壬基酚对雄性花背蟾蜍抱对、精子及早期发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境中,壬基酚(Nonylphenol, NP)主要来源于烷基酚聚氧乙烯醚(Alkylphenol ethoxy lates, APE)的降解。APE是一类非离子表面活性剂,广泛用于工业,农业和其他民用领域,而在APE中,应用最广泛的是壬基酚聚氧乙烯醚(Nonylphenol ethoxy lates, NPEO),因此壬基酚成为水环境中主要的环境激素类污染物之一。壬基酚因其具有雌激素效应,在水体中不易降解的特点引起了科研人员的高度重视。本文以繁殖期抱对的雄性花背蟾蜍、花背蟾蜍精子、花背蟾蜍胚胎和蝌蚪为研究对象,分别从体外、体内两方面研究了壬基酚的毒性效应并探讨了其机理,同时对兰州地区水环境中的壬基酚对花背蟾蜍的影响进行了评估。
     1、本研究探讨了壬基酚对花背蟾蜍早期胚胎的急性毒性和壬基酚在雄性花背蟾蜍成体内的分布和代谢。结果表明:(1)随着花背蟾蜍的发育,对壬基酚的耐受性有逐渐增强的趋势。壬基酚对22期至39期花背蟾蜍胚胎的24 h小时半致死浓度(Median lethal concentration, LC50)分别为0.18~0.62 mg/L,但35期胚胎的24 h LC50低于26期,说明蟾蜍变态发育过程中各发育期对NP敏感度不同。(2)壬基酚进入花背蟾蜍体内后,可以透过血睾屏障进入睾丸,壬基酚可对花背蟾蜍的睾丸产生直接作用。(3)壬基酚染毒48 h后,雄性蟾蜍肝脏中壬基酚含量增加,血液,睾丸和脑组织中壬基酚含量降低。(4)壬基酚在花背蟾蜍体内可能主要是通过肝代谢。
     2、本研究分析了壬基酚对雄性花背蟾蜍抱对行为的影响,并对其机理进行了探讨。研究发现:(1)浓度高于200μg/L壬基酚将会干扰雄性花背蟾蜍的抱对行为,导致抱对蟾蜍分离,而且导致分离的雄性蟾蜍个体死亡。(2)浓度高于200μg/L的壬基酚暴露3d以上将会导致抱对蟾蜍雄性个体血清中的卵泡刺激素和黄体生成素含量显著下降,而对睾酮含量无显著影响。(3)壬基酚暴露导致的卵泡刺激素和黄体生成素含量下降,是壬基酚干扰花背蟾蜍抱对行为的途径之一。
     3、以雄性花背蟾蜍和其精子为研究材料,在抱对和受精期间研究了壬基酚对花背蟾蜍精子的影响。研究结果显示:(1)浓度低于400μg/L壬基酚暴露对雄性花背蟾蜍体内的精子动态参数及精子的完整率无显著影响。(2)浓度高于200μg/L的壬基酚直接暴露将显著降低精子活率及其运动速度,并显著降低受精率。(3)精子直接暴露于浓度高于50μg/L壬基酚溶液中将显著增加精子中活性氧(Superoxide dismutase, ROS)水平,而精子中ROS水平与精子活率之间呈高度负相关关系。
     4、本研究探讨了壬基酚对花背蟾蜍精子的超微结构的影响。(1)本研究对花背蟾蜍精子的外部形态进行了测量。进一步完善了对于花背蟾蜍精子外部形态的研究数据。(2)壬基酚(≥200μg/L)暴露将会导致花背蟾蜍精子头部、中片和尾部质膜溃散,中片与头部连接处膨胀隆起,其中的线粒体也受到损伤,这可能是导致精子的失活的原因之一
     5、本研究探讨了花背蟾蜍卵带胶质对环境污染物吸收的抑制作用。研究表明(1)经过40 h的1 mg/L镉离子和1 mg/L壬基酚暴露实验,结果表明卵带胶质能使胚胎对镉离子及壬基酚的吸收分别降低32.20%和59.03%。(2)胶质对镉离子及壬基酚吸收的抑制效果不同,相对而言胶质对胚胎吸收壬基酚的抑制作用更强。(3)胚胎外胶质能有效降低环境中污染物对胚胎孵化的不利影响。
     6、本研究研究了壬基酚对花背蟾蜍早期胚胎发育及蝌蚪体内SOD和MDA的影响。结果表明(1)壬基酚(≥200μg/L)对胚胎发育有明显的阻滞作用,阻滞作用在花背蟾蜍胚胎发育的转动期就已经体现。(2)壬基酚对花背蟾蜍胚胎形态发育的影响主要是缩短了胚胎长度,可能导致胚胎短尾。(3)50μg/L壬基酚暴露25 d,造成花背蟾蜍蝌蚪SOD酶活力的下降及体内(Malonaldehyde, MDA)含量的增加,其影响在短期内(14 d)无法恢复到正常水平。
     壬基酚对花背蟾蜍的影响是多方面的。从本研究来看,兰州地区平均环境浓度壬基酚含量对花背蟾蜍的繁殖和早期发育形态均无显著影响。部分排污口水体中的壬基酚含量可能导致花背蟾蜍蝌蚪体内酶活力改变。
Nonylphenol (NP) is the final degradation product of alkylphenol poly ethoxylates (APE), which is a kind of nonionic surfactant widely used in industry, agriculture and other production activities. And, NP is usually present in aquatic environments. Owning to its estrogen effect and high resistance to biodegradation, NP has attracted great attention of researchers. However, as an environmental estrogen widely distributed in water in Lanzhou region, little is known about the effect of NP on the amplexus of amphibia, especially on its sperm and its early development.
     The present study mainly investigeted the effects of NP with environmental-relevant concentrations in Lanzhou region on amplexus, sperm and early development of male Bufo raddei. Such information would be valuable for better estimating the risks of NP in relation to the decline of B. raddei around Lanzhou region.
     1. The acute toxicity of the NP on the embryo of B. raddei and the distribution of NP in the body of male B. raddei was detected. It was found that:(1) 24 h LC50 of NP of B. raddei was increased gradually during the development of embryo. The 24h LC50 of NP of 22 developing stage to 39 developing stage were 0.18 mg/L to 0.62 mg/L. (2) NP could enter the testes of B. raddei through the blood-testis barrier and the blood-brain barrier. NP could affect the testis tissue directly. (3) The level of NP increased in liver, but decreased in blood, testes and the brain in male B. raddei exposed to NP for 48 h. (4) The mainly tissue of the metabolism of NP in B. raddei was liver.
     2. The effects of NP on the amplexus and the hormone of male B. raddei were investigated. The study showed that:(1) NP (≥200μg/L) disturbed the amplexus of male B. raddei, the number of the divorced toad and the death of male B. raddei increased. (2) The level of FSH and LH reduced significantly in male B. raddei exposed to NP (≥200μg/L) for 3 days. And the level of testosterone increased in the blood in male B. raddei exposed to NP (≥50μg/L) for 9 days, but the difference was not significant compared to control. Hence we presume that NP (≥200μg/L) disturbed the amplexus of B. raddei by reducing the level of FSH and LH of male B. raddei.
     3. The effects of NP on the sperm of B. raddei during the amplexus and fertilization. The study showed that:(1) NP (≤400μg/L) had no significant effects on the integrity rate or the dynamic parameters of sperm of B. raddei during amplexus. (2) NP (≥200μg/L) significantly reduced the sperm motility and the fertilization rate during fertilization. (3) ROS level significantly increased in the sperm directly exposed to NP (≥50μg/L). And the ROS level had high-negative correlation with the concentration of NP.
     4. The effects of NP on the ultra structure of sperm. Results showed that:(1) Present study enriched the data about the ultra structure of the sperm of B. raddei. The sperm of B. raddei was about 58.60μm long, the length of the head and tail of sperm were about 20.47μm and 39.52μm respectively. Sperm was consisted of three parts: a head, a midpiece and a tail. (2) NP (≥200μg/L) seriously impaired the membrane of sperm's head, midpiece and flagellum. The membrane was broken from the head near the midpiece, and the mitochondria were impaired too. The impairment of the structure would lead to the lower sperm motility.
     5. The effects of embryo jelly coat to reduce the absorption of pollutants. The results showed that:(1) The 32.20% absorption of Cd2+ and 59.03% absorption of NP of intact embryo were reduced compared to that of dejelly embryo exposed to 1 mg/L Cd2+ or 1 mg/L NP for 40 h. (2) The jelly coat of embryo showed more resistance to NP than the Cd2+. (3) The jelly coat of embryo could reduce and prevent the adverse effects of pollutants on the hatching by reducing the absorbtion.
     6. The effects of NP on the morphological development of the embryo. (1) NP (≥200μg/L) blocked the embryo development from the embryonic rotation period. (2) NP (≥200μg/L) would reduce the length of embryo. (3) The decline of SOD and the increase of MDA induced by NP of tadpoles did not return to normal levels within 14 days.
     Base on these findings, short-term exposure of B. raddei to NP during amplexus or fertilization in Lanzhou region would not have significant effects on its amplexus, sperm quality, fertilization rate and its early development.
引文
1. 蔡骏,李颖,尹宗宁.邻苯三酚法测定超氧化物歧化酶缓释片中SOD的活性[J].华西药学杂志,2005,20:54-055
    2. 巢静波,刘景富,温美娟,刘杰民,江桂斌.环境样品中壬基酚及相关化合物的分离富集与测定[J].分析化学评述与进展,2002,30:875-879
    3. 陈会枝.TBA比色法测定血清过氧化脂质[J].中原医刊,2002,29:59-60
    4. 程佩双.壬基酚的结构鉴定[J].精细石油化工,1990,6:51-53
    5. 杜启艳,常重杰,南平.柠檬黄对泥鳅的急性毒性及遗传毒性实验[J].安徽农业科学,2009,21:6321-6323
    6. 范奇元,金泰,将学之等.我国部分地区中壬基酚的检测[J].中国公共卫生,2002,18:1372-1373
    7. 高永刚,李正炎.壬基酚对栉孔扇贝组织抗氧化酶活性的影响[J].中国海洋大学学报,2006,36:135-138.
    8. 侯绍刚,徐建,汪磊,孙红文,戴树桂,刘昕宇.黄河(兰州段)水环境中壬基酚及壬基酚聚氧乙烯醚污染的初步研究[J].环境化学,2005,24:250-254
    9. 侯亚妮.杀虫剂敌百虫对花背蟾蜍蝌蚪的毒性效应研究[D],兰州大学硕士学位论文,2007
    10.黄辨非.敌百虫对沼泽绿牛蛙蝌蚪的急性毒性试验[J].湖北农学院学报,1999,19:154-156
    11.黄德军,张迎梅,赵东芹,龙静,汪贵英,胡之德[J].兰州大学学报(自然科学版),2004,40:81-83
    12.黄敏毅,张育辉.镉对中国林蛙蝌蚪生长发育的毒性效应[J].生态学杂志,2006,25:535-540
    13.贾艳芳.花背蟾蜍肾发生的组织学观察及相关活性物质的表达与调控[D],西北师范大学学位论文,2010
    14.姜雅风.花背蟾蜍繁殖习性的观察[J].四川动物,1991,10:15-16
    15.李建武,余瑞元,袁明秀.生物化学实验原理和方法[M].北京:北京出版社,1994,9:174-176
    16.李文雅,郑中华,江建平,谢锋,覃丽梅.中国蟾蜍属精子形态比较[J].动物学杂志,2008,1:109-115
    17.李远友,林浩然.虎纹蛙促性腺激素含量随年龄及季节的变化[J].发育与生殖生物学报(英文版),2000,9:23-29
    18.李正炎,Donghao Li.西瓦湖中壬基酚和双酚A的污染特征[J].青岛海洋大学学报,2003,33:847-853
    19.李正炎,傅明珠,卫东.胶州湾及其邻近河流中壬基酚等有机污染物的分布特征[J],海洋与湖沼,2008,39:599-603
    20.刘兆民,隋利军.环境激素研究进展概述[J].西北民族大学学报(自然科学版),2007,28:55-58
    21.龙静,张迎梅,赵东芹,汪贵英,胡之德.铅对花背蟾蜍受精卵出膜及蝌蚪生长的影响[J].甘肃科学学报,2004,16:47-49
    22.卢祥云,陈海波,韩曜平.几种农药对黑斑蛙黑斑蛙胚胎及蝌蚪的毒性[J].四川动物,2002,21:84-86
    23.吕玥,张迎梅,杨峰,司万童.壬基酚对中华大蟾蜍蝌蚪的毒性效应[J].农业环境科学学报2010,29:1086-109
    24.毛缜.环境激素壬基酚对小鼠神经毒性作用及其分子生物学机制研究[D],中国矿业大学,2008
    25.潘道一,梁雪明.泽蛙(蝌蚪)和蜘蛛对农药的敏感性与急性毒性分级[J].动物学报,1996,42(2):154-160
    26.沈钢,张祖麟,余刚,李发生,李雪.夏季海河与渤海湾中壬基酚和辛基酚污染的状况[J].中国环境科学,2005,25:733-736
    27.司万童,张迎梅,李瑷伶,蓝昕,黄德军.已烯雌酚对蝌蚪抗敌敌畏诱导氧化损伤的作用研究[J].甘肃科学学报,2008,20:52-54
    28.王俊玲,王耀玲.苯并(a)芘和菲对黄河花背蟾蜍肝脏脂质过氧化的影响[J].毒理学杂志,2010,3:75-78
    29.王平,徐建,郭炜烽,朱琳,戴树桂.黄河(兰州段)水生生态系统中壬基酚的分布研究[J].城市环境与城市生态,2006,19:20-228
    30.王寿兵,郭锐,屈云芳.Cu对中国林蛙蝌蚪的急性毒性[J].应用生态学报,1998,9:309-312
    31.王晓茹,陆宇燕,聂颖,徐齐艳,侯美玲,李丕鹏.UVA对花背蟾蜍微核及核异常的诱导[J].四川动物,2010,3:357-362
    32.王昱.陇南花背蟾蜍消化道解剖学及组织学观察[D].水师范学院学报,2010
    33.王子仁,仝允栩.[J].动物学报,1989,35:370-375
    34.魏仲梅,陈玉琴,俞诗源.花背蟾蜍肺发生及转化生长因子-β的表达[J].解剖学报,2008,4:566-572
    35.肖勤.壬基酚对玫瑰无须鲃及牙鲆鳃细胞系的毒性效应[D].中国海洋大学学报,2006
    36.肖全伟,黎源倩,吴德生.高效液相色谱法测定大鼠组织中双酚A和4-壬基酚浓度[J].四川大学学报,2004,22:579-582
    37.杨涛,仝允栩.花背蟾蜍角膜早期发育中氨基多糖的电镜细胞化学研究[J].实验生物学报,1989,22:393-44051
    38.姚丹,万琳燕,耿宝荣.Cu2+对日本林蛙蝌蚪的急性毒性研究[J].福建师范大学学报(自然科学版),2004,20:117-120
    39.于东,赵文阁.黑龙江哈尔滨地区花背蟾蜍繁殖生态的观察[J].四川动物,2007,26:409-411
    40.赵美萍,李元宗,常文保.酚类环境雌激素的分析研究进展[J].分析化学,2003,31:103-109
    41.赵振芳.花背蟾蜍胚胎发育的初步观察[J].动物学杂志,1991,26:11-16
    42.郑晓晶,张育辉.壬基酚对中国林蛙蝌蚪生长发育的毒性效应[J].生态学杂志,2008,27:1332-1336
    43.钟碧瑾,姚丹,刘娟娟,陈琴琴,耿宝荣.两种有机磷农药对沼水蛙蝌蚪抗氧化系统及MDA浓度的影响[J].福建师范大学学报:自然科学版,2009,25:91-96
    44.朱新萍,蔡磊明,王捷.氟吗啉对非洲爪蟾的急性毒性[J].农药,2004,43:563-566
    45.左明杰,洪万树,周理斌.壬基酚对中华乌塘鳢精子发生及活力的影响[J].厦门大学学报(自然科学版),2010,49:94-98
    46. Ackermann GE, Schwaiger J, Negele RD. Effectsof long2term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout (Oncorhynchus mykiss) [J]. Aquat Toxicol,2002,60:203-221
    47. Ahel M, Giger W, Koch M.Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment-I.Occurrence and transformation in sewage treatment [J]. Wat Res,1994,28:1131-1142
    48. Aitken RJ, Buckingham D, Harkiss D.Use of a xanthine oxidase free radical generating system to investigate the cytotoxic effect of reactive oxygen species on human spermatozoa [J]. J Repord Fertil,1993,97:441-450
    49. Alford RA, Dixon PM, Pechmann JH.Global amphibian population declines [M].1995
    50. American Veterinary Medical Association.Report of the AVMA panel on euthanasia [J]. J Am Vet Med Assoc,2001,218:669-696
    51. Andrea NE, Claude R, Gerald RS, Herman JB 2,4-D Butoxyethyl Ester Kinetics in Embryos of Xenopus laevis:The Role of the Embryonic Jelly Coat in Reducing Chemical Absorption[J]. Arch Environ Contam Toxicol,2007,52:113-120
    52. Arukwe A, R Thibaut K, Ingebrigtsen T, Cel IUs A, Goksoyr JP.Cravedi.In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar)[J]. Aquat Toxicol,2000,49:289-304
    53. Balch G, Metcalfe C.Developmental effects in Japanese medaka (Oryzias latipes) exposed to nonyl phenol ethoxy21ates and their degradation products [J]. Chemosphere,2006,62:1214-1223
    54. Baldwin WS, Roling JA, Peterson S, Chapman LM.Effects of nonylphenol on hepatic T metabolism and the expression of acute phase proteins in winter flounder (Pleuronectes americanus):comparison to the effects of Saint John's Wort [J]. Comp Bioc C,2005,140:87-96
    55. Banat M, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants [J]. Applied Microbiology and Biotechnology,2000,53:95-508
    56. Batty J, Lim R.Morphological and reproductive characteristics of male mosquito fish (Gambusia affinis holbrooki) inhabiting sewage-contaminated waters in New South Wales, Australia[J]. Arch Environ Contam Toxicol,1999,36:301-307
    57. Berrill M, Bertram S, McGillivary L, Kolohon M, Pauli B.Effects of low concentrations of forest-use pesticides on frog embryos and tadpoles[J]. Environ Toxicol Chem,1994,13:657-664
    58. Bevan C.L., Porter D.M., Prasad A., Howard M.J., Henderson L.P.Environmental estrogens alter early development in Xenopus laevis [J]. Envir H Pro,2003,111:488-496
    59. Blaustein A.Amphibian in a bad light [J]. Natur Hist,1994,10:32-39
    60. Bogers R, Mutsaerds E, Druke J, De Roode DF, Murk AJ, Van Der, Burg B, Legler J.Estrogenic endpoints in fish early life-stage tests:luciferase and vitellogenin induction in estrogen-responsive transgenic zebrafish[J]. Environ Toxicol Chem,2006,25:241-247
    61. Bortone SA, Davis WP.Fish intersexuality as indicator of environmental stress [J]. Bioscience,1994,44:165-172
    62. Brooke LT.Acute and chronic toxicity of nonylphenol to ten species of aquatic organisms.Lake Superior Research Institute [J], University of Wisconsin-Superior, Superior WI,1993,30:49-52
    63. Chan Jin Park, Han Seung Kang, Myung Chan Gye.Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3'-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia:Anura) [J]. Chemosphere Dio:10.1016/j.chemosphere,2010
    64. Chitra KC, Latchoumycandane C, Mathur PP. Effect of nonylphenol on the antioxidant system in epididymal sperm of rats. Arch Toxicol.2002,76:545-551
    65. Davidson C. Declining downwind:amphibian population declines in California and historical pesticides use [J]. Ecol Appl,2004,14:1892-1902
    66. Delplace F, Maes E, Lemoine J, Strecker G. Species specificity of O-linked carbohydrate chains of the oviducal mucins in amphibians:structural analysis of neutral oligosaccharide alditols released by reductive B-elimination from the egg-jelly coats of Rana clamitans [J]. J Biochem,2002,363:457-471
    67. Demska-Zakes K, Zakes Z.Sex differentiation in pikeperch (Stizostedion lucioperca). Versita Olsztyn[M], Poland,1995
    68. Denton TE, Howell WM, Allison JJ, McCollum J, Marks B. Masculinization of female mosquitofish by exposure to plant sterols and Mycobacterium smegmatis[J]. Bull Environ Contain Toxicol.1985,35:627-632
    69. England DE.Chronic toxicity of nonylphenol to Ceriodaphnia dubia [J]. ABC Laboratories Inc Columbia MO,1995,409-413
    70. EPA.Ambient Aquatic Life Water Quality Criteria for Nonylphenol,2005,822-R-03-029
    71. Falconer IR. Are endocrine disrupting compounds a health risk in drinking water? [J]. Int J Environ Res Public Health,2006,3:180-184.
    72. Frank LM, Sunny KB, Darcy BK.Historical perspective:Hormonal regulation of behaviors in amphibians [J]. Hormone Beh,2005,48:373-383
    73. Giesy, JP, Pierens SL, Snyder EM, Miles-Richardson S, Kramer VJ, Snyder SA, Nichols KM, Villeneuve DA.Effects of 4-nonylphenol on fecundity of biomarkers of estrogenicity in fathead minnows (Pimephales promelas) [J]. Environ Toxicol Chem,2000,19:1368-1377
    74. Glogowski J, Dietrich G, Demianowicz W, Kowalski R, Kujawa R, Rzemieniecki A, Wojtczak M, Kotlowska M, Bogdan E, Ciereszko A. Fertilizing capacity of cryopreserved sperm of Siberian sturgeon and sterlet after short-time exposure of milt to mercury and cadm IUm.The 4th Sympos IUm of the Society for Biology of Reproduction and Joint Polish-Japanese Seminar,2005,245-246
    75. Gobbetti A, Zerani M.Hormonal and cellular brain mechanisms regulating the amplexus of male and female water frog(Rana esculenta)[J]. J Neuroendo,1999,11:589-596
    76. Gray MA, Metcalfe CD. Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed to pnonylphenol. Environ[J].Toxicol Chem,1997,16:1082-1086.
    77. Guenther K, Heinke V, Thiele B, Kleist E, Prast H, Raecker T.Endocrine Disrupting Nonylphenols are Ubiquitous in Food[J]. Environ Sci Technol,2002,36:1676-1680
    78. Hale RC, Smith CL, de Fur PO, Harvey E, Bush EO, La Guardia MJ, Vadas GG.Nonylphenols in sediments and effluents associated with diverse wastewater outfalls[J]. Environ Toxicol Chem,2000,19:946-952
    79. Hara Y, Strussmann CA, Hashimoto S. Assessment of short-term exposure to nonylphenol in Japanese medaka using sperm velocity and frequency of motile sperm [J]. Arch Environ Contam Toxicol.2007,53:406-410
    80. Hecht SA, Gunnarsson JS, Boese BL, Lamberson JO, Schaffner C, Giger W, Jepson PC.Influences of sedimentary organic matter quality on the bioaccumulation of 4-nonylphenol by estuarine amphipods[J]. Environ Toxicol Chem,2005,23:865-873
    81. Hill RL, Janz DM.Developmental estrogenic exposure in zebrafish (Danio rerio).Ⅰ.Effects on sex ratio and breeding success[J]. Aquatic Toxicology,2003,63:417-429
    82. Hood E. Are EDCs blurring issues of gender? Environ Health Perspect,2005,113:670-677
    83. Hui Xu,Jian Yang, Yuexiang Wang, Q IU Jiang, Hao Chen, Houyan Song.Exposure to 17a-ethynylestradiol impairs reproductive functions of both male and female zebrafish(Danio rerio)[J]. Aquatic Toxicology,2008,88:1-8
    84. Ishii S, Itoh M.Amplexus induces surge of luteinizing hormone in male toads, Bufo japonicus[J]. Gen C Endoc,1992,86:34-41
    85. Jager DC, Bornman MS, Oosthuizen JM. The effect of P-nonylphenol on the fertility potential
    86. Jobling S, Sheahan D, Osborne JA, Matthiessen P, Sumpter JP.Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals[J]. Environ Toxicol Chem,1996,15:194-202
    87. Kang HS, Noh JS, Gye MC.Effect of nonylphenol on the expression of hepatic vitellogenin mRNA in male Bombina orientalis (Boulenger)[J]. Bull Environ Contam Toxicol,2006,77(1):15-20
    88. Keith TL, Snyder SA, Naylor CG, Staples CA, Summer C, Kannan K, Giesy JP.Identification and Quantification of Nonylphenol Ethoxylates and Nonylphenol in Fish Tissues from Michigan [J]. Environ Sci Technol,2001,35:10-13
    89. Kinnberg K, Korsgaard B, Bjerregaard P, Jespersen AS.Effects of nonylphenol and 17(beta)-estradiol on vitelogenin synthesis and testis morphology in male platyfish Xiphophorus maculates [J]. J Exp Biol,2000,203:171-181
    90. Klomberg KF, Marler CA.The neuropeptide arginine vasotocin alters male call charateristics involved in social interactions in the grey treefrog, Hyla versicolor [J]. Anim Behav,2000,59:807-812
    91. Kvestak R, Ahel M. Occurrence of toxic metabolites from nonionic surfactants in the Krka River estuary [J]. Ecotoxicol Environ Saf,1994,28:25-34
    92. Lahnsteiner F, Berger B, Grubinger F, Weismann T. The effect of 4-nonylphenol on semen quality, viability of gametes, fertilization success, and embryo and larvae survival in rainbow trout(Oncorhynchus mykiss) [J].Aquat Toxicol.2005,71:297-306
    93. Lamche G, Burkhardt-Holm P.Nonylphenol provokes a vesiculation of the Golgi apparatus in three fish epidermisultures [J]. Ecotox Environ Safe,2000,47:137-148
    94. Lamirande DE, Gagnon C. Human sperm hyperactivation and capacitation as part of an oxidative process [J]. Free Rad B,1993,14:157-166
    95. Lamirande DE, Gagnon C. Reactive oxygen species and human spermatozoa:Ⅱ. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility [J]. J Androl,1992,13:379-386
    96. Lech JJ, Lewis SK, Ren L. In vivo estrogenic activity of nonylphenol in rainbow trout Fund [J]. Appl Toxicol,1996,30:229-232
    97. Lee YM, Rhee JS, Hwang DS, Kim IC, Raisuddin S, Lee JS.P53 gene expression is modulated by endocrine disrupting chemicals in the hermaphroditic fish, Kryptolebias marmoratus [J]. Comp Bio C,2008,147:150-157
    98. Licht LE.Shedding light on ultraviolet radiation and amphibian embryos [J]. Bioscience,2003,53:551-561
    99. Lin Bingcheng, Zou Xiong, Han Peizhen. Application of High Performance Liquid Chromato graphy in Life Science.Jinan:Shandong Science and Technology Press.
    100. Lyons G. Bisphenol A, A known endocrine disruptor, world wildlife fund [M].European Toxic Programme Report,2005
    101. Mackenzie CA, Berrill M, Metcalfe C, Pauli BD.Gonadal differentiation in frogs exposed to estrogenic and antiestrogenic compounds [J]. Environ Toxicol Chem,2003,22:2466-2475
    102. Mackenzie CA, Lockridge A, Keith M.Declining sex ratio in a first nation community [J]. Environ Health Perspect,2005,113:1295-1298.
    103. Madsen LL, Korsgaard B, Bjerregaard P. Estrogenic effects in flounder Platichthys flesus orally exposed to 42tert2octylphenol [J]. Aquatic Tox icology,2003,64:393-405
    104. Magl IUlo L, Schreibman MP, Cepriano J. Endocrine disruption caused by two common pollutants at acceptable concentrations [J]. Neurotoxicology and Teratology,2002,24:71-79
    105. Maguire RJ. Review of the persistence of nonylphenol and nonylphenol etoxylates in aquatic environments [J]. Wat Qual Re,1999,34:37-78.
    106. Mann RM, Bidwell JR. Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs [J]. Aquatic Tox icology,2000,51:19-29
    107. Marcela FM, Claudia AC, Ines R, Silvia NF. Role of cations as components of jelly coats in Bufo arenarum fertilization [J]. Zygote,2010,18:69-80
    108. Matsumura N, Ishibashi H, Hirano M, Nagao Y, Watanabe N, Shiratsuchi H, Kai T, Nishimura T, Kashiwagi A, Arizono K.Effects of nonylphenol and triclosan on production of plasma vitellogenin and T in male South African clawed frogs (Xenopus laevis)[J]. Biol Pharm Bull,2005,28:1748-1751
    109. McLeese DW, Zitko V, Sargeant DB, Burridge L, Metcalfe CD.Lethality and accumulation of alkylphenols in aquatic fauna [J]. Chemosphere,1981,10:723-730
    110. Mendonca MT, Licht P, Ryan MJ, Barnes R.Changes in hormone levels in relation to breeding behavior in male bullfrogs (Rana catesbeiana) at the individual and population levels [J]. Gen C Endoc,1985,58:270-279
    111. Molier H, Prener A, Skakkebaek NE.Testicular cancer, cryptorchidism, inguinal hernia, testicular atrophy, and genital malformations:case-control studies in Denmark [J]. Cancer Causes Control,1996,7:264-274
    112. Moren JR, Garcia CV, Merita MLG, Martinez MGT. Personality characteristics analysis in couples undergoing artificial insemination [J]. Hum Reprod,1994,9:172-175.
    113.Mosconi G, Carnevali O, Franzoni MF, Cottone E, Lutz I, Kloas W, Yamamoto K, Kikuyama S, Polzonetti-Magni AM.Environmental estrogens and reproductive biology in amphibians [J]. Gen C Endoc,2002,126:125-129
    114. Mosconi G, Carnevali O, Franzoni MF, Cottone E, Lutz I, Kloas W, Yamamoto K, Kikuyama S, Polzonetti-Magni AM. Environmental estrogens and reproductive biology in amphibians [J]. Gen C Endoc,2002,126:125-129
    115. Naylor CG, Mieure JP, Adams WJ, Weeks JA, Castaldi FJ, Ogle LD, Romano RR. Alkylphenol ethoxylates in the environment [J]. J Am.Oil Chem Soc,1992,69:695-708
    116. Popek W, Dietrich G, Glogowski J, Demska-Zakes K, Drag-Kozak E, Sionkowski J, Luszczek-Trojan E, Epler P, Demianowicz W, SaROSiek B,Kowalski R,Jankun M,Zakes Z,Krol J, Czerniak S, Szczepkowski M. Influence of heavy metals and 4-nonylphenol on reproductive function in fish [J]. Reprod Biol,2006,1:175-188
    117. Ren L, Lattier D, Lech JJ.Estrogenic activity in rainbow trout determined with a new cDNA probe for vitellogenesis, pSG5Vg1.1 [J]. Bull Environ Contam Toxicol,1996,56:287-294
    118. Renner R.Amphibian declines.Conflict brewing over herbicide's link to frog deformities [J]. Science,2002,298:938-939
    119. Renner R.European bans on surfactant trigger transatlantic debate [J]. Environ Sci Technol,1997,31:316-320
    120. Ribeiro C, Pardal MA, Martinho F, Margalho R, Tiritan ME, Rocha E, Rocha MJ.Distribution of endocrine disruptors in the Mondego River estuary, Portugal[J]. Env Mon Ass,2009,149:183-193.
    121. Rurangwaa E, Biegniewskab A, lominskac ES, Skorkowski EF, Ollevier F. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm:a biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility [J]. Comp Biochem and Phys Part C:Toxi & Pharma,2002,131:335-344
    122. Schubert S, Peter A, Burki R, Schonenberger R, Suter MJ, Segner H, Burkhardt-Holm P.Sensitivity of brown trout reproduction to long-term estrogenic exposure [J]. Aquatic Toxicology,2008,90:65-72
    123. Schwaiger J, Mallow U, Ferling H, Knoerr S, Braunbeck T, Kalbfus W, Negele RD. How estrogenic is nonylphenol? A transgenerational study using rainbow trout (Oncorhynchus mykiss) as a test organism [J]. Aquatic Toxicology,2002,59:177-189.
    124. Schwaiger J, Mallow U, Ferling H, Knoerr S.How estrogenic is nonylphenol?:A transgenerational study using rainbow trout(Oncorhynchus mykiss) as a test organism [J]. Aquatic Toxicology,2002,59:177-189
    125. Sckwaiger J, Mallow U, Ferling H, Knoerr S, Braunbeck T, Kalbfus W, Negele RD. How estrogenic is nonylphenol? A transgenerational study using rainbow trout(Oncorhynchus mykiss) as a test organism [J]. Aquatic Toxicology,2002,59:177-189
    126. Seymour RS, Bradford DF. Respiration of amphibian eggs [J]. Physiol Zool,1995,68:1-25
    127. Snedeker SM. Pesticides and breast cancer risk:a review of DDT, DDE, and dieldrin [J]. Environ Health Perspect,2001,109:35-47
    128. SoleM, Lopez de Alda M J, Castillo M.Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain) [J]. Environ Sci Technol,2000,34:5076-5083
    129. Sone K, Hinago M, Kitayama A, Morokuma J, Ueno N, Watanabe H, Iguchi T.Effects of 17beta-estradiol, nonylphenol, and bisphenol-A on developing Xenopus laevis embryos [J]. Gen C Endoc,2004,138:228-236.
    130. Stebbins RC, Cohen NW.A natural history of amphibians [M]. Princeton University Press, Princeton, New York,1995
    131. Sweeney T. Is exposure to endocrine disrupting compounds during fetal Ppost2natal development affecting the reproductive potential of farm animals? [J]. Domest Anim Endocrin,2002,23:203-209
    132. Swisher RD.Surfacant biodegradation/surfacant science series.Marchel Dekker:New York,1987
    133. Tabira Y, Nakai M,Asai D, Yakabe Y, Tahara Y, Shinmyozu T, Noguchi M, Takatsuki M, Shimohigashi Y. Structural requirements of para-alkylphenols to bind to estrogen receptor [J]. Eur J Biochem,1999,262:240-245
    134. Tanaka JN, Grizzle JM.Effects of nonylphenol on the gonadal differentiation of the hermaphroditic fish (Rivulus marmoratus) [J]. Aquatic Toxicology,2002,57:117-125
    135. Thibaut RL, Debrauwer D, Rao JC. Characterization of biliary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss) [J]. Xenobiotica,1998,28:745-757
    136. Thibaut RL, Debrauwer D, Rao JCravedi. Urinary metabolites of 4-nonylphenol in rainbow trout (Oncorhynchus mykiss) [J]. Sci Total Environ,1999,233:193-200
    137. Valz-Gianinet JN, del Pino EJ, bada MO. Glycoproteins from Bufo arenarum vitelline envelope with fertility-impairing effect on homologous spermatozoa [J]. Dev Biol,1991,146:416-422
    138. Van den Belt K, Berchmans P, Vangenechten C. Comparative study on the in vitro/in vivo estrogenic potencies of 17β2 estradiol, estrone,17α2 ethynylestradiol and nonylphenol [J]. Aquatic Toxicology,2004,66:183-195
    139. Van Ry D, Dachs J, Gigliotti C, Brunciak P, Nelson E, Eisenreich S. Atmospheric Seasonal Trends and Environmental Fate of Alkylphenols in the Lower Hudson River Estuary [J]. Environ Sci Technol,2000,34:2410-2417
    140. Weber LP, Kiparissis Y, Hwang GS, Niimi AJ, Janz DM, Metcalfe CD.Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes) [J]. Comp Bioc C,2002,13:51-59
    141. WHO/IPCS.Global assessment of the state-of-the-science of endocrine disruptors. World Health Organization/International Program on Chemical Safety,2002
    142. Willey JB, Krone PH. Effects of endosulfan and nonylphenol on the primordial germ cell population in pre-larval zebrafish embryos [J]. Aquatic Toxicology,2001,54:113-123
    143. Willey JB, Krone PH. Effects of endosulfan and nonylphenol on the primordial germ cell population in pre-larval zebrafish embryos [J]. Aquatic Toxicology,2001,54:113-123
    144. Witschi E.Mechanisms of sexual differentiation.In:Hamburg M, Barrington E (Eds) Hormones in development.New York, Appleton Century Crofts,1971,601-618
    145. Wolf DP,Nishihara T, West DM, Wyrick RE,Hedrick JL. Isolation, physicochemical properties, and the macromolecular composition of the vitelline and fertilization envelopes from Xenopus laevis eggs [J]. Biochemistry,1976,15:3671-3678
    146. Yokota, Seki HM, Maeda M, Oshima Y, Tadokoro H, Honjo T, and Kobayashi K. Life-cycle toxicity of 4-nonylphenol to medaka (Oryzias latipes) [J]. Environ Toxicol Chem,2001,20:2552-2560
    147. Zhang Y, Huang D, Zhao D, Long J, Song G, Li A.Long-term toxicity effects of cadm IUm and lead on Bufo raddei tadpoles [J]. Bull Environ Contam Toxicol.2007,79:178-183
    148. Zou E.Current status of environmental endocrine disruption in selected aquatic invertebrates [J]. Acta Zoologica Sinica,2003,49:551-565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700