赣江中游大型水利工程对鱼类及其生态环境的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水利工程建设在发挥具大效益的同时也引发了诸多的河流生态环境问题,其对水生生物尤其是对鱼类的影响是世界环境科学和生态学领域十分关注的课题。当前随着我国水利工程建设步伐的加快,国内学术界就水利设施对鱼类影响的研究有过许多报道,比较典型的是围绕三峡工程对长江鱼类的影响研究,取得了很多的科研成果。随着部分河流梯级水利工程的建设,人们也开始重视水利枢纽群对鱼类资源及其生态环境的累积影响等。
     赣江作为长江八大支流之一,是鄱阳湖水系第一大河流,水资源丰富,水能蕴藏量大,目前正在加大水能开发利用程度。本研究通过现场采样、数据分析、问卷调查等方法,较系统地就赣江中游已建成运用的万安水利枢纽以及正在建设之中的石虎塘航电枢纽、峡江水利枢纽等三座大型水利枢纽工程对赣江鱼类资源及其生态环境的影响进行了分析和预测。本文尝试建立了水利枢纽群生态优化调度模型,并就有效保护鱼类资源,弥补或减缓工程建设对鱼类带来的负面影响,提出了一些对策措施,以期实现赣江清洁能源的开发与水生生物保护的双赢。具体研究内容和结果如下:
     1、2009年~2010年对受万安水利枢纽影响的赣江赣洲段进行了鱼类资源采样调查,共采集鱼类标本8972尾,记录鱼类79种,隶属7目17科68属,结果显示当地主要鱼类有黄颡鱼、鮈类、鳜、银鲴、鳊、鳖、飘鱼、乌鳢、鲇类等。渔获物重量组成中,黄颡鱼(19.66%)、鲴(17.08%)最多,其次为鳜类(14.89%)、乌鳢和鲇类(11.59%)等。就个体数量百分比来说,黄颡鱼类(32.20%)和鳖、飘鱼类(14.57%)占优势,其次为鲴(13.69%)和鮈类(10.19%)。
     万安水利枢纽建成运行,使赣江赣洲至万安江段由自然流动水体转为相对静止的库区,导致四大家鱼等江河洄游性鱼类减少,鳊、鮊、鲴类等以浮游生物和有机碎屑为食饵的鱼类数量增加,坝下江段食底栖生物的鱼类如黄颡鱼、乌鳢、鲇类增多,鱼类区系组成发生了一定的变化;通过调查研究,证实坝上赣州江段仍然存在四大家鱼产卵场,其位于万安水利枢纽坝上80km左右的赣县储潭镇老虎角;坝下游的百嘉下、泰和、沿溪等三处鱼类产卵场的功能受到不同程度的影响。
     2、2009年~2010年对在建的石虎塘航电枢纽工程影响的赣江泰和段进行了鱼类资源采样调查,调查中共采集鱼类标本5763尾,记录鱼类48种,隶属于3目6科39属,其中以鲤科鱼类最多,共35种,占总种数的72.92%,鳅科2种,占4.17%;鲇科1种,占2.08%;鲿科5种,占10.42%;鮨科4种,占8.33%;鳢科1种,占2.08%。工程影响范围内常见的重要经济鱼类有:银鲴、花鳃鲤、鲫、鳊、鱤鱼、乌鳢、青鱼、草鱼、赤眼鳟、鲇、鳜、鲢、鳙等。其中草食性鱼类,如草鱼、鳊,赤眼鳟和以底栖无脊椎动物为食的鲤、青鱼、鲇、银鲴,及凶猛性鱼类鮊、鳜等为优势种群。渔获物统计结果表明,银鲴、黄颡鱼、银鮈、赤眼鳟、鳊、鲶分别占渔获物总量的58.69%、6.65%、4.08%、1.52%、2.18%、2.09%,本文认为受万安水利枢纽影响,处在万安坝下江段的泰和段,由于河水含沙量的降低,使得底栖生物滋生,食底栖生物的鱼类增多。预测石虎塘航电枢纽工程运行后的一段时间内,随着河流生境向水库生境转变,此种格局将更加明显。
     石虎塘航电枢纽工程的建设将引起大坝上、下江段水位、流速等水文因子的改变,使得泰和县澄江、沿溪产卵场的原有生态条件发生变化,将会给这二处产卵场造成较大的生态影响,从而影响鱼类在此产卵繁殖、栖息。工程建成后,产卵场的位置和规模将继续发生变化,甚至可能导致消失。
     3、2009年~2010年为研究峡江水利枢纽工程建设对鱼类的影响,本文对峡江至新于江段进行了鱼类资源采样调查,调查中共采集鱼类标本5567尾,记录鱼类71种,隶属7目16科58属,结果显示当地主要鱼类有鳊、银鲴、赤眼鳟、半鳖、鲤、黄颡鱼、鳜、翘嘴鮊、草鱼。渔获物重量组成中,赤眼鳟(21.77%)、鳊(15.17%)最多,其次为银鲴(11.81%)、鲤(11.52%)、翘嘴鮊(7.60%)、半鳖(6.57%)等。就个体数量百分比来说,半鳖(19.25%)和银鲴(13.89%)占优势,其次为鳊(11.09%)和赤眼鳟(8.46%)。
     峡江水利枢纽工程建设将使坝下江段沿岸带生境层次简化,水位自然变幅趋小,对产飘浮性卵鱼类的繁殖以及产黏性卵鱼类的正常发育不利;大坝阻隔鱼类洄游进入库区;工程建成后,随着水深、水温、水流速的改变,坝上库区四大家鱼产卵所需的水文条件丧失,促使坝上库区吉水、金滩、槎滩、小江、巴邱等5个鱼类产卵场消失,坝下江段的巴邱、仁和、新干3处鱼类产卵场因水位在繁殖季节无大幅度涨落,两岸的淹没区大为减少,鱼卵黏附基质相应减少,产卵场功能将丧失。但工程将有利于坝上的2处鱼类越冬场和6处鱼类索饵场,而位于坝下的邓家索饵场,由于水量减少,水位降低,饵料生物将减少。
     4、本文尝试建立水利枢纽群生态优化调度模型并在赣江中游梯级水库上进行了模拟应用研究,采用了POA算法,分析了生态目标的加入对水库原有功能产生的影响。模拟调度结果表明,考虑生态因素后对水库经济效益即发电量的总体影响不大,建议在石虎塘航电枢纽和峡江水利枢纽运行后,与上游万安水利枢纽共同进行考虑生态适宜需水量的联合调度,以缓解工程建设对河流水生生物尤其是鱼类的影响。
     5、鉴于赣江中游水利工程对鱼类已经产生和即将产生的负面影响,本研究根据三座水利枢纽特性及赣江水生态特征,提出了水资源生态调度、修建鱼道,增殖放流,建立水产种质资源保护区、鱼类自然保护区,加强资源监测和科学研究,借鉴鄱阳湖及长江流域禁渔期的成功经验,于每年4月1日至6月30日在赣江设立禁渔期等方面的对策和建议。
Hydraulic project leads to many river ecological and environment problems while it brings us remarkable benefits nowadays. The influence to aquatic organisms, especially to the fish, is a subject of great concern in the areas of environmental science and ecology. There have been many reports regarding the impact of water conservancy facilities on fish ecology in the domestic academia with the accelerated construction of hydraulic engineering in China. Extensive research results have yet achieved in this field, particularly the Yangtze River Three Gorges Project. As the cascaded construction of hydraulic project in part of the river, the cumulative effects of water conservancy hub group on fish resources and ecological environment are attracted much attention to.
     Gan River, one of the eight tributaries of the Yangtze River, is the largest river in Poyang Lake water system, rich in water resources and water power reserves. Nowadays the utilization of water power is being extensified in Gan River. The aim of this study was to analyze and forecast systematically the effects of Wan'an Hydraulic Project (under service), Shihutang Navigation-Hydropower Project and Xiajiang Hydraulic Project (under construction) on fish resources and water ecological environment, and try to establish the model of hydraulic projects and ecological optimization. Field sampling, questionnaire survey and data analysis were employed in this study. We recommend some effective measures regarding fish resource protection and the relief of adverse impact about project construction, so as to maintain the win-win actions between the development of clean energy and aquatic organism protection.
     We were trying to find a balance which would give full play to the advantages of water conservancy projects, develop clean energy, but also reduce the damage to the fish. These data will be useful to take some effective measures to remedy or mitigate adverse effects on fish and maintain the sustainable development of fish resources according to the features of each water conservancy junction.The research content and the results are as follows:
     1. To study the effect of Wan'an hydraulic project on the fish resources in the Ganzhou reach of Gan River, an extensive survey was conducted from 2009 to 2010. A total of 79 freshwater species (8972 individuals) belonging to 7 orders,17 families and 68 genera have been recorded. The result indicated that the main commercial fishes in the local place were Pelteobagrus fulvidraco, Gobioninae, Siniperca chuatsi, Xenocypris argentea, Parabramis pekinensis, Hemicculter Leuciclus, Pseudolaubuca sinensis, Ophicephalus argus and Silurus. Pelteobagrus fulvidraco and Gobioninae were the most abundant for biomass, which accounted for 19.66% and 17.08%, respectively, followed by Siniperca chuatsi(14.89%), Channa argus and Silurus(11.9%). Pelteobagrus fulvidraco(32.20%), Hemicculter Leuciclus and Pseudolaubuca sinensis(14.57%) were abundant species for abundance, which followed by Xenocypris argentea(13.69%) and Gobioninae(10.19%).
     The water flow has slowed down dramatically in the Ganzhou to Wanan area since Wan'an hydraulic project was completed. The flowing water body became a static water reservoir. It resulted in the decreased amount of migration fishes such as four major chinese carps. The quantity of the plankton- and organic detritus-eating fish surged quickly, such as Parabramis pekinensis, Culterinae and Xenocypris argentea. The fishes feeding on benthos increased, such as Pelteobagrus fulvidraco, Channa argus and Silurus, which indicated the alteration of fish fauna composition. Through extensive research, it was confirmed that there were the four major Chinese carps spawning grounds located Laohujiao, Chutan town, Gan county,80 kilometres in the upstream of Wan'an hydraulic project. Baijiaxia, Taihe, Yanxi, the three spawning places, located in the upstream of Wan'an hydraulic project were also affected in different degrees.
     2. To study the effect of Shihutang Navigation-Hydropower Project on the fish resources in the Taihe reach of Gan River, an extensive survey was conducted from 2009 to 2010. A total of 48 freshwater species (5763 individuals) belonging to 3 orders,6families and 39 genera have been recorded. The fishes of Cyprinidae were the main component, consisting of 35 species and 72.92% in all species, which followed by Bagridae(5,10.42%), Cobitidae(2,4.17%), Percichthyidae(4,8.33%), Channidae(1,2.08%) and Siluridae(1,2.08%). The main commercial fishes in the Taihe reach were Xenocypris argentea, Hemibarbus maculates, Cyprinus carpio, Carassius auratus, Megalobrama amblycephala, Elopichthys bambusa, Channa argus, Mylopharyngodon piceus, Ctenopharyngodon idellus, Squaliobarbus curriculus, Siniperca chuatsi, Hypophthalmichthys molitrix, Hypophthalmichthys nobilis, and Silurus asotus. Herbivorous fish like Ctenopharyngodon idellus, Megalobrama amblycephala and Squaliobarbus curriculus, invertivorous species like Cyprinus carpio, Mylopharyngodon piceus, Silurus asotus and Xenocypris argentea and Carnivorous fish like Siniperca and Culter are dominant speices. The results of biomass indicated that Xenocypris argentea, Pelteobagrus fulvidraco, Squalidus argentatus, Squaliobarbus curriculus, Megalobrama amblycephala and Silurus asotus account for 58.69%、6.65%、4.08%、1.52%、2.18%、2.09%, respectively. The Wan'an Hydraulic project made the amount of river sediment decrease in the Taihe Reach, which results in invertivorous species increasing there. It suggests that this trend will be more apparent after Shihutang Navigation-Hydropower Project being working for a while.
     After the completion of Shihutang Navigation-Hydropower Project, the water level, water temperature, water flow velocity and other hydrological factors in upper and lower reaches will be changed drastically. It will cause the original ecological conditions in Tai'he and Yanxi spawning grounds are changed accordingly. What's worse, these two spawning grounds may disappear due to the construction of hydraulic project in some day.
     3. To study the effect of Xiajiang Hydraulic Project on the fish resources from the Xiajiang to Xingan reach of Ganjiang River, an extensive survey was conducted from 2009 to 2010. A total of 71 freshwater species (5567 individuals) belonging to 7 orders,16 families and 58 genera have been recorded. The result indicated that the main commercial fishes in the local place were Parabramis pekinensis, Xenocypris argentea, Squaliobarbus curriculus, Hemicculter Leuciclus, Cyprinus carpio, Pelteobagrus nitidus, Siniperca chuatsi, Erythroculter ilishaeformis, Ctenopharyngodon idellus. Xenocypris argentea and Parabramis pekinensis were the most abundant for biomass, which accounted for 21.77% and 15.17%, respectively, which followed by Xenocypris argentea (11.81%), Cyprinus carpio (11.52%), Erythroculter ilishaeformis (7.60%), Hemicculter Leuciclus (6.57%). Hemicculter Leuciclus (19.25%), Xenocypris argentea (13.89%) were abundant species for abundance, which followed by Parabramis pekinensis (11.09%) and Squaliobarbus curriculus (8.46%).
     The original flowing water turn into semi-static or static water. This destroys the essential hydrological conditions needed for spawning by the four major Chinese carps, leading to the disappearance of five fish spawning grounds in the upstream of the project, including Jishui, Jintan, Chaqiu, Xiaojiang, Baqiu. Furthermore, due to no significant water level fluctuation during the breeding season and the great reduction of flooded area in both sides in the downstream of project, the adhesive medium for fish eggs will accordingly decrease. Therefore, three spawning grounds, Baqiu, Renhe, Xingan, situated in the downstream, will loss of function for spawning. However, the hydraulic project will benefit the two fish wintering grounds and six feeding sites at the upside of the dam, whereas the amount of plankton will be reduced in Dengjia feeding grounds at the downside of the dam due to the reduced water volume and water level decreased.
     4. The hydraulic project and ecological optimization scheduling model was proposed, and the simulated applied research was conduct in middle reaches of the Gan River cascade reservoirs using the POA algorithm. What's more, the impact of the addition of ecological goals on the original function of the reservoir was addressed. The results of simulated regulation showed that it had little impact to overall economic benefits or generating capacity to take into account the ecological factors. This suggests that it is necessary to adopt joint regulation of water after Shihutang Navigation-Hydropower Project and Xiajiang hydraulic Project being in service, conbined with Wan'an hydraulic Project. This measure will decrease the adverse impact of project to river aquatic organisms, especially to fish.
     5. The negative impact of hydraulic project to fish has already produced and will produce in the middle reach of Gan River. Therefore, we propose the following countermeasures and suggestions according to features of hydraulic project and water ecological:regulating water ecologically, constructing fish way facilities, enhancement and releasing, establishing protection areas for aquatic germplasm resource and nature reserves of fish and enhancing resource monitoring and scientific research. Drawing on the successful experience of closed seasons in Poyang Lake, the closed seasons should be also estabolished from April 1 to June 30 annually in Gan River.
引文
[1]贾金生.世界水电开发情况及对我国水电发展的认识[J].中国水利,2004,(13):10~12.
    [2]李仁凤,王占全.大坝工程与生态环境[J].黑龙江水利科技,2008,36(6):146~148.
    [3]孙继昌.中国的水库大坝安全管理[J].中国水利2008(20):10~14.
    [4]李凤楼,王亚杰,王立民.浅谈水和工程措施的生态环境危害[J].地下水,2007,29(2):128~129.
    [5]常剑波,陈永柏,高勇,等.水利水电工程对鱼类的影响及减缓对策[A].中国水利学会2008学术年会论文集(上册)[C].海口:中国水利水电出版社,2008,10.
    [6]李友辉,孔琼菊.柘林水利枢纽对社会、经济、环境的影响分析[J],水电站设计,2006,22(3):78~82.
    [7]邹淑珍,吴志强,胡茂林,等.浅谈水利枢纽对河流生态系统的影响[J].安徽农业科学,2010,38(22):11923~11925.
    [8]佩茨GE.主编,王兆印,曾庆华,吕秀贞,等译.蓄水河流对环境的影响[M].北京:中国环境科学出版社,1988.
    [9]Carmen Rvenga et al.Pilot analysis of global ecosystems:Fresh water systems [M]. Washington D.C:World Resources Institute,2000.
    [10]裴勇,沈平伟.渭河水资源开发利用存在的问题及管理对策[J].人民黄河,2006,28(6):77~79.
    [11]田进,杨西林,吴巍.径河东庄水库对渭河下游的影响分析[J].西北水力发电,2005,21(2):43~45.
    [12]曹永强,倪广恒,胡和平.水利水电工程建设对生态环境的影响分析[J].人民黄河,2005,27(1):56~58.
    [13]姜翠玲,严以新.水利工程对长江河口生态环境的影响[J].长江流域资源与环境,2003,12(6):547~551.
    [14]Christer N,Magnus S.Augusbasic Principles and ecological consequences of changing water regimes:riparian Plant communities[J].Environmental Management,2002,30(4):468-480.
    [15]Nehring RB.Evaluation of Instream Flow Methods and Determination of Water Quantity Needs for Streams in the State of Colorado[R].Fort Collins, CO, Division of wildlife,1979, 144.
    [16]Stalnaker C, Lamb BL, Henriksen J.The Instream Flow Incremental Methodology:a Primer for IFIM[R].National Biological Serviee, US DePartment of the Interior, Biological,1995.
    [17]Bunn SE.Reeent Approaches to Assessing and Providing Environmental Flows:Concluding Comments[R].Proceedings of AWWA Forum,1998,123-129.
    [18]马颖.长长江生态系统对大型水利工程的水文水力学响应研究[D].南京:河海大学,2007.
    [19]操文颖,王瑞琳.清江水布垭水利枢纽生态环境影响分析[J].人民长江,2007,(7):133~134.
    [20]葛晓霞,赵俊,朱远生.乐吕峡水利枢纽建设与鱼类保护[J].人民珠江,2009,(3):29~32.
    [21]刘乐和,吴国犀,王志玲,等.葛洲坝水利枢纽工程对坝下江段胭脂鱼性腺发育及自然繁殖的影响[J].水产学报,1992,(4):346~356.
    [22]刘乐和,吴国犀,曹维孝,等.葛洲坝水利枢纽兴建后对青、草、鲢、鳙繁殖生态效应的研究[J].水生生物学报,1986,(4):353~364.
    [23]秦卫华,刘鲁君,徐网谷,等.小南海水利工程对长江上游珍稀特有鱼类自然保护区生态影响预测[J].生态与农村环境学报,2008,(4):23~26.
    [24]Pett G. E. Longterm consequences of upstream impoundment[J]. Environmental Conservation.1980, (4):325-332.
    [25]BerkamP, G., McCartney, M., Dugan, p. et al.2000.Dams, ecosystem functions and environmental restoration, Thematic Review 11.1PrePared as an input to the World Commission on Dams, CaPe Town[OL].www.dams.org.
    [26]马广慧.黄河流域水资源开发利用对水文循环及生态环境的影响研究[D].河海大学硕士论文,2007.
    [27]栾建国,陈文祥.河流生态系统的典型特征和服务功能[J].人民长江,2004,35(9):41~43.
    [28]陈竹青.长江中下游生态径流过程的分析计算[D].河海大学硕士论文,2005.
    [29]周小愿.水工程对水生生物资源影响综述与对策建议[J].西北水电,2009(4):3~6.
    [30]Wantzen K M, Rothhaupt K O, Mortl M, et al. Ecological effects of water level fluctuations in lakes:an urgent issue. Hydrobiologia,2008,61(3):1-4.
    [31]Leira M, Cantonati M. Effects of water-level fluctuations on lakes:an annotated bibliography. Hydrobiologia,2008,6(13):171-184.
    [32]王东胜,谭红武.人类活动对河流生态系统的影响[J].科学技术与工程,2004,4(4):299~302.
    [33]邱成德,曾礼生.赣江上游水利工程对水文测站影响分析[J].江西水利科技,2007,(1):38~42.
    [34]F.B.沃洛巴耶未,A.B.阿瓦克扬主编,李砚阁、程玉慧等译,杨景辉等校.水库及其环境影响[M].北京:中国环境科学出版社,1994.
    [35]蔡玉鹏.大型水利工程对长江中下游关键生态功能区影响研究[D].硕士学位论文2007.
    [36]杨琼.水利工程对水体生态系统的影响[J].西藏科技,2007,27(5):30~33.
    [37]刘兰芬.河流水电开发的环境效益及主要环境问题研究[J].水利学报,2002.121~128.
    [38]Jackson, P.B.N. and Davies, B.R.1976. Cabora River in its First year:Some Ecological Aspects and Comparisons. Rhodesian Science News.Vol.10 (5):128-133.
    [39]Shiel, R.J.1978.Zooplankton Communities of the Murray-Darling System, in Proceedings of the Royal Society of Victoria. Vol90:193-202.
    [40]朱江译,贾志云校.淡水生物多样性危机[J].世界自然保护联盟通讯(IUCU),1999,(4):3~4.
    [41]贾敬德.长江渔业生态环境变化的影响因素[J].中国水产科学,1996,6(2):112~114.
    [42]杨宏.流域水电梯级开发累积环境影响评价研究[D].兰州大学硕十论文,2007.
    [43]Whittaker R H. Evolution and measurement of species diversity. Taxon,1972,21:213-251.
    [44]Magurran A E. Ecological diversity and its measurement. New Jersey:Princeton University Press,1988.
    [45]Peet R K. The measurement of species diversity. Ann. Rey. Ecol. System,1974,5:285-307.
    [46]范红社.浅谈水利工程建设对生物多样性的影响[J].山西水利,2007(1):113~114.
    [47]Simpson E H. Measurement of diversity. Nature,1949,163,688.
    [48]Pielou E C. Ecological diversity. John Wiley and Sons Inc,1975.
    [49]蒋红,谢嗣光,赵文谦等.二滩水电站水库形成后鱼类种类组成的演变[J].水生生物学报,2007,31(4):532~539.
    [50]Travnichek, V.H.Zale, A.V.&Fisher, W.L.Entrainment of ichthyoPlankton by a warmwater hydroelectric facility[J].Transactionsof the Ameriean Fisheries Soeiety,1993, 122:709-716.
    [51]Webb C R H, Schmidt J C. Dams and rivers:a primer on the Downstream effects of dams[J].US Geological Survey Circular,1996:11-26.
    [52]Sandra Postel Brian Richter.河流生命一为人类和自然管理用水[M].武会先,王万战,宋学东译.郑州:黄河水利出版社,2005.
    [53]CarothersW, BryanT.Brown.TheColoradoRiverThroughGrandCanyon[M].NaturalHistoryand HumanCharge, Tueson:UniversityofArizonaPress,1991.
    [54]Penaz, M., Juradja, P.Roux, A.L.&Olivier, J.MO fish assemblages In a sector of the Rhone River influenced by the Bregnier—Cordonhydroelectric scheme[J]. Regulated rivers:Research and Management.,1995,10:363-37.
    [55]中国科学院三峡工程生态与环境科研项目领导小组.长江三峡工程对生态与环境的影响及对策研究[M].北京:科学出版社,1998.
    [56]黄真理,李玉木黔等.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社,2006.
    [57]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社,2001.
    [58]石田.略论三峡水利工程对生态环境的影响[J].武汉交通干部管理学院学报,1994,3,34~37.
    [59]马小凡,郭晓泽,王菊,等.水坝工工程建设与生态保护的利弊关系分析[J].地理科学,2005,25(5):621~625.
    [60]姜加虎,黄群.三峡工程对四湖地区水情影响研究[J].海洋湖沼通报,1996,3,19~25.
    [61]戴仕宝,杨世伦,赵华云,等.三峡水库蓄水运用初期长江中。下游河道冲淤响应[J].泥沙研究,2005,5,35~39.
    [62]王海云.三峡水利工程建设对三峡地区环境影响与控制对策[J].环境保护,1998,2,42~43.
    [63]苏爱军,陈蜀俊,童广勤.三峡工程库区主要环境地质问题及处置对策[J].长江科学院 院报,2008,25(1):53~57.
    [64]陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响[J].长江流域资源与环境,2003,12(1):50~54.
    [65]陈国阶.三峡库区生态与环境问题[J].科技导报,]99,(2):49~52.
    [66]张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,2002,(4):56~59.
    [67]殷鸿福,陈国金,李长安,等.长江中游的泥沙淤积问题[J].中国科学D辑(地球科学),2004,34(3):195~209.
    [68]王崇浩,韩其为.三峡水库建成后荆南三口洪道及洞庭湖淤积概算[J].水利水电技术,1997,28(11):16~20.
    [69]秦文凯,府仁寿,王崇浩,等.三峡建坝前后洞庭湖的淤积[J].清华大学学报(自然科学版),1998,38(1);84~87.
    [70]刘昭伟.三峡水库岸边水域水环境特性及承载能力研究[D].清华大学博士学位论文,2005.
    [71]汤宏波,刘国祥,胡征宁.三峡库区高岚河甲藻水华的初步研究[J].水生生物学报,2006,30(1):47~51.
    [72]周广杰,况琪军,刘国祥,等.三峡库区藻类水华调查及其毒理学研究[J].水生生物学报,2006,30(1):37~41.
    [73]蔡庆华同,胡征宇.三峡水库富营养化问题与对策研究[J].水生生物学报,2006,30(1):7~11.
    [74]况琪军,毕永红,周广杰,等.三峡水库蓄水前后浮游植物调查及水环境初步分析[J].水生生物学报,2005,29(4):353~358.
    [75]曹明,蔡庆华,刘瑞秋,等.三峡水库初期蓄水前后理化因子的比较研究[J].水生生物学报,2006,30(1):12~19.
    [76]曹明,蔡庆华,刘瑞秋,等.三峡水库及香溪河库湾理化特征的比较研究[J].水生生物学报,2006,30(1):20~25.
    [77]柯福恩,危起伟,罗俊德,等.三峡工工程对长江渔业资源的影响与补救措施[J].淡水渔业,1994,24(1):6~9.
    [78]曹文宣.三峡工程对长江鱼类资源影响的初步评价及资源增殖途径的研究[A].长江三峡工程对生态与环境及其对策研究论文集[C].北京:科学出版社,1987.
    [79]张杰等.三峡工程对四大家鱼典型产卵场环境影响分析[J].人民长江,2010(3):56~58.
    [80]蒋固政,张先峰,常剑波.长江防洪工程对珍稀水生动物和鱼类的影响[J].人民长江,2001,32(7):39~42.
    [81]肖建红.水坝对河流生态系统服务功能影响及其评价研究[D].河海大学,2007.
    [82]王儒述.三峡工程的环境影响及其对策[J].长江流域资源与环境,2002,11(4):317~322.
    [83]贾敬德.淡水渔业环境现状及保护对策[J].淡水渔业水,2004,34(5):59~61.
    [84]班璇,李大美.大型水利工程对中华鲟生态水文学特征的影响[J].武汉大学学报(工:学版),2007,40(3):10~13.
    [85]曹文宣.水利工程与鱼类资源的利用保护[J].水库渔业,1983(1):10~21.
    [86]王波.三峡工程对库区生态环境影响的综合评价[D].北京林业大学博十学位论文,2009.
    [87]江西省水文局.江西水系[M].长江出版社,2007.
    [88]江西省水利厅.江西省水利志[M].中国水利水电出版社,2005,8.
    [89]程宗锦.赣江探源[M].南吕:江西科学技术出版社,2003:8~9.
    [90]张建铭.赣江峡江段四大家鱼资源及其遗传多样性研究[D].南昌大学硕士论文,2010.
    [91]谭晦如,吕桦.鄱阳湖流域的构成—赣江流域[OL].江西省山江湖办,http://ziliaoku.jxwmw.cn/system/2008/11/12/010079359.shtml,2008-11-12.
    [92]龚向民,李昆,万淑燕,等.人类活动与赣江流域泥沙变化规律研究[J].江西水利科技,2006,32(1):24~27.
    [93]李昆,谭振江,周家丽,江文慧.人类活动对赣江流域水环境的影响探讨[J].水资源研究,2007,(3):9~11.
    [94]戴熙畴.赣江主要支流梯级开发规划初论[J].江西水利科技,1987,(3):57~65.
    [95]杨荣清,胡立平,史良云.江西河流概述[J].江西水利科技,2003,29(1):27~30.
    [96]杨荣清,胡立平,史良云.赣江流域水文特性分析[J].水资源研究,2003,24(1):35~38.
    [97]吴速英,许洪胤,钟洪等.赣江流域水资源承载能力初步分析[J].中国资源综合利用,2009,(2):28~30.
    [98]田见龙.万安大坝截流前赣江鱼类调查及渔业利用意见[J].淡水渔业,1989,1:33~39.
    [99]郭治之,刘瑞兰.江西鱼类的研究[J].南昌大学学报(理科版),1995,19(3):222~232.
    [100]郭治之.鄱阳湖鱼类调查报告[J].江西大学学报(自然科学版),1963,(2):121~130.
    [101]张本.鄱阳湖渔业发展战略的研究[J].湖泊渔业,1986,(3):3~7.
    [102]李钟杰.长江流域湖泊的渔业资源与环境保护[J].北京:科学出版社,2005.
    [103]Liang Liang Huang(黄亮亮),Zhi Qiang Wu (吴志强),Jian Hua Li(李建华. Fish fauna, biogeography and conservation of freshwater fish in Poyang Lake Basin, China. Environ Biol Fish 2011,12(4):396-410.
    [104]胡茂林,吴志强,周辉明,等.鄱阳湖南矶山自然保护区渔业特点及资源现状[J].长江流域资源与环境,2005,14(5):561~565.
    [105]峡江县统计局.峡江统计年鉴[M].2008.
    [106]蒋以洁.江西鱼类区系初步分析[J].江西水产科技,1985,(1):1~16.
    [107]胡茂林.鄱阳湖湖口水位、水环境特征分析及其对鱼类群落与洄游的影响[D].南吕大学,2009.
    [108]朱海虹,张本.鄱阳湖[M].合肥:中国科学技术大学出版社,1997.
    [109]王尚玉,廖文根,陈大庆,等.长江中游四大家鱼产卵场的生态水文特性分析[J].长江流域资源与环境,2008,17(6):892~897.
    [110]李种,廖文根,陈大庆,等.基于水力学模型的三峡库区四大家鱼产卵场推求[J].水利学报,2007,38(11):1285~1289.
    [111]黄悦,范北林.三峡工程对中下游四大家鱼产卵环境的影响[J].人民长江,2008,39(19):38~41.
    [112]长江水系渔业资源调查协作组.长江水系渔业资源[M].北京:海洋出版社,1990.
    [113]李修峰,黄道明,谢文星,等.汉江中游江段四大家鱼产卵场现状的初步研究[J].动 物学杂志,2006,41(2):76~80.
    [114]李修峰,黄道明,谢文星,等.汉江中游江段四大家鱼产卵场调查[J].江苏农业科学,2006,(2):145~147.
    [115]李种,彭静,廖文根.长江中游四大家鱼发江生态水文因子分析及生态水文目标确定[J].中国水利水电科学研究院学报,2006,4(3):170~176.
    [116]崔奕波,李钟杰.长江流域湖泊的渔业资源与环境保护[M].北京:科学出版社,2005.
    [117]张堂林,李钟杰.鄱阳湖鱼类资源及渔业利用[J].湖泊科学,2007,19(4):434~444.
    [118]钱新娥,黄春根,王亚民,等.鄱阳湖渔业资源现状及其环境监测[J].水生生物学报,2002,26(6):612~617.
    [119]刘乐和,吴国犀,等.赣江鲥鱼产卵场调查[J].淡水渔业,1979,(1):6~10.
    [120]刘绍平,陈大庆等.中国鲥鱼资源现状与保护对策[J].水生生物学报,2002(6):679~684.
    [121]张建铭,吴志强,胡茂林,等.赣江中游峡江段鱼类资源现状[J].江西科学,2009,27(6);916~919.
    [122]刘彬彬,吴志强,胡茂林,等.赣江中游四大家鱼产卵场现状调查与分析[J].2009,27(5):662~679.
    [123]花麒,吴志强,胡茂林.抚河中游四大家鱼资源现状[J].江西水产科技,2009,(4)12~14.
    [124]孟少魁.大坝对生态环境的影响及其对策[J].中国三峡建设,2008,(3):70~71.
    [125]董哲仁,孙东亚,赵进勇,等.水库多目标生态调度[J].水利水电技术,2007,38(1):28~32.
    [126]涂长庚.万安水电站概况及其在电网中的作用[J].华中电力,1990,(6):29~32.
    [127]郑雄波.万安水电厂主汛期水库优化调度江两电力[J].2005,29(2):48~50.
    [128]陈林灿,余济贤.万安水利枢纽概况及运行实践[J].人民长江,1996,27(11):1~3.
    [129]姜华,彭寿永.万安水利枢纽的社会、经济、环境影响综合评价研究[J].水电站设计,2006,22(4):44~47.
    [130]刘臣,张华庆,万建国.赣江万安水利枢纽回水变动区二维水沙模型的建立与研究[J].水动力学研究与进展,2002,17(1):84~91.
    [131]黄养仁,黄扬一.万安水库工程地质分析[J].人民长江,1996,27(11):41~43.
    [132]金腊华,石秀清.万安水库对赣江中游水质的影响分析[J].江西水利科技,1995,21(3):159~161.
    [133]中国科学院中国动物志编辑委员会.中国动物志硬骨鱼纲、鲤形目(上卷)[M].北京:科学出版社,1995.
    [134]中国科学院中国动物志编辑委员会.中国动物志硬骨鱼纲、鲤形目(中卷)[M].北京:科学出版社,1998.
    [135]中国科学院中国动物志编辑委员会.中国动物志硬骨鱼纲、鲤形目(下卷)[M].北京:科学出版社,2000.
    [136]张春光.鱼类物种多样性研究方法[A].见:宋延龄等主编.物种多样性研究与保护[M].杭州:浙江科学技术出版社,1998,98~110.
    [137]朱松泉.中国淡水鱼类系统检索[M].南京:江苏科学技术出版社,1995.
    [138]李思忠.中国淡水鱼类的区划[M].北京:科学出板社,1981:175~261.
    [139]胡海霞,傅罗平,向孙军.湖南宏门冲溪鱼类多样性研究初报[J].四川动物,2003, 22(4):226~229.
    [140]朱日财.赣江赣州江段四大家鱼生物学特性及其遗传多样性研究[D].南吕大学硕十论文,2010.
    [141]陈永柏,等.四大家鱼产卵水文水动力特征研究综述[J].水生态学杂志,(2):131~2133.
    [142]姜作发,夏重志,董崇智,等.蛤蟆通水库水位变化对浮游植物初级生产力及能量转化效率的影响[J].中国水产科学,2001,8(4):23~26.
    [143]Emiliani M O G. Effeets of water level fluctuations On Phytoplanktonina river-floodplain lake system (Parana River, Argentina). Hydrobiologia.1997357:1-15.
    [144]黄玉瑶.内陆水域污染生物学—原理与应用[M].北京:科学出版社,2001.
    [145]Northcote T G.Fish in the structure and function of freshwater ecosystems:a top-down view.Canadian Journal of Fisheries and Aquatic,1988,361-379.
    [146]Sutela T,Vehanen T. Effects of water-level regulation on the nearshore fish community in boreal lakes.Hydrobiologia,2008,613:13-20.
    [147]刘恩生,刘正文,陈伟民,等.太湖鱼类产量、组成的变动规律及与环境的相互关系[J].湖泊科学,2005,17(3):251~256.
    [148]刘恩生,刘正文,鲍传和.太湖卿数量变化的规律及与水环境间关系的分析[J].湖泊科学,2007,19(3):340~345.
    [149]朱成德.太湖银鱼产量与水位关系的数理统计分析[J].淡水渔业,1982,(4):40~42.
    [150]熊邦喜,刘金星,张青.水库不同指标体系的生态因子与鱼产量的同归模型[J].华中农大学学报,1993,12(2):279~284.
    [151]严小梅,胡绍坤,施须坤.太湖银鱼资源变动关联因子及资源测报方法探讨[J].水产学,1996,20(4):307~313.
    [152]黎道丰,蔡庆华.不同盐碱度水体的鱼类区系结构及主要经济鱼类生长的比较[J].水生物学报,2000,24(5):493~501.
    [153]Fernandez O A, Murphy KJ, Cazorla AL, etal.Interrelationships of fish and channel environmental conditions with aquatic macroPhytes in an Arentina irrigation system. Hydrobiologia,1998,380:15-25.
    [154]Richardson DL.Correlates of environmental variables with Patterns in the distribution and abundance of two anemonefishes(pomacentridae:AmphiPrion)on an ea stern Australian sub—tropical reef system.Environmental Biology of Fiehes,1999,55:255-263.
    [155]FeyrerF, Healey M P Fish community structure and enviromental correlates in the highly altered southern Sacramenio—San Joaquin Delta.Environmental Biology of Fiehes,2003, 66:123-132.
    [156]Garcia A M, Raseira M B, vieira J P, et al.SpatiotemPoral variation in shallow—water fresh water fish distribution and abundance in a large subtropical coastal lagoon.Environmental Biology of Fiehes,2003,68:215--228.
    [157]Koel T M, Peterka J J.Stream fish conununities and environmenltal eorrelatesin the Red River of the North, Minnesota and North Dakota.Environmental Biology of Fiehes,2003, 67:137-155.
    [158]Gerhad P, Moraes R, Molander s.Stream fish communities and their associations to habitat variables in a rain forest reserve in southeastern Brazil.Environmental Biology of Fiehes, 2004,71:321-340.
    [159]Maes J, Damme S V, Meire P, et al.Statistical modeling of seasonal and environmental influences on the PoPulation dynamics of an estuarine fish community.Marine Biology, 2004,145:1033-1042.
    [160]Costa M J, Vasconcelos R, Costa J L, et al.River flow influence on the fish community of the Tagus estuary(Portugal).Hydrobiologia.2007,587:113-123.
    [161]Leitao R, Martinho F, CostalJLetal.The fish assemblagoftheMondegoestuary:composition, structure and trends over the Past two decades.Hydrobiologia.2007,587:269-279.
    [162]胡美琴,林锡芝.万安大坝截流前赣江的浮游植物[J].淡水渔业,1988,3::39~42.
    [163]陈彦良,吴志强,胡茂林,等.赣江中游冬季浮游生物的调查分析[J].南昌大学学报(理科版),2009,33(3):285~289.
    [164]严利平,胡芬,凌建忠,等.东海北部和黄海南部小黄鱼年龄与生长的研究[J].中国海洋大学学报,2006,36(]):95~100.
    [165]长江四大家鱼产卵场调查队.葛洲坝水利枢纽工程截流后长江四大家鱼产卵场调查[J]水产学报,1982,6(4):288~304.
    [166]詹寿根,李峰.石虎塘航电枢纽工程洪水调度运行方式探讨[J].人民长江,2008,39(8):7~9.
    [167]易伯鲁,余志堂,梁秩燊等.葛洲坝水利枢纽与长江四大家鱼[M].武汉:湖北科学技术出版社,1988.
    [168]胡茂林,吴志强,刘引兰.赣江中游泰和江段的鱼类资源现状[J].南吕大学学报(理科版),20]0,34(1):90~93.
    []69]詹寿根,汤志贤.峡江水利枢纽洪水调度运行方式探讨[J].人民长江,2010,41(3):19~22.
    [170]张建铭,吴志强,胡茂林.赣江峡江段四大家鱼资源现状的研究[J].水生态学杂志,2010,3(1):34~37.
    [171]楚凯锋,薛联芳,戴向荣,等.水电工程下泄水体气体过饱和影响及对策措施探讨[A].2008中国水力发电论文集[C].北京:中国电力出版社.
    [172]江河,汪留全,管远,等.长江鲥鱼资源调查及濒危原因分析[J].水生态学杂志[J].2009,2(4):140~142.
    [173]唐文乔,刘焕章.江西万安水利枢纽对赣江鲥繁殖的影响及对策[J].水利渔业,1993,65(4):18~19.
    [174]凌明亮,张霞,冯毅,等.鲥鱼养殖技术及其资源保护对策[J].水利渔业,2004,24(4):34~35.
    [175]刘广根.峡江鲥鱼及其资源衰退的原因分析与对策[J].江西农业科技,2002,(5):40~41.
    [176]张士杰,刘吕明,王红瑞等.水库水温研究现状及发展趋势[J].201],47(3):3]6~320.
    [177]王煜,戴会超.大型水库水温分层影响及防治措施[J].三峡大学学报(自然科学版) 2009,31(6):11~15.
    [178]程根伟,麻泽,范继辉.龙西南江河梯级水电开发对河流水环境的影响及对策[J].中国科学院院刊,2004,19(6):433~437.
    [179]陈秀铜.改进低温下泄水不利影响的水库生态调度方法及影响研究[D].武汉大学博十论文,2010.
    [180]TerryDProwse,Fred J Wrona,Geoff Power.Dams,reservoirs and flow regulation. http://www.nwri.ca/threats2full/top 2003-10-29.
    [181]Nilsson C, Berggren K. Alterations of riparianecosystems caused by river regulation [J]. Bioscience,2000,59(9):78.
    [182]Angela H Arthington.Environmental flow:ecol-ogical importance,methods and lessons from Au-stralia.Paper presented at Mekong Dialogue Wo~rkshop"International transfer of river basin dev~elopment experience:Australia and Mekong Region",2 September 2002.
    [183]Johnson Brett M,Saito Laurel,Anderson Mark A,et al.Effects of climate and dam operations on reservoir thermal structure. Journal of Water Re~sources Planning and Management, 2004, (2):112-122.
    [184]倪晋仁,崔树彬,李天宏,等.论河流生态环境需水[J].水利学报,2002,(9):14~19,26.
    [185]王西琴,刘吕明,杨志峰.生态及环境需水量研究进展与前瞻[J].水科学进展,2002,13(4):507~512.
    [186]刘凌,董增川,崔广柏,等.内陆河流生态环境需水量定量研究[J].湖泊科学,2002.14(1):25-30.
    [187]杨志峰,崔保山,刘静岭,等.生态环境需水量理论、方法与实践[M].北京:科学出版社,2003.
    [188]王西琴,刘吕明,杨志峰.河道最小环境需水量确定方法及其应用研究(Ⅰ)一理论[J].环境科学学报,2001,21(5):544-547.
    [189]王西琴,刘吕明,杨志峰.河道最小环境需水量确定方法及其应用研究(Ⅱ)一应用[J].环境科学学报,2001,21(5):548~552.
    [190]朱晓原,张学成.黄河水资源变化研究[M].郑州:黄河水利出版社,1999.
    [191]常炳炎,薛松归,张会言.黄河流域水资源合理分配和优化调度[M].郑州:黄河水利出版社,1998.
    [192]黄小雪,姜跃,蒋红,等.流域梯级开发中河道生态环境需水量研究[J].水力发电学报,2007,26(3):110~114.
    [193]林明,韩晓君,吴春山.青龙山水库坝下生态环境需水量分析[J].黑龙江水利科技,2007,35(1):71~73.
    [194]杨勇,陈伟法.玉溪水电站大坝下游最小流量的推求[J].浙江水利水电专科学校学报,2004,16(3):3~5.
    [195]黄振英,陈俊贤.大隆水库下游最小生态流量设计[J].珠江现代建设,2006,(5):19~22.
    [196]周孝德,郭谨珑,程文.水环境容量计算方法研究[J].西安理工大学学报,1995,15(3):1~6.
    [197]赵淑梅,郑西来,李玲玲,等.青岛小珠山水库水环境容量研究[J].中国海洋大学学报, 2006,36(6):971~974.
    [198]魏红义.水工程建设对区域水环境的影响[D].西北农林科技大学硕士论文,2008.
    [199]赵悦,张鹏,张承斌,等.刍议大中型水库的生态调度[J].今日科苑,2009,13:118.
    [200]陈庆伟,刘兰芬,刘昌明.筑坝对河流生态系统的影响及水库生态调度研究[J].北京师范大学学报(自然科学版)2007,43(5):578~582.
    [201]吕新华.大型水利工程的生态调度[J].科技进步与对策,2006,7:129~131.
    [202]史艳华.基于河流健康的水库调度方式研究[D].南京水利科学研究院硕士论文,2008.
    [203]潘明祥.三峡水库生态调度目标研究[D].东华大学硕士论文,2010.
    [204]毛浩臣.大型水利工程的生态调度探讨[J].China's Foreign Trade,2011.
    [205]余文公.三峡水库生态径流调度措施与方案研究[D].河海大学硕士论文2007.
    [206]翟丽妮等.水库生态与环境调度研究综述[J].人民长江,2007,38(8):56~58.
    [207]董哲仁.水库多目标生态调度[J].水利水电技术,2007,38(1):28~32.
    [208]Ciaran Harman, Michael Stewardson. Optimizing dam release rules to meet environmental flow targets[J]. River Research and Applications,2005,21:113-129.
    [209]禹雪中,杨志峰,廖文根.水利工程生态与环境调度初步研究[J].水利水电技术,2005,33(11):20~22.
    [210]康玲,黄云燕,杨正祥,等.水库生态调度模型及其应用[J].水利学报,2010,41(2):134~141.
    [211]Bellman R R. Dynamic Programming[M]. Princeton University Press, Princeton, N.J, 1957:1-200.
    [212]H.R.Howson. A new Algorithm for the Solution of Multi-state Dynamic Programming Problems[J]. Math Programming,1975,8(1):104-116.
    [213]黄云燕.水库生态调度方法研究[D].华中科技大学硕士论.2008.
    [214]左吉昌.水库优化调度函数研究[D].华中科技大学硕士论文.2007,2010.
    [215]邹淑珍,吴志强,胡茂林,等.赣江石虎塘航电枢纽工程对鱼类的影响[J].桂林理工大学学报,2010,30(2):267~271.
    [216]邹淑珍,吴志强,胡茂林,等.峡江水利枢纽对赣江中游鱼类资源影响的预测分析[J].南昌大学学报(理科版),2010,34(3):289~293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700