P21~(WAF1/CIP1)对肝癌细胞SMMC-7721生物学行为的影响及其与POLD1基因关系初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞性肝癌(hepatocellular carcinoma,HCC,以下简称肝癌)是全世界最常见的恶性肿瘤之一,有着较高的发病率和死亡率。我国是世界上肝癌的高发地区之一,每年新发HCC病例占全世界新发病例数的比例高达42.5%,严重威胁着人民的身体健康。手术切除和肝脏移植是目前治疗肝癌较为有效的方法,但由于肝癌具有恶性程度高、发展迅速、容易复发和转移等特点,肝癌患者中仅有一部分人适合外科手术治疗。绝大部分肝癌患者只能依赖于放疗、化疗及其它的一些姑息疗法。因此深入研究肝癌的病因及发病机理,对于寻找有效的肝癌化学预防及治疗方法无疑具有十分积极的意义。
     肝癌的发生和发展是一个多因素、多步骤、多基因作用的复杂过程,研究表明,p21(p21WAF1/CIP1)可能通过不同的途径参与了肝癌的发生和发展。p21属于细胞周期抑制因子(CKIs)中的Cip/Kip家族,可以通过抑制细胞周期蛋白/细胞周期依赖性激酶(cyclin/CDK)复合物活性,使细胞周期进程受阻;而且还可以通过抑制细胞增殖核抗原(PCNA)与DNA聚合酶δ(polδ)结合,从而抑制DNA合成。现已确定人的p125亚基是由POLD1基因编码的, POLD1表达受到细胞周期的调控,但其机制尚未明了。
     癌基因的活化、抑癌基因的失活或突变以及激素调节、信号转导和转录调控等的失调均可作用于细胞周期调控系统而激活细胞进行不正常的DNA复制,最终出现细胞的异常增殖导致肿瘤的发生。鉴于p21在细胞周期调控和DNA复制中所起的重要作用,本研究通过真核表达载体使p21高表达和慢病毒载体靶向沉默p21表达,研究p21表达量变化对肝癌细胞SMMC-7721生物学行为的影响,双向验证了p21对细胞周期进程的抑制作用,在肝癌侵袭转移中可能具有的作用,并初步探讨了p21对POLD1基因表达的影响,从而为下一步深入研究肝癌细胞中p21对POLD1基因的表达调控通路打下了坚实的基础。
     目的:通过真核表达载体使p21高表达和慢病毒载体靶向沉默p21表达对肝癌细胞SMMC-7721生物学行为的影响,验证p21对细胞周期进程的影响,在肝癌侵袭转移中是否发挥作用,并初步探讨在肝癌细胞中p21对POLD1基因表达的影响。
     方法:1.瞬时转染:将表达p21 cDNA的真核表达载体pXJ41-p21及空载体pXJ41-neo转染入SMMC-7721细胞;将p21小干扰RNA片段p21-siRNA、阴性对照片段NC转染入SMMC-7721细胞。2.稳定转染:SMMC-7721细胞瞬时转染pXJ41-p21及空载体pXJ41-neo后,经G418筛选,获得稳定细胞系7721-p21、7721-pXJ;用包装有p21小干扰RNA片段p21-siRNA及阴性对照片段NC的慢病毒载体感染SMMC-7721细胞,经有限稀释法获得稳定细胞系7721-p21RNAi、7721-NC。3. RT-PCR、Western-blot检测瞬时转染及稳定转染后p21、POLD1的mRNA和蛋白表达水平。4.通过生长曲线测定,流式细胞仪检测细胞周期和凋亡,克隆形成实验,侵袭和迁移能力测定,了解SMMC-7721细胞在p21表达水平改变后生物学行为的变化。
     结果:1.瞬时转染p21 48h后发现,p21 mRNA表达水平升高, POLD1 mRNA表达水平降低,并且SMMC-7721细胞生长速率下降,G0/G1期占细胞周期比例升高,S期比例下降(P<0.05)。对高表达p21的稳定细胞株研究发现,随着p21 mRNA及蛋白表达水平升高, POLD1 mRNA及蛋白表达水平随之降低;细胞生长受抑制,G0/G1期比例升高,细胞凋亡比例及克隆形成数减少,迁移及侵袭能力减弱。2.瞬时转染p21小干扰RNA片段48h后发现,p21 mRNA表达水平降低, POLD1 mRNA表达水平升高,并且SMMC-7721细胞生长速率升高,G0/G1期占细胞周期比例下降,S期比例升高(P<0.05)。对p21低表达的细胞株研究发现,随着p21 mRNA及蛋白表达水平下降, POLD1 mRNA及蛋白表达水平随之增强;细胞生长速度加快,G0/G1期比例下降,S期比例升高,细胞凋亡比例及克隆形成数增多,迁移及侵袭能力增强。
     结论:p21可以抑制SMMC-7721细胞的细胞周期进程,对抗凋亡的发生,有可能参与了肝癌的侵袭转移的发生。POLD1基因的表达水平与p21呈负相关,p21可能参与了POLD1基因的调控,并且这种作用有可能是p21对细胞增殖抑制及细胞恶性表型变化的调控途径之一。
Hepatocellular Carcinoma(HCC) is one of the most common carcinomas,contributes to the higher morbility and mortality among cancer patients because of its highest malignancy.HCC endangers the lives and health of Chinese people because each year the newly developed hepatic cancer patients in the Chinese mainland accout for 42.5 percent of the the cases in the world.In perspective,surgical therapy and liver transplantation are effective,but very few patients are indicative of surgical operations due to high malignancy,fast growth,susceptibility for relapse and metastasis and a great portion of them are tentatively treated with chemotherapy,radiotherapy as well as other alleviative treatments.Therefore, a thorough alternative understanding of the pathogenesis of HCC thus holds the promise of finding an effective chemoprevention and treatment for this cancer.
     The formation of HCC is a multi-factor, multi-step and multi-gene process.The studies on the pathogenesis of HCC shows that p21 has involved in the genesis and development of HCC. p21(p21WAF1/CIP1)belongs to the Cip/Kip family of CDK inhibitors. The p21 gene encodes a 21kDa protein which binds and inhibits cyclin/CDK complex , predominantly blocks G1/S phase cell cycle transition. p21 has also been shown to inhibit PCNA binding to DNA polymerase delta (polδ)and hereby block DNA replication. polδis a cell cycle-dependent protein with important roles in DNA replication,repair, recombination and cell cycle regulation. DNA polymerase delta is encoded by the POLD1 gene, the transcription of which is strictly cell cycle-dependent, but the mechanisms has not yet well known.
     The replication of eukaryotic chromosomes is a complex but highly regulated process. If DNA replication is perturbed, abnormally replicated DNA may lead to tumorigenesis.As the profound role of p21 in cell cycle regulation and DNA replication ,our research studied the behavior effects on HCC cell line SMMC-7721 through regulating the expression of p21.We confirmed the role of p21 in cell cycle arrest ,the probable influence on the invasion and metastases of HCC,and the association with POLD1gene.
     Objective: To study the behavior effects on SMMC-7721 cells through regulating the expression of p21.To confirm the role of p21 in cell cycle arrest ,the probable influence on the invasion and metastasis of HCC,and the association with POLD1gene.
     Methods:1. Transient transfection:SMMC-7721 cells were transient transfected by p21 eukaryotic expression vector named pXJ41-p21 and negative control vector named pXJ41-neo. The chemically synthesized small interfering RNA(siRNA) targeted on p21were transient transfected into cells. 2. Construction of stable cell lines: the stable cell line with p21 overexpression was obtained after G418 selection. The stable cell line with p21 knocked-down was obtained by limiting dilution assay after infected by lentivirus-mediated target silenced p21. 3.The expression of p21 and POLD1 mRNA was detected by RT-PCR. The expression of p21 and POLD1 protein was detected by Western-blot. 4.The behavior effects of cells were explored by cell growth curve, cell clones formation, transwell migration and invasion assay,flow cell cytometry. Results:1.When cells were transient transfected with p21,the levels of p21 mRNA were up-regulated at 48h,and the levels of POLD1 mRNA were down-regulated.Cell proliferation was significantly inhibited, the number of cells blocked in G0/G1 increased (P<0.05).The levels of p21 mRNA and protein were higher in the cells stably transfected with p21, accompanied with down-regulation of POLD1 mRNA and protein expression.The abilities about cell proliferation ,invasion and migration were inhibited, cell cycle progression was blocked in G0/G1 phase and apoptosis rate was lower in comparison with control groups.2. When cells were transient transfected with siRNA targeted on p21,the levels of p21 mRNA were down-regulated at 48h,and the levels of POLD1 mRNA were up-regulated.Cell proliferation was significantly increased,cell cycle arrest in G0/G1 phase was inhibited and apoptosis rate was higher.The levels of p21 mRNA and protein were down-regulated in the stable cell line knocked down p21, accompanied with up-regulation of POLD1 mRNA and protein expression.The abilities about cell proliferation ,invasion and migration were significantly increased, cell cycle arrest in G0/G1 phase was inhibited and apoptosis rate was higher.
     Conclusion:The results demonstrate that p21 gene can induce G0/G1 phase arrest and inhibit the cell cycle progression in SMMC-7721 cells.p21 also can protect cells from apoptosis,and involve in the invasion and metastasis of HCC probably.The expression of POLD1 correlates negatively with p21 expression,and p21 probably involves in regulation of POLD1.
引文
[1] O Coqueret. New roles for p21 and p27 cell-cycle inhibitors:A function for each cell compatrment?[J]. Trends in Cell Biol. 2003, 13: 65-70.
    [2] H Zhang, GJ Hannon, D Beach. p21 containing cyclin kinases exist in both active and inactive states[J]. Genes Dev. 1994,8: 1750-1758.
    [3] S Waga, GJ Hannon, D Beach. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA[J]. Nature. 1994, 369: 574-577.
    [4] O Cazzalini, P Perucca, F Riva. P21 does not interfere with loading PCNA at replication sites,but inhibit subsequent binding of DNA polymeraseδat the G1/S phase transition[J]. cell cycle. 2003, 2: 596-603.
    [5] WS el-Deiry, T Kokino, VE Velculescu. WAF1, a potential mediator of p53 tumor suppression[J]. Cell. 1993, 75: 817-825.
    [6] Gartel A. L, Radhakrishnan S. K. Lost in transcription: p21 repression, mechanisms, and consequences[J]. Cancer Res. 2005, 65: 3980–3985.
    [7] Gartel A. L. Is p21 an oncogene?[J]. Mol Cancer Ther. 2006, 5: 1385–1386.
    [8] A Marchetti, C Doglioni, M Barbareschi,et al. p21 RNA and protein expression in non-small cell lung carcinomas:evidence of p53-independent expression and association with tumoral differentiation[J]. Oncogene. 1996, 12: 1319-1324.
    [9] VA Tron, L Tang, WP Yong,et al. Differentiation-associated overexpressionof the cyclin-dependent kinase inhibitor p21waf-1 in human cutaneous squamous cell carcinoma[J]. Am J Pathol. 1996, 149: 1139-1146.
    [10] Ogino S. J. Pathol[J]. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer 2006, 210: 147–154
    [11] Anttila M. A. p21/WAF1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer[J]. Br J Cancer. 1999, 79: 1870–1878.
    [12] Zhang W. High levels of constitutive WAF1/Cip1 protein are associated with chemoresistance in acute myelogenous leukemia[J]. Clin Cancer Res. 1995, 1: 1051–1057.
    [13] Winters Z. E. Subcellular localisation of cyclin B,Cdc2 and p21WAF1/CIP1 in breast cancer. Association with prognosis[J]. Eur J Cancer. 2001, 37: 2405–2412.
    [14] Lu X, Toki T, Konishi I,et al. Expression of p21WAF1/CIP1 in adenocarcinoma of the uterine cervix: a possible immunohistochemical marker of a favorable prognosis[J]. Cancer Res. 1998, 82: 2409–2417.
    [15] Kapranos N. p53, p21 and p27 protein expression in head and neck cancer and their prognostic value[J]. Anticancer Res. 2001, 21: 521–528.
    [16] G Tchernev, CE Orfanos. Downregulation of cell cycle modulators p21,p27,p53,Rb and proapoptotic Bcl-2-related proteins Bax and Bak in cutaneous melanoma is associated with worse patient prognosis:preliminary findings[J]. J Cutan Pathol. 2007, 34(3): 247-256.
    [17] T Nakamura, K Hayashi, M Ota,et al. Mitsuhashi M.Expression of p21(Waf1/Cip1)predicts response and survival of esophageal cancer patients treated by chemoradiotherapy[J]. Dis Esophagus. 2004, 17(4):315-321.
    [18] S Kobayashi, K Matsushita, K Saigo. p21WAF1/CIP1 messenger RNA expression in hepatitis B, C virus-infected human hepatocellular carcinoma tissues[J]. Cancer Res. 2001, 91: 2096-2103.
    [19] Fu X., Wang Q., Chen J,et al. Clinical significance of miR-221 and its inverse correlation with p27(Kip1) in hepatocellular carcinoma[J]. Mol Biol Rep. 2010.
    [20]冯震博,吕自力,何如昆. p21和IGF2II在肝癌、肝硬化组织中表达的研究[J].肿瘤防治研究. 2003, 30(4): 270-272.
    [21] LF Qin, IO Ng. Expression of p27(KIP1) and p21(WAF1/CIP1) in primary hepatocellular carcinoma: Clinicopathologic correlation and survival analysis[J]. HUM PATHOL. 2001, 32: 778-784.
    [22] Wagayama H., Shiraki K., Sugimoto K.等. High expression of p21WAF1/CIP1 is correlated with human hepatocellular carcinoma in patients with hepatitis C virus-associated chronic liver diseases[J]. Hum Pathol. 2002, 33(4): 429-434.
    [23]张梅芳,云径平,苏曙光等.原发性肝细胞癌组织中p53和p21WAF/CIP1及MDM2蛋白的表达及其临床意义[J].中华肿瘤防治杂志. 2007, 14(15): 1121-1124.
    [24] R Hindges, U Hubscher. DNA polymerase delta, an essential enzyme for DNA transactions[J]. Biol Chem. 1997, 378(5): 345-362.
    [25] J Burgers E M. Eukaryotic DNA polymerase in DNA replication and DNA repair[J]. Chromosoma. 1998, 107: 218-227.
    [26] RE Goldsby, LE Hays, X Chen,et al. High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading[J]. Proc Natl Acad Sci U S A. 2002, 99(24): 15560-15565.
    [27] F Hazane, K Valenti, S Sauvaigo,et al. Ageing effects on the expression of cell defence genes after UVA irradiation in human male cutaneous fibroblasts using cDNA arrays[J]. J Photochem Photobiol B. 2005, 79(3): 171-190.
    [28] Long-Sheng Chang, Lingyun Zhao, Lingyun Zhu,et al. Stucture of the gene for the catalytic subunit of human DNA polymerase delta (POLD1)[J]. Genitics. 1995, 28: 411-419.
    [29] I Salles-Passador, A Munshi, D Cannella. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C on Thr506 by cyclin-dependent kinases regulates binding to PCNA[J]. Nucleic Acids Res. 2003, 31: 5202-5211.
    [30] L D, B L. T. N. Control of E2F activity by p21WAF1/CIP1[J]. Oncogene. 1999, 18: 5381-5392.
    [31] O C, H G. Functional interaction of STAT3 transcription factor with the cell cycle inhibitor p21WAF1/CIP1[J]. J Biol Chem. 2000, 275: 18794-18800.
    [32] K Hirotake, S Minako, U Yasuko. Reciprocal regulation via protein-protein interaction between c-Myc and p21WAF1/CIP1 in DNA replication and transcription[J]. J Biol Chem. 2000, 275: 10477-10483.
    [33] D Perkins N, K Felzien L, C Betts J. Regulation of NFκB by cyclin- dependent kinase associated with the p300 coactivator[J]. Science. 1997, 275: 523-527.
    [34] X Xue L, F Wu J, J Zheng W. Sp1 is involved in the transcription activation of p16 by p21 in Hela cells[J]. FEBS Letters. 2004, 564: 199-204.
    [35] Bey-Dih Chang, K Watanabe, V Eugenia. Effects of p21WAF1/CIP1 on cellular gene expression:Implication for carcinogenesis,senescence, and age-related disease[J]. Proc Natl Acad Sci U S A. 2000, 97: 4291-4296.
    [36] L Delavaine, B La Thangue N. Control of E2F activity by p21WAF1/CIP1[J]. Oncogene. 1999, 1999.
    [37] Y Zhao L, S Chang L. The human POLD1 gene[J]. J Biol Chem. 1997, 272(8): 4869-4882.
    [38] DO Morgan. Principles of CDK regulation[J]. Nature. 1995, 374: 131-134.
    [39] L Hartwell, M Kastan. Cell cycle control and cancer[J]. Science. 1994, 266: 1821-1828.
    [40] T Waldman, KW Kinzler, B Vogelsten. p21 is necessary for the p53-mediated G1 arrest in human cancer cells[J]. Cancer Res. 1995, 22: 5187-5190.
    [41] Y Luo, J Hurwitz, J Massague. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21 Cip1[J]. Nature. 1995, 375: 159-161.
    [42] Farazi P.A, DePinho R.A. Hepatocellular carcinoma pathogenesis: from genes to environment[J]. Nat Rev Cancer. 2006, 6: 674–687.
    [43] Y Ling, M Donald, D Parkin,et al. Time trends in cancer motality in China:1987-1999[J]. Int J cancer. 2003, 106(4): 771-783.
    [44] Panga Roberta, Tsea Eric, T.P.Poonb Ronnie. Molecular pathways in hepatocellular carcinoma[J]. Cancer Lett. 2006, 240: 157–169.
    [45] Ozturk Mehmet, Arslan-Ergul Ayca, Bagislar Sevgi,et al. Senescence and immortality in hepatocellular carcinoma[J]. Cancer Lett. 2009, 286: 103–113.
    [46] JW Harper, GR Adami, Wei N. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases[J]. Cell. 1993, 19: 805-816.
    [47] Qin L. F., Ng I. O. Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells[J].Cancer Lett. 2001, 172(1): 7-15.
    [48]曹岩,郑永洁,郑永晨等. p21基因转染人肝癌SMMC-7721细胞对化疗药物敏感性的研究[J].中国老年学杂志. 2006, 26: 1221-1223.
    [49]房伟,龚伟,梅兴国等. p53p21双基因转染对肝癌细胞生长的抑制作用研究[J].肿瘤防治研究. 2003 30(6): 455-457.
    [50] CJ S. Cancer cell cycles[J]. Science. 1996, 274: 1672-1677.
    [51] T J, RA W. Cell-cycle control and its watchman[J]. Nature. 1996, 381: 643-644.
    [52] Brugarolas J., Chandrasekaran C., Gordon J.I,et al. Radiation-induced cell cycle arrest compromised by p21 deficiency [J]. Nature 1995, 377: 552-557.
    [53] Brugarolas J., Moberg K., Boyd S.D. ,et al. Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after gamma-irradiation [J]. Proc Natl Acad Sci USA. 1999, 96: 1002-1007.
    [54] FB Charrier-Savournin, MT Chateau, V Gire,et al. p21-mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress[J]. Mol Biol Cell. 2004, 15(9): 3965-3976.
    [55] Kim Ryungsa, Tanabe Kazuaki, Uchida Yoko. Current status of the molecular mechanisms of anticancer drug-induced apoptosis.The contribution of molecular-level analysisto cancer chemotherapy[J]. Cancer Chemother Pharmacol. 2002, 50: 343-352.
    [56] Polyak K., Waldman T., He T.C,et al. Genetic determinants of p53-induced apoptosis and growth arrest [J]. Genes Dev. 1996, 10: 1945-1952.
    [57] Gorospe M., Wang X., Guyton K.Z,et al. Inhibition of G1 cyclin-dependent kinase activity during growth arrest of human breast carcinoma cells by prostaglandin A2 [J]. Mol Cell Biol. 1996,16(3):762-70.
    [58] Gorospe M., Cirielli C., Wang X,et al. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cells [J]. Oncogene 1997, 14: 929-935.
    [59] Guyton K. Z., Gorospe M., Kensler T. W,et al. Mitogen-activated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: implications for cellular survival and tumor promotion[J]. Cancer Res. 1996, 56(15): 3480-3485.
    [60] Poluha W., Poluha D. K., Chang B,et al. The cyclin-dependent kinase inhibitor p21 (WAF1) is required for survival of differentiating neuroblastoma cells[J]. Mol Cell Biol. 1996, 16(4): 1335-1341.
    [61] Harvey K. J., Blomquist J. F., Ucker D. S. Commitment and effector phases of the physiological cell death pathway elucidated with respect to Bcl-2 caspase, and cyclin-dependent kinase activities[J]. Mol Cell Biol. 1998, 18(5): 2912-2922.
    [62] Harvey K.J., Lukovic D., Ucker D.S. Caspase-dependent Cdk activity is a requisite effector of apoptotic death events[J]. J Cell Biol. 2000, 148: 59-72.
    [63] Xu S.Q., El-Deiry W.S. p21(WAF1/CIP1) inhibits initiator caspase cleavage by TRAIL death receptor DR4 [J]. Biochem Biophys Res Commun. 2000, 269: 179-190.
    [64] Suzuki A., Tsutomi Y., Akahane K,et al. Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21 [J]. Oncogene. 1998, 17: 931-939.
    [65] Shim J., Lee H., Park J,et al. A non-enzymatic p21 protein inhibitor of stress-activated protein kinases [J]. Nature. 1996, 381: 804-806.
    [66] Asada M., Yamada T., Ichijo H,et al. Apoptosis inhibitory activity ofcytoplasmic p21(Cip1/WAF1) in monocytic differentiation [J]. EMBO J. 1999, 18: 1223-1234.
    [67] Zhang Y., Fujita N., Tsuruo T. Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis [J]. Oncogene. 1999, 18: 1131-1138.
    [68] Chang B.D., Watanabe K., Broude E.V,et al. Effects of p21 Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases [J]. Proc Natl Acad Sci USA. 2000, 97: 4291-4296.
    [69] Gartel A. L. The conflicting roles of the cdk inhibitor p21CIP1/WAF1 in apoptosis[J]. Leuk Res. 2005, 29: 1237–1238.
    [70] Etienne-Manneville S, Hall A. Rho GTPases in cell biology[J]. Nature. 2002, 420: 629-635.
    [71] Ridley A.J, Schwartz M.A, Burridge K,et al. Cell migration: integrating signals from front to back[J]. Science. 2003, 302: 1704-1709.
    [72] Worthylake R.A, Lemoine S, Watson J.M,et al. RhoA is required for monocyte tail retraction during transendothelial migration[J]. J Cell Biol. 2001, 154: 147-160.
    [73] Nobes C.D, Hall A. Rho GTPases control polarity, protrusion, and adhesion during cell movement[J]. J Cell Biol. 1999, 144: 1235-1244.
    [74] Ren X.D, Kiosses W.B, Sieg D.J,et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover[J]. J Cell Sci. 2000 113: 3673-3678.
    [75] Sahai E, Olson M.F., Marshall C.J. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility[J]. EMBO J. 2001, 20: 755-766.
    [76] Vial E, Sahai E, Marshall C.J. ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility[J]. Cancer Cell 2003, 4: 67-79.
    [77] Tanaka H, Yamashita T, Asada M,et al. Cytoplasmic p21Cip1/Waf1 regulates neurite remodeling by inhibiting Rho-kinase activity[J]. J Cell Biol. 2002, 158: 321-329.
    [78] Lee S, Helfman D.M. Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/Cofilin pathway[J]. J Biol Chem. 2003, 279: 1885-1891.
    [79] Tanaka H, Yamashita T, Yachi K,et al. Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats[J]. Neuroscience. 2004, 127: 155-164.
    [80] R H, U H. DNA polymerase delta, an essential enzyme for DNA transactions[J]. Biol Chem. 1997, 378: 345-362.
    [81] F H. Ageing effects on the expression of cell defence genes after UVA irradiation in human male cutaneous fibroblasts using cDNA arrays[J]. J Photochem Photobiol. 2005, B 79: 171-190
    [82] I S.-P, A M, D C. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C on Thr506 by cyclin-dependent kinases regulates binding to PCNA[J]. Nucleic Acids Res. 2003, 31: 5202-5211
    [83] Kitaura H., Shinshi M., Uchikoshi Y. ,et al. Reciprocal regulation via protein-protein interaction between c-Myc and p21WAF1/CIP1 in DNA replication and transcription[J]. J Biol Chem. 2000, 275: 10477-10483.
    [84] D P. N, K F. L, C B. J. Regulation of NFκB by cyclin-dependent kinase associated with the p300 coactivator[J]. Science 1997, 275: 523-527.
    [85] LY Zhao, LS Chang. The human POLD1 gene[J]. J Biol Chem. 1997,272(8): 4869-4882.
    [86] Li B and Lee M Y W. Transcriptional regulation of the human DNA polymerase delta catalytic subunit gene POLD1 by p53 tumor suppressor and Sp1[J]. J Biol Chem. 2001, 276: 29729-29739.
    [87]朱晓宇,徐恒等. p53亚细胞定位变化对POLD1基因启动子活性的影响[J].自然科学进展. 2006, 16(4): 555-561.
    [88] el-Deiry, S W. WAF1, a potential mediator of p53 tumor suppression[J]. Cell 1993, 75: 817-825.
    [89] A Hall P, M Kearsey J, J Coates P. Characterisation of the interaction between PCNA and Gadd45[J]. Oncogene. 1995, 10(12): 2427-2433.
    [90] B Ren, H Cam, Y Takahashi. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints[J]. Genes & Dev. 2002, 16(2): 245 -256.
    [91] L Connell-Crowley, J Elledge S, W Harper J. G1 cyclin-dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts[J]. Curr Biol. 1998, 8(1): 65-68.
    [1] Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation[J]. Curr Opin Cell Biol. 2007, 19: 238-245.
    [2] Nakanishi M, Shimada M, Niida H. Genetic instability in cancer cells by impaired cell cycle checkpoints[J]. Cancer Sci. 2006, 97: 984-989.
    [3] Eastman A. Cell cycle checkpoints and their impact on anticancer therapeutic strategies[J]. J Cell Biochem. 2004, 91: 223-231.
    [4] Deng C, Zhang P, Harper J. W,et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control[J]. Cell. 1995, 82: 675-684.
    [5] Brugarolas J. Radiation-induced cell cycle arrest compromised by p21 deficiency[J]. Nature. 1995, 377: 552-557.
    [6] Roninson I. B. Oncogenic functions of tumour suppressor p21Waf1/ Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts[J]. Cancer Lett. 2002, 179: 1-14.
    [7] JW Harper, GR Adami, N Wei,et al. The p21 Cdk-interaction protein Cip1 in a potent of G1 cyclin-dependent kinase[J]. Cell. 1993, 75(4): 805-816.
    [8] WS El-Deiry, T Tokino, VE Velculescu,et al. WAF1,a potential mediator of p53 tumor suppression[J]. Cell. 1993, 75(4): 817-825.
    [9] A Noda, Y Ning, SF Venable,et al. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen[J]. Exp Cell Res. 1994, 211(1): 90-98.
    [10] H Jiang, PB Fisher. Use of a sensitive and efficient subtraction hybridization protocol for the identification of genes differentially regulated during the induction of differentiated in human melanoma cells[J].Mol Cell Diffe. 1993, 1(3): 285-299.
    [11] Y Gu, CW Turck, DO Morgan. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit[J]. Nature. 1993, 366(6456): 707-710.
    [12] J Chen, PK Jackson, MW Kirschner. Separate domains of p21involved in the inhibition of Cdk kinase and PCNA[J]. Nature. 1995, 374: 386-388.
    [13] Chedid M Michieli P, Lengel C,et al. [J]., A single nucleotide substitution at codon 31 (Ser/Arg) defines a polymorphism in a highly conserved region of thep53-inducible geneWAF1/CIP1[J]. Oncogene. 1994, 9: 3021-3024.
    [14] Huppi K Siwarski D, Dosik J,et al.[J]. Molecular cloning, sequencing, chromosomal localization and expression of mousep21Waf1[J]. Oncogene. 1994, 9: 3017-3020.
    [15] el-Deiry W. S. WAF1, a potential mediator of p53 tumor suppression[J]. Cell. 1993, 75: 817–825.
    [16] P Michieli, M Chedid, D Lin. Induction of WAF1/CIP1 by a p53-independent pathway[J]. Cancer Res. 1994 54: 3391-3395.
    [17] Harada K., Ogden G. R. An overview of the cell cycle arrest protein, p21(WAF1)[J]. Oral Oncol. 2000, 36(1): 3-7.
    [18] Fan G., Ma X., Wong P. Y.,et al. p53 dephosphorylation and p21(Cip1/Waf1) translocation correlate with caspase-3 activation in TGF-beta1-induced apoptosis of HuH-7 cells[J]. Apoptosis. 2004, 9(2): 211-221.
    [19] Moon SK Kim HM, Kim CH. PTEN induces G1 cell cycle arrest and inhibits MMP-9 expression via the regulation of NF-kappaB and AP-1 in vascular smooth muscle cells[J]. Arch Biochem Biophys. 2004, 421: 267-276.
    [20] Murray S. A., Zheng H., Gu L.,et al. IGF-1 activates p21 to inhibit UV-induced cell death[J]. Oncogene. 2003, 22(11): 1703-1711.
    [21] Chen J, Jackson P. K, Kirschner M. W,et al. Separate domains of p21 involved in the inhibition of Cdk kinase and PCNA[J]. Nature. 1995, 374: 386-388.
    [22] Luo Y, Hurwitz J, Massague J. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1[J]. Nature. 1995, 375: 159-161.
    [23] Moldovan G. L., Pfander, B. & Jentsch, S.et al. PCNA, the maestro of the replication fork[J]. Cell. 007, 129: 665-679.
    [24] Mandal M, Bandyopadhyay D, Goepfert T. M,et al. Interferon-induces expression of cyclindependent kinase-inhibitors p21WAF1 and p27Kip1 that prevent activation of cyclin-dependent kinase by CDK-activating kinase (CAK)[J]. Oncogene. 1998, 16: 217-225.
    [25] Smits V. A. p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint[J]. J Biol Chem. 2000, 275: 30638-30634.
    [26] Abbas T., Jha, S., Sherman, N. E. & Dutta, A. Autocatalytic phosphorylation of CDK2 at the activating Thr160[J]. Cell Cycle. 2007, 6: 843-852.
    [27] Chen J, Saha P, Kornbluth S,et al. Cyclin-binding motifs are essential for the function of p21CIP1[J]. Mol Cell Biol. 1996, 16: 4673-4682.
    [28] Zhu L, Harlow E, Dynlacht B. D. p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F[J]. Genes Dev. 1995, 9: 1740-1752.
    [29] Shiyanov P. p21 disrupts the interaction between cdk2 and the E2F-p130 complex[J]. Mol Cell Biol. 1996, 16: 737–744.
    [30] Saha P, Eichbaum Q, Silberman E. D,et al. p21CIP1 and Cdc25A: competition between an inhibitor and an activator of cyclindependent kinases[J]. Mol Cell Biol. 1997, 17: 4338-4345.
    [31] Zhu W, Abbas T, Dutta A. DNA replication and genomic instability[J]. AdvExp Med Biol. 2005, 570: 249-279.
    [32] Besson A, Dowdy S. F, Roberts J. M. CDK inhibitors: cell cycle regulators and beyond[J]. Dev Cell. 2008, 14: 159-169.
    [33] Tetsu O, McCormick F. Proliferation of cancer cells despite CDK2 inhibition[J]. Cancer Cell. 2003, 3: 233-245.
    [34] Martin A. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1[J]. Cancer Cell. 2005, 7: 591-598.
    [35] Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nature Rev Cancer. 2009, 9: 153-166.
    [36] Bates S, Ryan K. M, Phillips A. C,et al. Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression[J]. Oncogene. 1998, 17: 1691-1703.
    [37] Bunz F. Requirement for p53 and p21 to sustain G2 arrest after DNA damage[J]. Science. 1998, 282: 1497-1501.
    [38] Dulic V, Stein G. H, Far D. F,et al. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition[J]. Mol Cell Biol. 1998, 18: 546-557.
    [39] Rijksen G. p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNAreplication or stress-activated kinases[J]. Oncogene. 1998, 16: 431-441.
    [40] Niculescu A. B. Effects of p21Cip1/Waf1 at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication[J]. Mol Cell Biol. 1998, 18: 629-643.
    [41] Chan T. A, Hwang P. M, Hermeking H,et al. Cooperative effects of genes controlling the G2/M checkpoint[J]. Genes Dev. 2000, 14: 1584-1588.
    [42] Chang B. D. Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis,senescence, and age-related diseases[J]. Proc Natl Acad Sci USA. 2000, 97: 4291-4296.
    [43] Delavaine L, La Thangue N. B. Control of E2F activity by p21Waf1/Cip1[J]. Oncogene. 1999, 18: 5381-5392.44 Devgan V, Mammucari C, Millar S. E,et al. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation[J]. Genes Dev. 2005, 19: 1485-1495.
    [44] Devgan, V., Mammucari, C., Millar, S. E., Brisken, C. & Dotto, G. P. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation[J]. Genes Dev 19, 1485-1495 (2005).
    [45] Coqueret O, Gascan H. Functional interaction of STAT3 transcription factor with the cell cycle inhibitor p21WAF1/CIP1/SDI1[J]. J Biol Chem. 2000, 275: 18794-18800.
    [46] Kitaura H. Reciprocal regulation via protein–protein interaction between c-Myc and p21cip1/waf1/sdi1 in DNA replication and transcription[J]. J Biol Chem. 2000, 275: 10477–10483.
    [47] Lohr K, Moritz C, Contente A,et al. p21/CDKN1A mediates negative regulation of transcription by p53[J]. J Biol Chem. 2003, 278: 32507-32516.
    [48] Shats I. p53-dependent down-regulation of telomerase is mediated by p21waf1[J]. J Biol Chem. 2004, 279: 50976–50985.
    [49] Taylor W. R, Stark G. R. Regulation of the G2/M transition by p53[J]. Oncogene. 2001, 20: 1803–1815.
    [50] Gottifredi V, Karni-Schmidt O, Shieh S. S,et al. p53 down-regulates CHK1 through p21 and the retinoblastoma protein[J]. Mol Cell Biol. 2001, 21: 1066–1076.
    [51] Yun J. Cdk2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway[J]. J Biol Chem. 2003, 278: 36966–36972.
    [52] Park M. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest[J]. Cancer Res. 2000, 60: 542–545.
    [53] Snowden A. W., Anderson, L. A., Webster, G. A. &, Perkins N. D. . . , (). A novel transcriptional repression domain mediates p21WAF1/CIP1 induction of p300 transactivation[J]. Mol Cell Biol. 2000, 20: 2676–2686.
    [54] Fritah A., Saucier, C., Mester, J., Redeuilh, G. &, Sabbah M p21WAF1/CIP1 selectively controls the transcriptional activity of estrogen receptorα.[J]. Mol Cell Biol. 2005, 25: 2419–2430
    [55] Sheikh M. S, Rochefort H, Garcia M. Overexpression of p21WAF1/CIP1 induces growth arrest,giant cell formation and apoptosis in human breast carcinoma cell lines[J]. Oncogene. 1995, 11: 1899–1905.
    [56] Kaneuchi M. et al. . . 26, (). Induction of apoptosis by the p53–273L (Arg -->Leu) mutant in HSC3 cells without transactivation of p21Waf1/ Cip1/Sdi1 and bax[J]. Mol Carcinog. 1999, 26: 44–52.
    [57] Okaichi K. A point mutation of human p53,which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2[J]. Int J Radiat Oncol Biol Phys. 1999, 45: 975–980.
    [58] Samuels-Lev Y. ASPP proteins specifically stimulate the apoptotic functionof p53[J]. Mol Cell Biol. 2001, 8: 781–794
    [59] Li Y, Dowbenko D, Lasky L. A. AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival[J]. J Biol Chem. 2002, 277: 11352–11361
    [60] Meng L. H, Kohn K. W, Pommier Y. Dose–response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent,aminoflavone (NSC 686288)[J]. Oncogene 2007, 26: 4806–4816.
    [61] Oh Y. T, Chun K. H, Park B. D,et al. Regulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1 by protein kinase Cδ-mediated phosphorylation[J]. Apoptosis. 2007, 12: 1339–1347.
    [62] Zhou B. P. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neuoverexpressing cells[J]. Nature Cell Biol. 2001, 3: 245–252.
    [63] Ma B. B., Sung F., Tao Q.,et al. The preclinical activity of the histone deacetylase inhibitor PXD101 (belinostat) in hepatocellular carcinoma cell lines[J]. Invest New Drugs. 2010, 28(2): 107-114.
    [64] Zhang Y, Fujita N, Tsuruo T. Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis[J]. Oncogene. 1999, 18: 1131–1138.
    [65] Dotto GP . p21WAF1/CIP1: more than a break to the cell cycle?[J]. Biochim Biophys Acta. 2000, 1471: M43-M56.
    [66] Gartel A. L. The conflicting roles of the cdk inhibitor p21CIP1/WAF1 in apoptosis[J]. Leuk Res. 2005, 29: 1237–1238.
    [67] Mortusewicz O, Schermelleh L, Walter J,et al. Recruitment of DNA methyltransferase I to DNA repair sites[J]. Proc Natl Acad Sci USA. 2005,102: 8905–8909.
    [68] Walsh C. P, Xu G. L, Top Curr. Cytosine methylation and DNA repair[J]. Microbiol Immunol. 2006, 301: 283–315.
    [69] Umar A. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis[J]. Cell. 1996, 87: 65–73.
    [70] Tom S, Ranalli T. A, Podust V. N,et al. Regulatory roles of p21 and apurinic/apyrimidinic endonuclease 1 in base excision repair[J]. J Biol Chem. 2001, 276: 48781–48789.
    [71] Soria G, Podhajcer O, Prives C,et al. p21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation[J]. Oncogene. 2006, 25: 2829–2838.
    [72] Soria G, Speroni J, Podhajcer O. L,et al. p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation[J]. J Cell Sci 2008, 121: 3271–3282.
    [73] Fotedar R, Bendjennat M, Fotedar. A. Role of p21WAF1 in the cellular response to UV[J]. Cell Cycle. 2004, 3: 134–137.
    [74] Gratchev A. The nucleotide excision repair of DNA in human cells and its association with xeroderma pigmentosum[J]. Adv Exp Med Biol. 2008, 637: 113–119.
    [75] Stoyanova T, Yoon T, Kopanja D,et al. The xeroderma pigmentosum group E gene product DDB2 activates nucleotide excision repair by regulating the level of p21Waf1/Cip1[J]. Mol Cell Biol. 2008, 28: 177–187.
    [76] Abbas T. PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex[J]. Genes Dev. 2008, 22: 2496–2506.
    [77] Nishitani H. CDK inhibitor p21 is degraded by a proliferating cell nuclearantigen-coupled Cul4–DDB1Cdt2 pathway during S phase and after UV irradiation[J]. J Biol Chem. 2008, 283: 29045–29052.
    [78] Stuart S. A, Wang J. Y. Ionizing radiation induces ATM-independent degradation of p21Cip1 in transformed cells[J]. J Biol Chem. 30 Mar 2009: (doi:10.1074/jbc.M808810200).
    [79] Gartel A. L, Najmabadi F, Goufman E,et al. A role for E2F1 in Ras activation of p21WAF1/CIP1 transcription[J]. Oncogene. 2000, 19: 961–964
    [80] Gartel A. L. Activation and repression of p21WAF1/CIP1 transcription by RB binding proteins[J]. Oncogene. 1998, 17: 3463–3469.
    [81] Hiyama H, Iavarone A, Reeves S. A. Regulation of the cdk inhibitor p21 gene during cell cycle progression is under the control of the transcription factor E2F[J]. Oncogene. 1998, 16: 1513–1523.
    [82] Woods D. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1[J]. Mol Cell Biol. 1997, 17: 5598–5611.
    [83] Sarkisian C. J. Dose-dependent oncogeneinduced senescence in vivo and its evasion during mammary tumorigenesis[J]. Nature Cell Biol. 2007, 9: 493–505.
    [84] Dankort D. A new mouse model to explore the initiation, progression, and therapy of BRAFV600Einduced lung tumors[J]. Genes Dev. 2007, 21: 379–384.
    [85] Adnane J. Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model[J]. Oncogene. 2000, 19: 5338–5347.
    [86] Missero C, Di Cunto F, Kiyokawa H,et al. The absence of p21Cip1/WAF1alters keratinocyte growth and differentiation and promotes ras-tumor progression[J]. Genes Dev. 1996, 10: 3065–3075.
    [87] Bearss D. J, Lee R. J, Troyer D. A,et al. Differential effects of p21WAF1/CIP1 deficiency on MMTV–ras and MMTV–myc mammary tumor properties[J]. Cancer Res. 2002, 62: 2077–2084.
    [88] Swarbrick A, Roy. E, Allen T,et al. Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response[J]. Proc Natl Acad Sci USA. 2008, 105: 5402–5407
    [89] Khosravi-Far R, Solski P. A, Clark G. J,et al. Activation of Rac1, RhoA, and mitogenactivated protein kinases is required for Ras transformation[J]. Mol Cell Biol. 1995, 15: 6443–6453.
    [90] Qiu R. G, Chen J, McCormick F,et al. A role for Rho in Ras transformation[J]. Proc Natl Acad Sci USA. 1995, 92: 11781–11785.
    [91] Olson M. F, Paterson H. F, Marshall C. J. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1[J]. Nature. 1998, 394: 295–299.
    [92] Schoppmann S. F. Overexpression of Id-1 is associated with poor clinical outcome in node negative breast cancer[J]. Int J Cancer. 2003, 104: 677–682.
    [93] Gupta G. P. ID genes mediate tumor reinitiation during breast cancer lung metastasis[J]. Proc Natl Acad Sci USA. 2007, 104: 19506–19511
    [94] Ouyang X. S, Wang X., Lee, D. T, Tsao S. W,et al. Over expression of ID-1 in prostate cancer[J]. J Urol. 2002, 167: 2598–2602.
    [95] Forootan S. S. Increased Id-1 expression is significantly associated with poor survival of patients with prostate cancer[J]. Hum Pathol. 2007, 38: 1321–1329.
    [96] [96] Schindl M. Level of Id-1 protein expression correlates with poor differentiation, enhanced malignant potential, and more aggressive clinical behavior of epithelial ovarian tumors[J]. Clin Cancer Res. 2003, 9: 779–785.
    [97] Gartel A. L, Tyner A. L. Transcriptional regulation of the p21WAF1/CIP1 gene[J]. Exp Cell Res. 1999, 246: 280–289.
    [98] Black A. R, Black J. D, Azizkhan-Clifford J. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer[J]. J Cell Physiol. 2001, 188: 143–160.
    [99] Narla G. KLF6, a candidate tumor suppressor gene mutated in prostate cancer[J]. Science. 2001, 294: 2563–2566
    [100] Chen C. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer[J]. Am J Pathol. 2003, 162: 1349–1354.
    [101] Ito G. Kruppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells[J]. Cancer Res. 2004, 64: 3838–3843.
    [102] Kremer-Tal S. Hepatology[J]. Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma. 2004, 40: 1047–1052
    [103] Reeves H. L. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer[J]. Gastroenterology. 2004, 126: 1090–1103.
    [104] Li D. Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation[J]. Cancer Res. 2005, 65: 9216–9225.
    [105] Kim Y. Transcriptional activation of transforming growth factorβ1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding proteinand Sp1.Potential mechanisms for autocrine fibrogenesis in response to injury[J]. J Biol Chem. 1998, 273: 33750–33758.
    [106] Rowland B. D. & Peeper, D. S. KLF4, p21 and contextdependent opposing forces in cancer[J]. Nature Rev Cancer Cell. 2006, 6: 11–23.
    [107] Zhao W. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer[J]. Oncogene. 2004, 23: 395–402.
    [108] Zhang W. The gut-enriched Kruppel-like factor (Kruppel-like factor mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter[J]. J Biol Chem. 2000, 275: 18391–18398
    [109] Yoon H. S, Chen X, Yang V. W. Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage[J]. J Biol Chem. 2003, 278: 2101–2105.
    [110] Rowland B. D, Bernards R, Peeper D. S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene[J]. Nature Cell Biol. 2005, 7: 1074–1082.
    [111] Freund J. N, Domon-Dell C, Kedinger M,et al. The Cdx-1 and Cdx-2 homeobox genes in the intestine[J]. Biochem Cell Biol. 1998, 76: 957–969.
    [112] Ee H. C, Erler T, Bhathal P. S,et al. Cdx-2 homeodomain protein expression in human and rat colorectal adenoma and carcinoma[J]. Am J Pathol. 1995, 147: 586–592.
    [113] Mallo G. V. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis[J]. Int J Cancer. 1997, 74: 35–44
    [114] Suh E, Traber P. G. An intestine-specific homeobox gene regulates proliferation and differentiation[J]. MolCell Biol. 1996, 16: 619–625
    [115] Bai Y. Q, Miyake S, Iwai T,et al. CDX2, a homeobox transcription factor, upregulates transcription of the p21/WAF1/CIP1 gene[J]. Oncogene. 2003, 22: 7942–7949.
    [116] Polyak K, Hamilton S. R, Vogelstein B,et al. Early alteration of cell-cycle-regulated gene expression in colorectal neoplasia[J]. Am J Pathol. 1996, 149: 381–387
    [117] Bukholm I. K, Nesland J. M. Protein expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas[J]. Virchows Arch. 2000, 436: 224–228
    [118] Dang D. T, Mahatan C. S, Dang L. H,et al. Expression of the gut-enriched Kruppellike factor (Kruppel-like factor 4) gene in the human colon cancer cell line RKO is dependent on CDX2[J]. Oncogene. 2001, 20: 4884–4890.
    [119] da Costa L. T. CDX2 is mutated in a colorectal cancer with normal APC/β-catenin signaling[J]. Oncogene. 1999, 18: 5010–5014.
    [120] Mukherjee S, Conrad S. E. c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells[J]. J Biol Chem. 2005, 280: 17617–17625.
    [121] Jung P, Menssen A, Mayr D,et al. AP4 encodes a c-MYC-inducible repressor of p21[J]. Proc Natl Acad Sci USA 2008, 105: 15046–15051.
    [122] Siegel P. M, Massague J. Cytostatic and apoptotic actions of TGF-βin homeostasis and cancer[J]. Nature Rev Cancer. 2003, 3: 807–821.
    [123] Petrocca F. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer[J]. Cancer Cell. 2008, 13: 272–286.
    [124] Jascur T. Regulation of p21WAF1/CIP1 stability by WISp39, a Hsp90binding TPR protein[J]. Mol Cell. 2005, 17: 237–249.
    [125] Touitou R. A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8α-subunit of the 20S proteasome[J]. EMBO J. 2001, 20: 2367–2375
    [126] Li X. Ubiquitin- and ATP-independent proteolytic turnover of p21 by the REGγ-proteasome pathway[J]. Mol Cell. 2007, 26: 831–842.
    [127] Chen X, Barton L. F, Chi Y,et al. Ubiquitin-independent degradation of cell-cycle inhibitors by the REGγproteasome[J]. Mol Cell. 2007, 26: 843–852
    [128] Gong J, Ammanamanchi S, Ko T. C,et al. Transforming growth factor beta 1 increases the stability of p21/WAF1/CIP1 protein and inhibits CDK2 kinase activity in human colon carcinoma FET cells[J]. Cancer Res. 2003, 63: 3340–3346.
    [129] Beck S. E, Jung B. H, Del Rosario E,et al. BMP-induced growth suppression in colon cancer cells is mediated by p21WAF1 stabilization and modulated by RAS/ERK[J]. Cell Signal. 2007, 19: 1465–1472.
    [130] Milano A. Oxidative DNA damage and activation of c-Jun N-terminal kinase pathway in fibroblasts from patients with hereditary spastic paraplegia[J]. Cell MolNeurobiol. 2005, 25: 1245–1254.
    [131] Barnouin K. H2O2 induces a transient multiphase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 expression[J]. J Biol Chem. 2002, 277: 13761–13770.
    [132] Fan Y. c-Jun NH2-terminal kinase decreases ubiquitination and promotes stabilization of p21WAF1/CIP1 in K562 cell[J]. Biochem Biophys Res Commun. 2007, 355: 263–268.
    [133] Yoshida I. Inhibition of p21/Waf1/Cip1/Sdi1 expression by hepatitis Cvirus core protein[J]. Microbiol Immunol. 2001, 45: 689–697.
    [134] Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 andβ-TrCP: tipping the scales of cancer[J]. Nature Rev Cancer. 2008, 8: 438–449.
    [135] Kim Y, Starostina N. G, Kipreos E. T. The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing[J]. Genes Dev. 2008, 22: 2507–2519.
    [136] Ueki T. Involvement of elevated expression of multiple cell-cycle regulator, DTL/RAMP (denticleless/RA-regulated nuclear matrix associated protein), in the growth of breast cancer cells[J]. Oncogene. 2008, 27: 5672–5683.
    [137] Pan H. W. Role of L2DTL, cell cycle-regulated nuclear and centrosome protein, in aggressive hepatocellular carcinoma[J]. Cell Cycle. 2006, 5: 2676–2687.
    [138] Chen L. C. The human homologue for the Caenorhabditis elegans cul-4 gene is amplified and overexpressed in primary breast cancers[J]. Cancer Res. 1998, 58: 3677–3683.
    [139] Yasui K. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas[J]. Hepatology. 2002, 35: 1476–1484.
    [140] Child. E. S, Mann D. J. The intricacies of p21 phosphorylation: protein/protein interactions,subcellular localization and stability[J]. Cell Cycle. 2006, 5: 1313–1319.
    [141] Bornstein G. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S. phase[J]. J Biol Chem. 2003, 278: 25752–25757.
    [142] Rossig L. Akt-dependent phosphorylation of p21Cip1 regulates PCNAbinding and proliferation of endothelial cells[J]. Mol Cell Biol. 2001, 21: 5644–5657.
    [143] Winters Z. E, Leek R. D, Bradburn M. J,et al. Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/ neu in breast cancer and is an independent predictor of prognosis[J]. Breast Cancer Res. 2003, 5: R242–249.
    [144] Xia W. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients[J]. Clin Cancer Res. 2004, 10: 3815–3824.
    [145] Ping B. Cytoplasmic expression of p21CIP1/WAF1 is correlated with IKKβoverexpression in human breast cancers[J]. Int J Oncol. 2006, 29: 1103–1110.
    [146] Liang J, Slingerland J. M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression[J]. Cell Cycle. 2003, 2: 339–345
    [147] Rossig L, Badorff C, Holzmann Y,et al. Glycogen synthase kinase-3 couples AKTdependent signaling to the regulation of p21Cip1 degradation[J]. J Biol Chem. 2002, 277: 9684–9689.
    [148] Efeyan A, Collado M, Velasco-Miguel S,et al. Genetic dissection of the role of p21Cip1/Waf1 in p53-mediated tumour suppression[J]. Oncogene. 2007, 26: 1645–1649.
    [149] Barboza J. A, Liu G., Ju, Z, El-Naggar A. K,et al. p21 delays tumor onset by preservation of chromosomal stability[J]. Proc Natl Acad Sci USA. 2006, 103: 19842–19847.
    [150] Martin-Caballero J, Flores J. M, Garcia-Palencia PSerrano, M. Tumor susceptibility of p21Waf1/Cip1-deficient mice[J]. Cancer Res. 2001, 61:6234–6238.
    [151] Donehower L. A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours[J]. Nature. 1992, 356: 215–221.
    [152] Jacks T. Tumor spectrum analysis in p53-mutant mice[J]. Curr Biol. 1994, 4: 1–7.
    [153] Serrano M. Role of the INK4a locus in tumor suppression and cell mortality[J]. Cell. 1996, 85: 27–37.
    [154] Kamijo T, Bodner S, van de Kamp E,et al. Tumor spectrum in ARF-deficient mice[J]. Cancer Res. 1999, 59: 2217–2222.
    [155] Shiohara M. Absence of WAF1 mutations in a variety of human malignancies[J]. Blood. 1994, 84: 3781–3784.
    [156] McKenzie K. E. Altered WAF1 genes do not play a role in abnormal cell cycle regulation in breast cancers lacking p53 mutations[J]. Clin Cancer Res. 1997, 3: 1669–1673.
    [157] Patino-Garcia A, Sotillo-Pineiro E, Sierrasesumaga-Ariznabarreta L. p21WAF1 mutation is not a predominant alteration in pediatric bone tumors[J]. Pediatr Res. 1998, 43: 393–395.
    [158] Topley G. I, Okuyama R, Gonzales J. G,et al. p21WAF1/Cip1 functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential [J]. Proc Natl Acad Sci USA. 1999, 96: 9089–9094.
    [159] Poole A. J, Heap D, Carroll R. E,et al. Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon[J]. Oncogene. 2004, 23: 8128–8134.
    [160] Jackson R. J. Loss of the cell cycle inhibitors p21Cip1 and p27Kip1 enhances tumorigenesis in knockout mouse models[J]. Oncogene. 2002, 21:8486–8497.
    [161] Philipp J, Vo K, Gurley K. E,et al. Tumor suppression by p27Kip1 and p21Cip1 during chemically induced skin carcinogenesis[J]. Oncogene. 1999, 18: 4689–4698.
    [162] Peterson L. F, Yan M, Zhang D. E. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1–ETO[J]. Blood. 2007, 109: 4392–4398.
    [163] Carnero A, Beach D. H. Absence of p21WAF1 cooperates with c-myc in bypassing Ras-induced senescence and enhances oncogenic cooperation[J]. Oncogene. 2004, 23: 6006–6011.
    [164] Forster K. Role of p21WAF1/CIP1 as an attenuator of both proliferative and drug-induced apoptotic signals in BCR–ABL-transformed hematopoietic cells[J]. Ann Hematol. 2008, 87: 183–193.
    [165] Carbone C. J, Grana X, Reddy E. P,et al. p21 loss cooperates with INK4 inactivation facilitating immortalization and Bcl-2-mediated anchorageindependent-anchorageindependent growth of oncogene- transduced primary mouse fibroblasts[J]. Cancer Res. 2007, 67: 4130– 4137.
    [166] Shen K. C. ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development[J]. Cancer Res. 2005, 65: 8747–8753.
    [167] Edmonston T. B. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with respect to prognostic markers[J]. Hum Pathol. 2000, 31: 1506–1514.
    [168] Ogino S. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer[J]. J Pathol. 2006, 210: 147–154.
    [169] Minucci S. PML–RAR induces promyelocytic leukemias with high efficiency following retroviral gene transfer into purified murine hematopoietic progenitors[J]. Blood. 2002, 100: 2989–2995.
    [170] Viale A. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells[J]. Nature. 2009, 457: 51–56.
    [171] MT Wu, DC Wu, HK Hsu,et al. Association between p21 codon 31 polymorphism and esophageal cancer risk in a Taiwanese population[J]. Cancer Lett. 2003, 201: 175-180.
    [172] MT Wu, MC Chen, DC Wu. Influences of life style habits and p53 codon 72 and p21 codon 31 polymorphisms on gastric cancer risk in Taiwan[J]. Cancer Lett. 2004, 205: 61-68.
    [173] O Popanda, L Edler, P Waas,et al. Elevated risk of squamous-cell carcinoma of the lung in heavy smokers carrying the variant alleles of the TP53 Arg72Pro and p21 Ser31Arg polymorphisms[J]. Lung Cancer. 2007, 55: 25-34.
    [174] L Su, Y Sai, R Fan,et al. P53(codon 72)and p21(codon 31)polymorphisms alter in vivo mRNA expression of p21[J]. Lung Cancer. 2003, 40: 259-266.
    [175] JW Roh, JW Kim, NH Park,et al. p53 and p21 genetic polymorphisms and susceptibility to endometrial cancer[J]. Gynecol Oncol. 2004, 93: 499-505.
    [176] Bahl R., Arora S., Nath N.,et al. Novel polymorphism in p21(waf1/cip1) cyclin dependent kinase inhibitor gene: association with human esophageal cancer[J]. Oncogene. 2000, 19(3): 323-328.
    [177] Ralhan R., Agarwal S., Mathur M.,et al. Association between polymorphism in p21(Waf1/Cip1) cyclin-dependent kinase inhibitor geneand human oral cancer[J]. Clin Cancer Res. 2000, 6(6): 2440-2447.
    [178] Staalesen V., Knappskog S., Chrisanthar R.,et al. The novel p21 polymorphism p21G251A is associated with locally advanced breast cancer[J]. Clin Cancer Res. 2006, 12(20 Pt 1): 6000-6004.
    [179] G Li, Z Liu, EM Sturgis,et al. Genetic polymorphisms of p21 are associated with risk of squamous cell carcinoma of the head and neck[J]. Carcinogenesis. 2005, 26: 1596-1602.
    [180] Santos A. M., Sousa H., Portela C.,et al. TP53 and P21 polymorphisms: response to cisplatinum/paclitaxel-based chemotherapy in ovarian cancer[J]. Biochem Biophys Res Commun. 2006, 340(1): 256-262.
    [181] Y Shi, M Zou, NR Farid,et al. Evidence of gene deletion of p21 (WAF1/CIP1),a cyclin-dependent protein kinase inhibitor,in thyroid carcinomas[J]. Br J Cancer. 1996, 74: 1336-1341.
    [182] BL Powell, IL Van Staveren, P Roosken. Associatioons between common polymorphisms in TP53 and p21waf1/cip1 and phenotypic features of breast cancer[J]. Carcinogenesis. 2002, 23: 311-315.
    [183] Baretton G. B, Klenk U, Diebold J,et al. Proliferation- and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression[J]. BrJ Cancer. 1999, 80: 546–555
    [184] Aaltomaa S, Lipponen P, Eskelinen M,et al. Prognostic value and expression of p21waf1/cip1 protein in prostate cancer[J]. Prostate. 1999, 39: 8–15.
    [185] Lu X, Toki T, Konishi I,et al. Expression of p21WAF1/CIP1 in adenocarcinoma of the uterine cervix: a possible immunohistochemical marker of a favorable prognosis[J]. Cancer Cell. 1998, 82: 2409–2417.
    [186] Winters Z. E, (). Subcellular localisation of cyclin B,Cdc2 and p21WAF1/CIP1 in breast cancer. Association with prognosis[J]. Eur J Cancer. 2001, 37: 2405–2412.
    [187] De la Cueva E, Garcia-Cao I, Herranz M,et al. Tumorigenic activity of p21(Waf1/Cip1) in thymic lymphoma[J]. Oncogene. 2006, 25(29): 4128–4132.
    [188] Wang A, Yoshimi N, Ino N,et al. WAF1 expression and p53 mutations in human colorectal cancers[J]. J Cancer Res Clin Oncol. 1997, 123: 118–123.
    [189] Liu Y, Yeh N, Zhu X. H,et al. Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1)[J]. EMBO J. 2007, 26: 4683–4693.
    [190] Miettinen H. E, Paunu N, Rantala I,et al. Cell cycle regulators (p21, p53, pRb) in oligodendrocytic tumors: a study by novel tumor microarray technique[J]. J Neurooncol. 2001, 55: 29–37.
    [191] LaBaer J, Garrett M. D, Stevenson L. F,et al. New functional activities for the p21 family of CDK inhibitors[J]. Genes Dev. 1997, 11: 847–862.
    [192] Cheng M, Olivier P, Diehl J. A,et al. The p21(Cip1) and p27(Kip1) CDK‘inhibitors’are essential activators of cyclin D-dependent kinases in murine fibroblasts[J]. EMBO J. 1999, 18: 1571–1583.
    [193] Lazzarini R, Moretti S, Orecchia S,et al. Enhanced antitumor therapy by inhibition of p21waf1 in human malignant mesothelioma[J]. Clin Cancer Res. 2008, 14: 5099–5107.
    [194] Ocker M, Schneider-Stock R. Histone deacetylase inhibitors: signalling towards p21cip1/waf1[J]. J Biochem Cell Biol. 2007, 39: 1367–1374.
    [195] Ukomadu C, Dutta A. p21-dependent inhibition of colon cancer cell growth by mevastatin is independent of inhibition of G1 cyclin-dependentkinases[J]. J Biol Chem. 2003, 278: 43586–43594.
    [196] Ventura A. Restoration of p53 function leads to tumour regression in vivo[J]. Nature. 2007, 445: 661–665.
    [197] Wu C. H. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation[J]. Proc Natl Acad Sci USA. 2007, 104: 13028–13033.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700