357-361.
    [118] Varadi G; Lory P, Schultz D, et al. Acceleration of activation and inactivation by the beta subunit of the skeletal muscle calcium channel. Nature 1991; 352: 159-162
    [119] Carbone E, Lux HD. A low voltage-activated, fully inactivating Ca~(2+) channel in vertebrate sensory neurones. Nature 1984;310: 501-502.
    [120] Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 1985; 316: 440-443.
    [121] Tsien RW, Fox AP, Hess P, et al. Multiple types of calcium channel in excitable cells. Soc Gen Physiol Ser 1987;41:167-187
    [122] Llinas R, Sugimori M, Hillman DE, et al. Distribution and functional significance of the P-type, voltage-dependent Ca~(2+) channels in the mammalian central nervous system. Trends Neurosci 1992; 15: 351-355.
    [123] Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca~(2+) charmel currents in rat cerebellar granule neurons. J Neurosci 1995; 15: 2995-3012.
    [124] Snutch TP, Reiner PB. Ca~(2+) channels: diversity of form and function. Curt Opin Neurobiol 1992; 2: 247-253.
    [125] Snutch TP, Leonard JP, Gilbert MM, et al. Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sci USA. 1990, 87: 3391-3395.
    [126] Birnbaumer L, Campbell KP, Catterall WA, et al. The naming of voltage-gated calcium channels. Neuron 1994; 13: 505-506.[127] Dunlap K, Lucbke JI, Turner TI. Exocytotic Ca~(2+) channels in mammalian central neurons. Tvend Neurosci 1995; 18:89-98.
    [128] Miller RJ. Multiple calcium channels and neuronal function. Science 1987; 235:46-53.
    [129] 孔伟东.中枢神经系统电压依赖性钙通道研究进展.国外医学生理学病理科学与临床分册 1999;19:452-455
    [130] Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 1985; 316: 440-443.
    [131] Wheeler DB, Randall A, Tsien RW. Roles of N-type and Q-type Ca~(2+) channels in supporting hippocampal synaptic transmission. Science 1994; 264:107-111.
    [132] Elliuor PT.Zhang JF, Randall AD, et al. Functional expression of a rapidly inactivating neuronal calcium channel. Nature 1993; 363: 455-458.
    [133] Soong TW, Stea A, Hodson CD, et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 1993; 260:1133-1136.
    [134] Xiong Z, Sperelakis N. Regulation of L-type calcium channels of vascular smooth muscle cells.J Mol Cell Cardiol 1995; 27:75-78.
    [135] Mintz I. M. S. Sidach, The Society for Neuroscience abstract, 24:1021, 1998
    [136] Hillyard DR, Monje VD, Mintz IM, et al. A new Conus peptide ligand for mammalian presynaptic Ca~(2+) channels. Neuron 1992; 9: 69-77.
    [137] Grantham CJ, Bowman D, Bath CP, et al. Omega-conotoxin MVIIC reversibly inhibits a human N-type calcium channel and calcium influx into chick synaptosomes. Neuropharmacology 1994; 33: 255-258.[138] Soong TW, Stea A, Hodson CD, et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 1993; 260:1133-1135.
    [139] Williams ME, Marubio LM, Deal CR, et al. Structure and functional characterization of neuronal α1E calcium channel subtypes. J Biol Chem 1994; 269: 22347-22357.
    [140] Fisher TE, Bourque CW. Distinct omega-agatoxin-sensifive calcium currents in somata and axon terminals of rat supraoptic neurones. Journal of Physiology 1995; 489: 383-388.
    [141] Lundy PM, Hamilton MG, Frew R. Pharmacological identification of a novel Ca~(2+) channel in chicken brain synaptosomes. Brain Research 1994; 643: 204-210.
    [142] Mermelstein PG, Surmeier DJ. A calcium channel reversibly blocked by omega-conotoxin GVIA lacking the class D alpha l subunit. Neuroreport 1997; 8: 485-489.
    [143] Avery RA, Johnston D. Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons. JNeurosci 1996; 16: 5567-5582.
    [144] Bean, BP. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 1985; 86: 1-30.
    [145] Nilius B, Hess P, Lansman JB, et al. A novel type of cardiac calcium channel in ventricular cells. Nature 1985, 316: 443-446.
    [146] Olivem BM, Miljanich GP, Ramachandran J, et al. Calcium channel diversity and neurotransmitter release: the ω-Conotoxins and ω-Agatoxins. Annu Rev Biochem 1994; 63: 823-867.[147] Hofrnann F, Oeken HJ, Schneider T, et al. The biochemical properties o f L-type calcium channels. J Cardiovasc Pharmacol 1988; 12: S25-30.
    [148] Kuniyasu A, Oka K, Ide-Yamada T, Hatanaka Y, Abe T, Nakayama H, Kanaoka Y. Structural characterization of the dihydropyridine receptor-linked calcium channel from porcine heart. JBiochern 1992; 112: 235-242.
    [149] Jay SD, Sharp AH, KahI SD, Vedvick TS, Harpold MM, Campbell KP. Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subtmit and the associated delta peptides. J Bio Chem 1991; 266: 3287-3293.
    [150] McEnery MW, Snowman AM, Sharp AH, Adams ME, Snyder SH. Purified omega-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. Proc Natl Acad Sci U SA. 1991; 88:11095-11099.
    [151] Mikami A, Imoto K, Tanabe T, et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340: 230-233.
    [152] Williams ME, Feldman DH, McCue A.F, et al. Structure and functional expression of α_1, α_2, andβsubunits of a novel human neuronal calcium channel subtype. Neuron 1992; 8: 71-84.
    [153] Fisher SE, Ciccodicola A, Tanaka K, Curci A, Desicato S, D'Urso M, Craig IW. Sequence-based exon prediction around the synaptophysin locus reveals a gene-rich area containing novel genes in human proximal Xp. Genomics 1997; 45: 340-347.
    [154] Bech-Hansen NT, Naylor MJ, Maybaum TA, et al. Loss-of-function??mutations in a calcium-channel alphal-subunit gene in Xpll.23 cause incomplete X-linked congenital stationary night blindness. Nature Genetics 1998; 19: 264-267.
    [155] Strom TM, Nyakatura G, Apfelstedt-Sylla E, et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nature Genetics 1998; 19: 260-263.
    [156] Forti L, Pietrobon D. Functional diversity of L-type calcium channels in rat cerebellar neurons. Neuron 1993; 10: 437-450.
    [157] Kavalali ET, Plummer MR. Selective potentiation of a novel calcium channel in rat hippocampal neurones. JPhysiol 1994; 480: 475-484.
    [158] Welling A, Kwan YW, Bosse E, et al. Subunit-dependent modulation of recombinant L-type calcium channels. Molecular basis for dihydropyridine tissue selectivity. Circ Res 1993; 73: 974-980.
    [159] Soldatov NM, Bouron A, Reuter H. Different voltage-dependent inhibition by dihydropyridines of human Ca~(2+) channel splice variants. J Biol Chem 1995; 270: 10540-10543.
    [160] Hell JW, Yokoyarna CT, Wong ST, et al. Differential phosphorylation of two size forms of the neuronal class C L-type calcium channel α1 subunit. J Biol Chem 1993; 268: 19451-19457.
    [161] Soldatov NM. Genomic structure of human L-type Ca~(2+) channel. Genomics 1994; 22: 77-87.
    [162] Kollmar R, Fak J, Montgomery LG, et al. Hair cell-specific splicing of mRNA for the alphalD subunit of voltage-gated Ca~(2+) channels in the chicken's cochlea. Proc Natl Acad Sci USA. 1997; 94: 14889-14893.
    [163] Tanabe T, Beam KG, Powell JA, et al. Restoration of excitation-contraction coupling and slow calcium current in dysgenic??muscle by dihydropyridine receptor complementary DNA. Nature 1988; 336: 134-139.
    [164] Miledi R. Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soe Lond (Biol) 1973; 183: 421-425.
    [165] Watanabe S, Takagi H, Miyasho T, et al. Differential roles of two types of voltage-gated Ca~(2+) channels in the dendrites of rat cerebellar Purkinje neurons. Brain Research 1998; 791: 43-55.
    [166] Waterman SA. Multiple subtypes of voltage-gated calcium channel mediate transmitter release from parasympathetic neurons in the mouse bladder. JNeurosci.1996; 16: 4155-4161.
    [167] Waterman SA. Role of N-, P- and Q-type voltage-gated calcium channels in transmitter release from sympathetic neurones in the mouse isolated vas deferens. Br JPharmacol 1997; 120: 393-398.
    [168] Waterman SA, Lang B, Newsom-Davis J. Effect of Lambert-Eaton myasthenic syndrome antibodies on autonomic neurons in the mouse. Annals of Neurology 1997; 42: 147-156.
    [169] Welling A, Kwan YW, Bosse E, et al. Subunit-dependent modulation of recombinant L-type calcium channels. Molecular basis for dihydropyridine tissue selectivity. Circ Res 1993; 73: 974-980.
    [170] Wessler I, Dooley DJ, Osswald H, et al. Differential blockade by nifedipine and Conotoxin GVIA ofα1-andβ1-adrenoceptor-controlled calcium channels on motor nerve terminals of the rat. Neurosci Lett 1990; 108: 173-178.
    [171] Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca~(2+) channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 1990; 347:281-284.[172] Toth PT, Bindokas VP, Bleakman D, et al. Mechanism of presynaptic inhibition by neuropeptide Y at sympathetic nerve terminals. Nature 1993; 364: 635-639.
    [173] Fatt P, Ginsborg BL. The ionic requirements for the production of action potentials in crstacean muscle fibres. J Physiol (London) 1958; 142:516~43.
    [174] Mccheskey EW, S Chroeder J E. Functional properties of voltage-dependent calcium channels. Current Topics in Membranes 1991;39:295~326.
    [175] Spedding M, Paoletti R. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Res, 1992; 44:363~376.
    [176] Varadi G, Mori Y, Mikala G, Schwartz A. Molecular determinants of Ca~(2+) channel functions and drug action. Trend in Pharmacol Sci 1995; 16:43~49
    [177] Mori Y, Mikala G, Varadi G et al. Molecular pharmacology voltage-dependent calcium channels. J Pharmacol, 1996; 72:83~109.
    [178] Tanabe T, Takeshima H, Mikami A, et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987; 328:313~318.
    [179] Welling A, Kwan YW, Bosse E et al. Subunit dependent modulationof recombinant L-type calcium channels. Circ Res 1993; 73:974~80.
    [180] Tanabe T, Adams BA, Numa S, Beam KG. Repeat I of the DI-IP receptor is critical in determining Ca~(2+) channel activation kinetics. Nat ure 1991; 352:800~803.[181] Nakai J, Adams BA, Imoto K, Beam KG. Critical roles of the S_3 segmnet and S_3~S_4 linker of repeat I in activation of L-type calcium channels. Proc natl Acad Sci USA, 1994;91:1014~1018.
    [182] Pragnell M, Waard MD, Mort Yet al. Calcium channel β_2 subnuit binds to a conserved motif in the I~II cytoplasmic linker of the α_1 subunit. Nature 1994;368:67~70.
    [183] Hayek R, Antoniu B, Wang J et al. Identification of calcium release triggering and blocking regions of the II~III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem, 1995;27:22116~22118.
    [184] Klochner U, Mikala G, Varadi M et al. Involvement of the carboxylterminal region of the α_1 subunit in voltage-dependent inactivation of cardiac calcium channels. J Biol Chem 1995; 270:17306~17310.
    [185] Yang J, Ellinor PT, Sather WA. Molecular determinants of Ca~(2+) channels. Nature 1993;366:158~161.
    [186] Mitterdirfer J, Wang Z, Sinnegger MJ et al. Two amino acid residues in the IIIS_5 segment of L-type calcium channels differentially contribute to 1, 4-dihydropyridine sensitivity. J Biol Chem1995;271:30330~30335.
    [187] Peterson BZ, Tanada TN, Catterall WA. Moleculer determinants of high affinity dihydropyridine binding in L-type calcium channels. J Biol Chem 1995; 271:5293~5296.
    [188] Doring F, Degtiar VE, Grabner M. Transfer of L-type calcium channel IVS_6 segment increases phenylalkylamine sensitivity ofα_1A. J Biol Chem 1995; 271:11745~11749.
    [189] Hering S, Acél S, Grabner M. Transfer of high sensitivity forbenzothiazepines form L-type to class A (B1) calcium channels. J Biol Chem 1996;271:24471~24475.
    [190] Schuster A, Lacinova L, Klugbaruer Net al. The ;ⅣS_6 segment of the L-type calcium channel is critical for the action of dihydropyridines and phenylalkylamines. EMBO J 1996; 15:2365~2370.
    [191] Peterson BZ, Johnson SD, Hockerman GH et aL Analysis of thedihydropyridine receptor site of L-type calcium channels by alanine scanning mutagenesis. JBiol Chem 1997; 272:18752~18758.
    [192] Catterall WA, Striessnig J. Recepter sites for Ca~(2+) channel antagonists. Trend in Pharmacol Sci 1992 ;13:256~262
    [193] Peterson BZ, Catterall WA. Calcium binding in the pore of L-type calcium channels dihydropyridine binding. J Biol Chem 1995; 270:18201~18204.[1] Perez-Reyes E, Wei XY, Castellano A, et al. Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes. J Biol Chem 1990; 265:20430
    [2] 李玉成,赵守亮,张蓉.L型钙离子通道α_1亚基D亚型在发育小鼠磨牙牙胚成牙本质细胞中的表达.牙体牙髓牙周学杂志2002;12:175
    [3] 王捍国,肖明振,赵守亮等.永生化人成牙本质细胞样细胞系的建立. 第四军医大学学报 2003;24:876
    [4] Shibukawa Y, Suzuki T. Ca~(2+) signaling mediated by IP3-dependent Ca~(2+) releasing and store-operated Ca~(2+) channels in rat odontoblasts. J Bone Miner Res 2003; 18: 30.
    [5] Lundgren T, Linde A. Modulation of rat incisor odontoblast plasma membrane-associated Ca~(2+) with nifedipine. Biochim Biophys Acta 1998; 1373: 341.
    [6] Allard B, Couble ML, Magloire H, et al. Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem 2000; 275: 25556.
    [7] Zoccola D, Tambutte E, Senegas BF, et al. Cloning of a calcium channel α_1 subunit from the reef-building coral Stylophora pistillata. Gene 1999; 227: 157.
    [8] Barry EL. Expression of rnRNAs for the alpha l subunit of voltage-gated calcium channels in human osteoblast-like cell lines and in normal human osteoblasts. CalcifTissue lnt 2000; 66: 145.
    [9] Mori Y, Friedrich T, Kim MS, et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350: 398.[1] Lundgren T, Linde A. Calcium ion transport kinetics during dentinogenesis: effects of disrupting odontoblast cellular transport systems. Bone Miner 1992; 19:31-44.
    [2] Lundgren T, Linde A. Voltage-gated calcium channels and nonvoltage-gated calcium uptake pathways in the rat incisor odontoblast plasma membrane. Calcif Tissue Int 1997; 60:79-85.
    [3] Lundgren T, Linde A .Na~+/Ca~(2+) antiports in membranes of rat incisor odontoblasts. J Oral PathoI 1988; 17:560-563.
    [4] Borke JL, El-Moneim Zaki A, Eisenmarm DR, et al. Expression of plasma membrane Ca~(++) pump epitopes parallels the progression of enamel and dentin mineralization in rat incisor. J Histochem Cytochem 1993; 41:175-181.
    [5] Sato I, Shimada K, Ezure H, et al. Distribution of calcium-ATPase in developing teeth of embryonic American alligators (Alligator Mississippiensis). JMorph 1993; 218: 249-256.
    [6] 李玉成,赵守亮,张蓉.L型钙离子通道α_1亚基D亚型在发育小鼠磨牙成牙本质细胞中的表达.牙体牙髓牙周学杂志 2002;12: 75-77.[1] D.R.Marshak, J.T.Kadonaga, R.R.Burgess & M.W.Knuth, W.A.Brennan Jr. & S-H Lin. Strategies for Protein Purification and Characterization: A Laboratory Course Manual, Beijing, Science Press, 1999
    [2] F.奥斯伯等著.颜子颖,王海林译.精编分子生物学实验指南,北京, 科学出版社,1999
    [3] Perez-Reyes E, Wei XY, Castellano A, Bimbaumer L, et al. Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes. J Biol Chem 1990; 265: 20430-20436
    [4] Hofmann F, Oeken HJ, Schneider T, et al. The biochemical properties of L-type calcium channels. J Cardiovasc Pharmacol 1988; 12(suppll): 25-30.
    [5] Glossmann H, Striessnig J. Molecular properties of calcium channels. R ev P hysiol B iochem P harmacol 1990; 114: 1-105.
    [6] 李玉成,赵守亮,张蓉.L型钙离子通道α_1亚基D亚型在发育小鼠磨牙牙胚成牙本质细胞中的表达.牙体牙髓牙周病学杂志 2002; 12:175-177.
    [7] Ted Lundgren, Anders Linde. Modulation of rat incisor odontoblast plasma membrane-associated Ca~(2+) with nifedipine. Biochim Biophys Acta 1998; 1373: 341-346.[1] F奥斯伯等著;颜子颖,王海林译.精编分子生物学实验指南.北京,科学出版社,1999
    [2] J Sambrook, Fritsch EF, Maniatis T. Molecular Cloning A Laboratory Course Manual (2nd, ed). Beijing, Science Press, 1996.
    [3] Li YM, Zhao YQ. Practical Protocols in Molecular Biology, Beijing, Science Press, 1998.
    [4] Hofmann K, Stoffel W. Tmbase, A database of membrane spanning proteins segments. Biol. Chem 1993; 374: 66.
    [5] Guex N, Peitsch MC. Molecular modelling of proteins. Immunology News 1999; 6: 132-134.
    [6] Peitsch MC. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans 1996; 24: 274-279.
    [7] Marshak DR, Kadonaga JT, Burgess RR, Knuth MW, Brennan WA Lin SH. Strategies for Protein Purification and Characterization: A Laboratory Course Manual, Beijing, Science Press, 1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700