草鱼MyoD基因cDNA克隆和表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MyoD基因是生肌调节因子MRFs家族的主要成员之一,是脊椎动物胚胎期肌肉发育的主导调控基因之一,对骨骼肌的形成和分化起主要作用,MyoD缺失可导致成肌细胞的增殖和分化无法进行。而MSTN(myostatin,肌肉生长抑制素)基因属于TGF-β(transforming growth factor beta,转化生长因子)超家族,其功能是抑制成肌细胞的过度增殖,是肌肉发育的负调控基因。现代肌肉发育生物学的研究表明,影响脊椎动物肌肉生长和肌肉品质的肌纤维的数量在出生前就已决定,出生后肌肉的生长主要靠肌纤维长度和周径的增大,而肌纤维的增粗又会影响肌肉的嫩度和肉用品质。同时获得高的肌肉生长(净肉率)和优良的肉质品质是肉用动物生产一直追求但却无法实现的理想目标。MyoD及其相关基因的发现为解决这一难题提供了可能,但对于该基因的研究目前还主要集中在基因的结构功能、组织表达、多态性以及肌肉瘤的医学诊断上,而在肉用动物生产中的研究还未受到重视。本研究以我国池塘主要养殖品种草鱼为研究对象,旨在通过对草鱼MyoD基因克隆、重组表达以及在不同发育阶段表达规律的研究,为鱼类肌肉品质改良提供理论依据,也为鱼类高效养殖探索新的途径,该项研究对于我国这样一个水产养殖大国来说无疑具有很高的社会和经济价值。
     为此本研究用RT—PCR和RACE技术从受精后22h(水温约为24℃)的草鱼肌节期胚胎总RNA中扩增获得了草鱼MyoD全长cDNA序列,并对核苷酸和氨基酸序列进行了分析,构建了草鱼MyoD基因的原核和真核表达载体,获得了相应的重组基因工程菌,并对基因工程菌进行了诱导表达研究;与此同时,本研究还对MyoD基因在草鱼不同发育阶段的表达规律及其与负调控基因MSTN之间的表达关系进行了初步研究,得到如下结果:
     1.首次克隆并获得了草鱼MyoD全长cDNA序列。
     草鱼MyoD cDNA序列全长为1597bp,其中编码蛋白的开放阅读框位于186~1011bp,长825bp,共编码275个氨基酸;编码的蛋白的分子量为30.87kD。蛋白质结构分析表明草鱼MyoD基因具有该家族基因典型的碱性螺旋环螺旋(basic helix-loop-helix,bHLH)结构域,其中编码肽链的第1-84个氨基酸为草鱼MyoD基因的Basic区,第98~142个氨基酸为草鱼MyoD基因的HLH结构域;SignalP 3.0和Tmpred(prediction oftransmembrane regions and orientation)在线结构分析也发现,该肽链没有信号肽和跨膜区段,这和该基因只在胚胎期骨骼肌细胞中表达的组织特异性相符。
     2.分析并揭示了MyoD基因结构和脊椎动物进化的关系
     通过对不同分类地位脊椎动物MyoD基因的核苷酸序列和氨基酸序列深入分析发现:①MyoD基因的保守性较高,且氨基酸肽链的长度随动物由低等到高等有逐渐加长
MyoD is a member of myogenic regulation factors family, playing an important role in the process of vertebrate embryo muscle development. Since its main function is to control the forming and differentiation of skeleton muscle, the myoblast of vertebrate can't proliferate and differentiate without MyoD. Myostatin, a negative regulation gene for muscle development, belongs to the TGF-β supper family, its function was to depress the myoblast proliferate overly. The muscle developmental biological research has showed that the number of myofibres was decided prenatally, and no increasing on postnatal, so increasing the myobibres length and diameter was the way that skeleton muscle grew. However, increasing the diameter of myofibres would affect the muscle quality. To improve the quantity and quality of muscle synchronously is the perfect result we want, but it is impossible to achieve this goal with feeding approach. Now it may become the truth because of the discovery of MyoD and MRFs family which offers a new way to control and regulate the vertebrate muscle development. At present, all the research focus on the MyoD gene structure, expression pattern, Polymorphism and diagnosis rhabdomyosarcoma in physic, but how to control the muscle in domestic animals by the MyoD has not been reported. So the Grass carp (Ctenopharyngodon idella), one role fish species cultured in ponds was chosen to be object in this research. The purpose of our research is to study on the expression pattern and molecule mechanism of the muscle development in grass carp by cloning and expressing the grass carp MyoD, and explore a new way for improving the quantity and quality of grass carp. It is meaningfull and valuable for China with developed fishery.In this research, RT-PCR and RACE were used to clone the grass carp MyoD cDNA sequence, from the embryo at 22 h post-fertilization. Then the amino acids and nucleotides sequence of grass MyoD were analyzed, and expression vectors (pBV220-MyoD-D and pPICZαA-MyoD) were constructed to express the MyoD recombined protein. At the same time, the expression pattern of MyoD and Myostatin also has been explored in different stage of grass carp. The result showed that:1. MyoD cDNA of the grass carp was cloned firstly.The full-length MyoD cDNA sequence of Grass carp was 1597 bp, with 825 bp open read frame, locating at 186-1011 bp, coding 275 amino acids, including a bHLH domain which composed of basic domain (1th to 84th amino acids) and HLH domain (98th to 141th amino acids). The molecular weight of MyoD protein was 30.87 kD;in which there wasn't signal peptide after analyzing by SignalP3.0 and Tmpred. So it wasn't excretion protein and accorded with its speciality that it expressed only in the embryo muscle.2. The relationship between MyoD gene structure and evolution of vertebrate was analyzed
    and discovered.After comparing nucleotide and amino acid sequence of grass carp MyoD with those of other animals, the results showed that: ? the MyoD is high conservative, and the length of MyoD peptide increase from 226 amino acids(Branchiotoma belcheri) to 319 amino acids {Homo sapiens) with the animal evolving from low vertebrate to high vertebrate, even among the fish there was huge difference. And the homology of nucleotide and amino acid are accorded with relativeship among the animals;(2) The bHLH domain of vertebrate MyoD was higher conservative than other section, there were two amino acid difference between the low vertebrate and high vertebrate. However, the composition of amino acid and length of basic domain are quite different.3. The prokaryon expression vector pBV220-MyoD-S was constructed and the recombined protein was expressed in E.coli.The pBV220-MyoD-S expression vector was reconstructed by reconstructed PCR, and the structure was proved corrected by sequencing. The MyoD recombined protein, the molecular weight is about 34kD, was expressed induced at 42 °C. However, the output was only 10.8% of all bacteria protein.4. The eukaryon expression vector pPICZaA-MyoD was constructed, and the recombined protein was expressed in GS115.The pPICZaA-MyoD eukaryon expression vector was constructed in E.coli, and the pPICZaA-MyoD vector was transmited into GS115 by LiCl. And the MyoD recombined protein was expressed in pH7.5-8.0 BMGY medium, after inducing 2day with 0.5% methanol, the ouput was about 250mg/L. The result showed that the expression level of recombined protein was closely related to pH of medium.5. The relationship between MyoD gene (the positive regulation gene for muscle development) and Mystatin gene (the negative regulation gene for muscle development) was explored firstly in grass carp.The total RNA from grass carp in different developing stage was extracted to detect the MyoD and myostatin mRNA level using RT-PCR. The results showed that the MyoD mRNA was transcripted from 16 h post-fertilization to 30days post-hatch, and there were two peaks of MyoD transcription, one appeared at 16h post-fertilization, another appeared at 20d post-hatch. However, the myostatin was different, it could not be detected before lyear post-hatch, while faint expression could be detected after lyear post-hatch. Once the myostatin gene was expressed, the expresson of MyoD gene would be stoped.
引文
[1] 姜运良,李宁,吴常信.肌肉生成的分子生物学研究进展[J].农业生物技术学报,1999.7 (2):201-204.
    [2] Buonanno A, et al. Molecular control of muscle diversity and plasticity[J]. Dev Genet, 1996, 19: 95-107.
    [3] 秦鹏春主编.哺乳动物胚胎学[M].北京,科学出版社,2001.
    [4] 张红卫主编.发育生物学[M].2004,高等教育出版
    [5] 桂建芳主编.发育生物学[M].2002,科学出版社
    [6] 邓近平,徐团才,李莹辉等.肌源干细胞研究进展[J].动物医学进展,2005,26(7):1-3.
    [7] De Angelis L, Berghella L, Coletta M. Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration [J]. J Cell Biol, 1999, 147: 869-878.
    [8] Shannon L, McKinney-Freeman, Kathyjo A Jackson, Femando D. Camargo, Giuliana Ferrari, Fulvio Mavilio, and Margaret A. Goodell. Muscle-derived hematopoietic stem cells are hematopoietic in origin [J]. Cell Biology, 2002, 3(99): 1341-1346.
    [9] Jackson K A, Mi T, Goodeil M A. Hematopoietic potential of stem cells isolated from murine skeletal muscle [J]. Proc Natl Acad Sci U S A. 1999, 96 (25): 14482-14486.
    [10] Zhuqing Qu, Levent Balkir, Judith C. T. van Deutekom, Paul D. Robbins, Ryan Pruchnic, and Johnny Huard. Development of Approaches to Improve Cell Survival in Myoblast Transfer Therapy [J]. J. Cell Biol., Volume 142, Number 5, September 7, 1998 1257-12671
    [11] Goodell MA, Brose K, Paradis G, Conner AS, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo [J]. J Exp Med. 1996, 183 (4): 797-806.
    [12] Gussoni, E., Pavlath, G. K., Lanctor, A. M, et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation [J]. Nature, 1992, 356: 435-438
    [13] 张年春,杨志焕,邓志龙.兔肌源性干细胞的分离及诱导分化为成骨细胞的观察[J].中国临床康复,2004,8(17):3258-3260.
    14 张明伟.郭子宽,刘晓丹,吴英,侯春梅,毛宁小鼠骨骼肌源间充质干细胞的分离与培养.中国实验血液学杂志,2003,11(5):538-541
    [15] Zhuqing Qu, Levent Balkir, Judith C. T, et al. Development of Approaches to Improve Cell Survival in Myoblast Transfer Therapy [J]. J. Cell Biol., 1998, 142, (5): 257-1267.
    [16] 陈晓萍,范明.肌卫星细胞研究进展[J].生理科学进展,2003,34(2):136—139.
    [17] Arnold HH, Winter B. Muscle differentiation: more complexity to the network of myogenic regulators [J]. Curr Opin Cenet Dev, 1998, 8: 539-544
    [18] Cornelision D D, Wold BJ. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells [J]. Dev Biol, 1997, 191: 270-283
    [19] Orna Halevy, Assaf Geyra, Miriam Barak, et al. Early Posthatch Starvation Decreases Satellite Cell Proliferation and Skeletal Muscle Growth in Chicks [J]. Journal of Nutrition. 2000, 130: 858-864
    [20] Jones NC, Fedorov YV, Rosenthal RS. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion[J]. J Cell Physiol, 2001, 186: 104-115
    [21] 陈晓萍,刘红,刘淑红,吴燕,吴海涛,范明.外源性重组人睫状神经营养因子抑制成人成肌细胞的体外分化[J].生理学报,2003,55(4):464—468
    [22] Gussoni E, Soneoka Y, Strickland CD. Dystrophin expression in the mdx mouse restored by stem cell transplantation [J]. Nature, 1999, 401: 390-394.
    [23] Odelberg SJ, Kollhoff A, Keating MT. Dedifferentiation of mammalian myotubes induced by msxl [J]. Cell, 2000, 103: 1099-1109
    [24] Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells inmice: potential for muscle regeneration [J]. J Cell Biol, 2002, 157: 851-864.
    [25] Miller AL, Fluck RA, McLaughlin JA, et al. Calcium buffer injections inhibit cytokinesis in Xenopus eggs [J]. Journal of Cell Science, 1993, 106 (2): 523-534
    [26] Geertruy te Kronnie. Axial Muscle Development in Fish [J]. Basic Appl Myol, 2000, 10 (6): 261-267.
    [27] Davis, R. L., Weintraub, H., Lassar, A B. Expression of a single transfected cDNA converts fibroblasts to myoblasts [J]. Cell, 1987, 51: 987-1000,
    [28] Olson, E. N. MyoD family: a paradigm for development [J]. Genes Dev, 1990, 4: 1454-1461.
    [29] Weintraub H, Davis R, Tapscott S, et al. The myoD gene family: nodal point during specification of the muscle cell lineage [J]. Science, 1991, 251: 761-766.
    [30] Tapscott S J, Weintraub H. MyoD and the regulation of myogenesis by helix-loop-helix proteins [J], J. Clin. Invest. 1991, 87: 1133-1138.
    [31] Braun T, Grzesehik, K H, Bober E, et al. The MYF genes, a group of human muscle determining factors, are localized on different human chromosomes[J]. Cytogenet. Cell Genet. 1989, 51: 969-978.
    [32] Tapscott S J, Davis R L, Thayer M J, et al. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts [J]. Science, 1988, 242: 405-411.
    [33] Henry I, Puech A, Antignac C, et al. Subregional mapping of BWS, CTSD, MYODI, and a T-ALL breakpoint in 11p15 [J]. Cytogenet. Cell Genet, 1989, 51: 1013-1019.
    [34] Gessler, M., Hameister, H., Henry, I, et al, The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome[J]. Hum. Genet, 1990, 86: 135-138.
    [35] Scrable, H. J., Johnson, D. K., Rinchik, E. M., et al. Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11 [J]. Proc. Nat. Acad. Sci. USA, 1990, 87: 2182-2186.
    [36] TePas M F W, Soumillion A, Harders F L, et al. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs[J]. J Anita Sci, 1999, 77: 2352-2356.
    [37] Ryan A M, Schelling C P, Womack J E, etal. Chromosom alassingnment of sixmuscle specific genes in cattle [J]. Animal Genetics, 1997, 28(2): 84-87.
    [38] Murre C, McCaw PS, Baltimore D A. new DNA binding and dimerizat ion modify in immunoglobulin enhancer binding, daugh terless, MyoD, and myc proteins [J]. Cell, 1989, 56 (5): 777-784.
    [39] Davis RL, Cheng PF, L assar AB, et al. The M yoD DNA binding domain contains a recognit ion code for muscle-specific gene activation [J]. Cell, 1990, 60 (5): 733-741.
    [40] Ma PC, Rouid MA, Weintraub H, et al. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation [J]. Cell, 1994, 77 (3): 451.
    [41] Anthony CSJ, Benfield PA, Fairman R, et al. Molecular characterization of helix-loop-helix peptides [J]. Science, 1992, 255: 979-985.
    [42] Yablonka RZ, Rudnicki MA, Rivera AJ, et al. The transit ion from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD [J]. Dev Biol. 1999, 210 (2): 440.
    [43] Sartorelli, V., Purl, P. L., Hamamori, et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program [J]. Molec. Cell, 19994: 725-734.
    [44] Guttridge D C, Mayo M W, Madrid L V, et al. NF-kappa-B-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia [J]. Science, 2000, 289: 2363-2366.
    [45] Hasty P, Bradley A, Morris JH, et al. Muscle deficiency and neonatal death in mice with atargeted mutation in the myogeningene [J]. Nature, 1993, 364: 501~506.
    [46] Olson EN. MyoD family: aparadigm development [J]. Genes Dev, 1990, 4: 1454~1461.
    [47] Ernst CW, Vaske DA, Larson GR, et al. Restriction fragment length polymorphis mat the swine myogeninloeus [J]. J. Anim. Sci, 1993, 71: 3479-3487.
    [48] Ann Soumillion, Johf Erkens, Johannes A, et al. Genetic variation in the porcine myogeningene locus [J]. MammalianGenome,1997, 8: 564~568.
    [49] 苏玉虹,熊远著,邓昌彦.猪的肉质性状基因定位研究进展[J].遗传,2000,25(3):334~338.
    [50] Buchberger A, Ragge K, Arnold H. The myogenin gene is activated during myocyte differentiation by pre-existing, not newly synthesized transcription factor MEF-2 [J]. J Biol Chem, 1994, 269(25): 17289-17296.
    [51] Ott M, Bober E, Lyons G, et al. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo [J]. Development, 1991, 111(4): 1097-1097.
    [52] Braun T, Bober E, Rudnicki M, et al. MyoD experssion marks the onset of skeletal myogenesis in Myf-5 mutant mice [J]. Development, 1994, 120(11): 3083-3092.
    [53] Kablar B, Krastel K, Tajbakhsh S, et al. Myf5 and MyoD activation define independent myogenic compartments during embryonic development [J]. Dev Biol, 2003, 258(2): 307-318.
    [54] Wang Y, Jaenisch R. Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently [J]. Development, 1997, 124(13): 2507-2513.
    [55] Hollenberg S, Cheng P, Weintraub H. Use of a conditional MyoD transcription factor in studies of MyoD trans-activation and muscle determination [J]. Proc Natl Acad Sci U S A, 1993, 90(17): 8028-8032.
    [56] Rawls A, Morris J, Rudnicki M, et al. Myogenin's functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis [J]. Dev Biol, 1995, 172(1): 37-50.
    [57] Hasty P, Bradley A, Morris J, et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene [J]. Nature, 1993, 364(6437): 501-506.
    [58] Rinderknecht E, Humbel R E. The amino acid sequence ofhuman insulin-like growth factor Ⅰ and its structuralhomology with proinsulin. Journal of Biology Chemistry, 1978, 253(8): 2769-2776.
    [59] Rinderknecht E, Humbel R E. Primary structure of human insulin-like growth factor Ⅱ [J]. FEBS Letter, 1978, 89 (2): 283-286.
    [60] Blundel T L, Bedarkar L S. Insulin-like growth factor: a model for tertiary structure accounting formmunoreactivity and receptor binding [J]. Proceedings of the National Academy of Sciences, USA, 1978, 75(1): 180-184.
    [61] Vasilatos-Youngken R, Scanes C G. Growth hormone andinsulin-like in poultry growth: required, optimal orneffective [J]. Poultry Sciences, 1991, 70: 1764-1780.
    [62] 吕自力 冯震博 何如昆.IGF-Ⅱ在肝硬变和肝癌组织的表达及其与LCD的相关性研究.广西医科大学学报[J],2000,8,17(4):603-605.
    [63] Lorraine E, Katz L, Cohen P. Growth factor regulation of fetal growth[M]. In Polin R, Fox(eds), WB sauders Co, 1998.
    [64] 闫震,汤春生.IGF系统与胎儿生长发育[J].国外医学妇幼保健分册,2004,15(1):17—19.
    [65] 丙荣,王建辰.生长因子及其受体[J].四川农业大学学报,1995,13(3):315—320.
    [66] 伍喜林,杨凤.类胰岛素生长因子IGF的营养生理作用[J].畜牧与兽医,2002,34(11):38—40.
    [67] Dechiara T M, Efstratiadis A, Robertson E J. Parentalimprinting of the mouse insulin-like growth Ⅱ gene [J]. Cell, 1991, 64: 849-859.
    [68] Gerrard D E, Okamura C S, Ranalletta M A, et al. Developmental expression and location of IGF-Ⅰ and IGF-Ⅱ mRNA and protein in skeletal muscle [J]. Journal of AnimalSciences, 1998, 76(4): 1004-1011.
    [69] Florini J R, Ewton D Z, Falen S L, et al. Biphasicconeentration dependency of stimulation of myoblastdifferentiation by sometomedins [J]. American Journal ofPhysioiogy, 1986, 250: 771-778.
    [70] Florini J R, Magri K A, Ewton D Z, et al. Spontaneous" differntiation of skeletalmyoblast is dependent upon autocrine secretion of insulin-like growth factor-Ⅱ [J]. Journal of Biological Chemistry, 1991, 266: 15917-15923.
    [71] Darling D C, Brickell P M. Nucleotide sequence and genomicstructure of the chicken insulin-like growth factor-Ⅱ (IGF-Ⅱ) coding region [J]. General and Comparative Endocrinology, 1996, 102 (3): 283-287.
    [72] Spencer G S G, Decuypere E, Buyse J, Zeman M. Effect ofrecombinant human insulin-like growth factor Ⅱ on weightgain and body composition of broiler chickens. PoultrySciences, 1996, 75: 388-392.
    [73] O' Dell S D. Molecules in focus: Insulin-like growth factor Ⅰ[(IGF-Ⅱ) [J]. International Journal of Biochemistry and Cell Biology, 1998, 30: 767-771.
    [74] McMurtry J P, Francis G L, Vasilatos-Younken R. Metabolicresponses of the chicken to an intravenous injection ofeither chicken (cIGF-Ⅰ) or human insulin-like growthfactor-Ⅰ(hIGF-Ⅰ). Poultry Sciences, 1996,75: 47-53.
    [75] Huybrechts L M, Decuypere E, Buyse J, et al. Effect of recombinant human insulin-likegrowth factor- Ⅰ on weight gain, fat content, and hormonalparameters in broiler chickens [J]. Poultry Sciences, 1992, 71: 181-187.
    [76] Decuypere E, Leenstra F R. Plasma levels of growthhormone and insulin-like growth factor-Ⅰ and-Ⅱ from 2to 6 weeks of age in meat-type chickens selected for 6week body weight or for feed conversion and reared underhigh or normal environmental temperature conditions [J]. Reproduction Nutrition Development, 1993, 33: 361-372.
    [77] Yang Y W H, Robbins A R, Nissley S P. The chick embryofibroblast cation-independent mannose 6-phosphate receptoris functional and immunologically related to the mammalianinsulin-like growth factor- Ⅱ (1GF-Ⅱ)/man 6-P receptorbut does not bind IGF-Ⅱ [J]. Endocrinology, 1991, 128: 1177-1189.
    [78] 金生浩,廖侃.脂肪细胞分化的转录调控[J].生命的化学,1999,5:216-219.
    [79] 李志辉,王启贵,赵建国,王宇祥,李辉.类胰岛素生长因子Ⅱ(IGF2)基因多态性与鸡体脂性状的相关研究[J].中国农业科学,2004,37(4):600-604.
    [80] Duval H, Rousseau K, Elies G. Cloning, characterization and comparative activity of turbot IGF-Ⅰ and IGF-Ⅱ [J]. Gen Comp Endocrinol, 2002, 126: 269~278.
    [81] Cao QP, Duguay SJ, Plisetskaya E. Nucleotidese sequence and growth hormone regulated expression of salmon insulin like growth factor Ⅰ Mrna [j]. Mol Endocrinol, 1989, 3: 2005~2010.
    [82] Peterson BC, Small BC. Effects of fasting on circulation IGF binding proteins, glucose and cortisolin channel catfish (Ictaluruuspunctatus) [J]. Domest Anim Endocrinol, 2004, 26: 231~240.
    [83] Otteson DC, Cirenza PF, Hitchcock PF. Persistent nuerogenesis in the teleost retina: evidence for regulation by the growth hormone insulin like growth factor Ⅰ axis [J]. Mechanisms of Development, 2002, 117: 137~149.
    [84] Tse MC, Vong QP, Cheng CH, et al. PCR-cloning and gene expression studies in common carp (Cyprinus carpio) insulin-like growth factor-Ⅱ[J]. Biochim Biophys Acta. 2002, 3, (1575): 63-74.
    [85] Kagawa HG, Gen K, Okuzawa K. Effects of luteinizing hormone and follicle stimulating hormone and insulin like growth factor Ⅰ on aromatase activity and P450 aromatase gene expression in the ovarian follicles of red seabream, pagrus major [J]. Biol Reprod, 2003, 68(5): 1562~1568.
    [86] 章力,黄希贵,王德寿.鱼类胰岛素样生长因子(IGF)系统的研究进展[J].动物学杂志 2005,40(2):99~105.
    [87] Massague J. The transforming growth factor-β family [J]. Annu Rev Cell Biol, 1990, 6: 597-641.
    [88] Mepherron A C, et al. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member [J]. Nature, 1997, 387: 83-90.
    [89] Szabo G, et al. A deletion in the myostatin gene causes the compact hypermuscular mutation in mice [J]. Manmalian Genome, 1998, 9(8): 671-672.
    [90] Mcpherron A C, Lauler A M. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member [J]. Nature, 1997, 387(6628): 83-90.
    [91] Shaoquan J, Losinki R L. Myostatin expression in porcine tissues: tissues specificity and developmental and postnatal rgulation [J]. Am J Physiol Rgul lntegr Compar Physiol, 1998, 275 (4): 1265-1273.
    [92] Sharma M, Kambadur R. Myostatin, a transforming growth factors-beta superfamily member is expressed in heart muscle and id up-regulated in cardiomyocytes after in farct [J]. J Cell Physiol, 1999, 180 (1): 1-9.
    [93] Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein Aet al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle [J]. Nat Gene, 1997, 17(1): 71—74.
    [94] Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, et al. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting [J]. Proc Natl Acad Sci USA, 1998, 95(25): 14938—14943
    [95] Kawada S, Tachi C, lshii N. Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading [J]. J Muscle Res Cell Motil, 2001, 22(8): 627—633.
    [96] Welle S, Bhatt K, Shah B, Thornton C. Insulin-like growth factor-Ⅰ and myostatin mRNA expression in muscle: Comparison between 62—77 and 21—31 yr old men[J]. Exp Gerontol, 2002, 37(6): 833—839.
    [97] Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin [J]. Exp Cell Res, 2003, 286(2): 263—275.
    [98] Whittemore LA, Song K, Li X, et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength[J]. Biochem Biophys Res Commun, 2003, 300(4): 965—971.
    [99] Bogdanovich S, Krag TO, Barton ER, et al. Functional improvement of dystrophic muscle by myostatin blockade [J]. Nature, 2002, 420(6914): 418—421
    [100] Alexandra C, Mepherron A C. Superession of boady fat accumulation in myostatin-deficient mice [J]. J Chin Invest, 2002, 109(5): 595-601.
    [101] Ji Lin, Heather B. Myostatin knockout in mice increasees myogenesis and decreases adipogenesis [J]. Bioch and Biop Rese Comm, 2002, 292 (3): 701-706.
    [102] Thomas M, Langley B, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation [J]. J Biol Chem, 2000, 275(51): 40235—40243.
    [103] 杨威,王琨,陈岩等.重组肌肉抑制素功能分析及其对鸡肌肉发育的抑制作用。ACTA BIOCHIMICA et BIOPHYSICA SINICA 2003,35(11):1016-1022.
    [104] Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression [J]. J Biol Chem, 2002, 277(51): 49831—49840
    [105] Cheifetz S, et al. The transforming growth factor-β system, a complex patern of cross-reactive Jigands and receptors [J]. Cell, 1987, 48: 409-415.
    [106] Jakowlew SB, et al. Complementary deoxyribonucleic acid cloning of a messager nucleic acid encoding transforming growth factor-β4 from chicken embryo chondrocytes[J]. Mol. Endocrinol, 1988, 2: 1186-1195.
    [107] Grobet L. A deletion in the Bovine myostatin gene causes the double-muscled phenotype in cattle [J]. Nature Genetics, 1997, 17(1): 71-74.
    [108] Sonstegard T S, et al. Myostatin maps to chromosome 15 by linkage and physical analysis[J]. Animal Genetic, 1998b,29(1): 19-22.
    [109] Ji S. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation [J]. American Journal of Physiology, 1998, 275(4Pt2): R1265-1273.
    [110] 欧阳红生,孙燕,张永亮.猪生成抑制素基因的克隆和序列测定[J].中国兽医学报,2001,21(5):479—481.
    [111] Bogdanovich S, Krag TO, Barton ER, et al. Functional improvement of dystrophic muscle by myostatin blockade [J]. Nature, 2002, 420(6914): 418—421.
    [112] 顾志良,朱大海,李宁,李辉,邓学梅,吴常信.鸡Myostatin基冈单核苷酸多态性与骨骼肌和脂肪生长的关系《中国科学》C辑:2003,33(3):273-280.
    [113] 杨兴元 杨树洪 侯健 陈永福.肌抑素Myostatin突变体Pro区域的克隆、表达利活性.农业生物技术学报[J].2004,1:138—142.
    [114] 马现永,曹永长,马静云.肌肉生成抑制因子多克隆抗体的制备与鉴定.华南农业大学学报2005,26(3):89-92.
    [115] 厉建中,李坚,傅继梁.锌指蛋白基因ZNF191[J].生命的化学,2001,1(2):116—118.
    [116] 孙燕,苟德明,李文鑫.C2H2型锌指蛋白研究进展[J].生命的化学,2001,21(6):473—475.
    [117] 张书祥,赵志虎,马清钧.锌指蛋白的核酸识别特异性研究进展[J].生物工程进展,2001,21(2):7—9.
    [118] 余晓丹.锌指蛋白结构和功能研究进展[J].国外医学卫生学分册,2004,31(3):171-175.
    [119] J S Lee, R H See, K M Galvin, et al. Functional interactions between YYI and adenovirus EIA [J]. Nucleic Acids Res, 1995, 25;23(6): 925-931
    [120] Waiowitz J L, Bradley M E, Chert S, et al. Proteolytic regulation of the zinc finger transcription factor YY1, a repressor of muscle-restricted gene expression [J]. J Biol Chem, 1998, 273: 6656~ 6661.
    [121] Postigo, A. A., Dean, D. C. Independent Repressor Domains in ZEB Regulate Muscle and T-Cell Differentiation [J]. Mol. Cell. Biol. 1999, 19: 7961-7971
    [122] Passantino, R., Antona, V., Barbieri, G, et al. Negative Regulation of beta-nolase Gene Transcription in Embryonic Muscle Is Dependent upon a Zinc Finger Factor That Binds to the G-rich Box within the Muscle-specific Enhancer [J]. J. Biol. Chem. 1998, 273: 484-494.
    [123] Arber, S., Halder, G., and Caroni, P.. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation [J]. Cell, 1994, 79, 221-231.
    [124] 鹿培源 贾弘提.锌指蛋白对肌肉发育的调节[J].生命的化学,2001,21(6):497—499.
    [125] Jen Y, Weintraub H, Benezra R. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins[J]. Genes Dev, 1992, 6(8): 1466-1479.
    [126] Hebrok M, Wertz K, Fuchtbauer E. M-twist is an inhibitor of muscle differentiation[J]. Dev Biol, 1994, 165(2): 537-544.
    [127] Chen C, Kraut N, Groudine M, et al. I-MF, a novel myogenic repressor, interacts with members of the MyoD family[J]. Cell, 1996, 86(5): 731-741.
    [128] Ludolph D, Konieczny S. Transcription factor families: muscling in on the myogenic program[J]. FASEB J, 1995, 9(15): 1595-1604.
    [129] Olson E, Brennan T, Chakraborty T, et al. Molecular control of myogenesis: antagonism between growth and differentiation[J]. Mol Cell Biochem, 1991, 104(1-2): 7-13.
    [130] Olson E. Interplay between proliferation and differentiation within the myogenic lineage[J]. Dev Biol, 1992, 154(2): 261-272.
    [131] Cripps R, Olson E. Twist is required for muscle template splitting during adult Drosophila myogenesis[J]. Dev Biol, 1998, 203(1): 106-115.
    [132] Friday B, Mitchell P, Kegley K, et al. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD[J]. Differentiation, 2003, 71(3): 217-227.
    [133] Gong X, Li L. Dermo-1, a multifunctionai basic helix-loop-helex protein, represses MyoD transactivation via the HLH domain, MEF2 interaction, and chromatin deacetylation[J]. J Biol Chem, 2002, 277(14): 12310-12317.
    [134] Bendall A, Ding J, Hu G, et al. Msxl antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors[J]. Development, 1999, 126(22): 4965-4976.
    [135] Buckingham M, Bajard L, Chang T, et al. The formation of skeletal muscle: from somite to limb [J]. J Anat, 2003, 202(1): 59-68.
    [136] Borycki A, Brunk B, Tajbakhsh S, et al. Sonic hedgehog controls epaxial muscle determination through Myf5 activation[J]. Development, 1999, 126(18): 4053-4063.
    [137] Kaneko S, Feldman R, Yu L, et al. Posetive feedback regulation between Akt2 and MyoD during muscle differentiation. Cloning of Akt2 promoter [J]. J Biol Chem, 2002, 277(26): 23230-23235.
    [138] Maeda T, Chapman D, Stewart A. Mammalian vestigial-like 2, a cofactor of TEF-1 and MEF2 transcription factors that promotes skeletal muscle differentiation [J]. J Biol Chem, 2002, 277(50): 48889-48898.
    [139] Gospldarow iczD. Purification of a fibroblast growth factor from bovine pituitary [J]. J Biol Chem, 1975, 250: 251-255.
    [140] Yamada S, Buffinger N, Dimario J et al. Fibroblast growth factor is stored in fibe rextracellular matrix and plays a role in regulating muscle hypertrophy [J]. Med Sci Sports Exerc, 1999, 21: 173~180.
    [141] Alterio J, Courtois Y, RobelinJ et al. Acidic and basic fibroblast growth factor mRNAs are expressed by skeletal muscle satellite cells [J]. Biochem Biophys Res Commun, 1990, 166: 1205-1211.
    [142] Rawls A, Valdez M. R, Zhang. W, et al. Overlapping functions of myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice [J]. Development, 1998, 125(13): 2349-2358.
    [143] Hansol Lee, Raymond Habas, Cory Abate-Shen. Msxl Cooperates with Histone Hlb for Inhibition of Transcription and Myogenesis [J]. Science, Jun 11, 2004, 304: 1675-1678.
    [144] Rocky S. Tuan. Cellular and Molecular Regulation of Embryonic Skeletal Development and Morphogenesis [J]. Cells and Materials, 1998(8): 3-18.
    [145] Alves H J, L E Alvares, J E Gabriel, Coutinho. L. L. Influence of the neural tube/notochord complex on MyoD expression and cellular proliferation in chicken embryos [J]. Brazilian Journal of Medical and Biological Research, 2003, 36(2): 191-197.
    [146] Qin Wei, Bruce M. Paterson. Regulation of MyoD function in the dividing myoblast [J]. FEBS Letters2001, 490: 171—178.
    [147] 姜运良,李宁,吴常信.肌肉生成的分子生物学研究进展[J].农业生物技术学报,1999,7 (2):201—204.
    [148] Hans-Henning Arnold and Thomas Braun. The role of Myf-5 in somitogenesis and the development of skeletal muscles in vertebrates [J]. Journal of Cell Science, 1993, 104: 957-960.
    [149] Elena Ceccarelli, Michael J. McGrew, Tom Nguyen. An E Box Comprises a Positional Sensor forRegional Differences in Skeletal MuscleGene Expression and Methylation [J]. Developmental Biology, 1999, 213, 217-229.
    [150] Yau-Hung Chert, Chin-Tien Liang, Huai-Jen Tsai. Expression, Purification and DNA-binding activity of tilapia muscle-specific transcription factor, MyoD, produced in Escherichia coli [J]. Comparative Biochemistry and Physiology Part B, 2002, 131: 794-805.
    [151] 沈燕国,徐建光。顾玉东等.成肌调节因子MyoD和Myf-5在人体失神经骨骼肌中的表达及其临床意义[J].复旦学报(医学版),2002.7(4):264—267.
    [152] Shao Jun Du, Jie Gao, Victor Anyangwe. Muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter [J]. Comparative Biochemistry and Physiology Part B 134 (2003) 123-134.
    [153] J.萨姆布鲁克斯,DW.拉塞尔著,黄培堂主译.分子克隆实验指南[M].北京,科学出版社,2002年.
    [154] 张智清,姚立洪,侯云德.含PRPL启动子的原核高效表达载体的组建及其利用[J].病毒学报,1990,6(2):111—116.
    [155] 贾盘兴,蔡金科等 编著.微生物遗传学实验技术[M].科学技术出版社,1992年9月,北京.
    [156] Ha SH, Park JJ, Kim JW, et al. Molecular cloning and high-level expression of G2 protein of hantaan (HTN) virus 76-118 strain in the yeast Pichia pastoris KM71[J]. Virus Genes, 2001;22: 167-173.
    [157] Lai CK, Ho AS, Chart CH, et al. Interleukin-5 messenger RNA expression in peripheral blood CD+4 cells in asthma[J]. J Allergy Clin Immunol, 1996, 97: 1320-1328.
    [158] 黄海鹭,常汝虚,冉丕鑫,钟南山.呼吸道合胞病毒感染对哮喘患儿单个核细胞表达白细胞介素4和5的影响[J].中华结核和呼吸感染,1999,22(4):56-59.
    [159] 韩晓枫,邹荣良,郝爱民.系统性红斑狼疮患者外周血中Fas和sFas基因的表达[J].苏州医学院学报,2000,20(12):1107-1108,1128.
    [160] Davis, R. L., Weintraub, H., Lassar, A. B., Expression of a single transfected cDNA converts fibroblasts to myoblasts [J]. Cell 51: 987-1000, 1987.
    [161] Olson, E. N., MyoD family: a paradigm for development[J]. Genes Dev. 4: 1454-1461, 1990.
    [162] Tapscott, S. J. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression [J]. Molec. Cell 9: 587-600, 2002.
    [163] Kobiyama, A., Nihei, Y., Hirayama,Y., et al. Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp [J]. The Journal of Experimental Biology, 1998, 201 (20): 2801-2813.
    [164] Weinberg, E. S., Allende, M. L., Kelly, C. S., et al. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos[J]. Development, 1996, 122: 271-280
    [165] Murre, C., McCaw, P. S., and Baltimore, D. A new DNA binding and dimerization Motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins [J]. Cell, 1989, 56: 777-783
    [166] Davis RL, Cheng PF, Lassar AB, et al. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation [J]. Cell, 1990, 60: 733-746.
    [167] Jing Huang, Hal Weintraub, and Larry Kedes. Intramolecular Regulation of MyoD Activation Domain Conformation and Function [J]. Molecular and Cellular Biology, 1998, 18 (9): 5478-5484.
    [168] Brennan, T. J, Chakraborty T, and Olson. E. N. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis [J]. Proc. Natl. Acad. Sci. USA 1991. 88: 5675-5679.
    [169] Davis, R. L., Cheng P. F, Lassar A. B et al. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation [J]. Cell. 1990, 60 (5): 733-46.
    [170] Weintraub, H., Dwarki V. J, Verma I, et al. Muscle-specific transcriptional activation by MyoD [J]. Genes Dev. 1991, 5: 1377-1386.
    [171] Soheila J. Maleki and Barry K. Huriburt. High-Level Expression and Purification of MyoD, Myogenin, and E12 [J]. Protein Expression and Purification, 1997, 9: 91-99.
    [172] 李伍举,吴加金.pBV220载体中外源基因表达水平定量分析[J].病毒学报,1997,13(2):126—133.
    [173] 张智清,张颖,路秀华等.人粒细胞—巨噬细胞集落刺激因子cDNA 5'端的修饰提高其在人 肠杆菌中的表达[J].病毒学报,1991,6:136—142.
    [174] 阎锡蕴,汤健,吴小平等.血管内皮生长因子人单链抗体—基因克隆高效表达亲和力成熟及生物活性鉴定[J].中国科学,2000,30(4):394—400.
    [175] Varenne S, Buc J, Lloubes R, Lazdunski C. Translation is non-uniform process: Effect of tRNA availability on the rate of elongation of nascent polypeptide chain [J]. J Mol Biol, 1984, 180: 549-576.
    [176] Grosjean H, Fiefs W. Preferential codon usage in prokaryotic genes: The optimal codon-anticodon interaction energy and selective codon usage in efficiently expressed genes [J]. Gene, 1982, 18: 199-209.
    [177] Varenne S, Baty D, Verheij H, et al. The maximum rate of gene expression is dependent on the downstream context of unfavourable codon. Biochimie, 1989, 71: 1221-1229
    [178] Yarus M, Foiley LS. Sense codons are found in specific contexts [J]. J. Mol Biol, 1085, 82: 529-540.
    [179] Guisez Y, Robbens J, Remaut E, et al. Folding of the MS2 coat protein in Escherichia coli is modulated by translational pauses resulting from mRNA secondary structure and codon usege: A hypothesis [J]. J Theor Bioi, 1993, 162: 243-252.
    [180] 王涛,周先碗,胡美浩.人尿激酶原在大肠杆菌中表达的研究[J].北京大学学报,2000,36(6):802-807.
    [181] Ellis S B, Brust P F, Koutz P J, et al. Isolation of alcohol oxidase and two others methanol ragulatable genes from the yeast Pichia pastoris [J]. Mol Cell Biol, 1985, 5: 1111-1116.
    [182] Cregg JM, Barringer KJ, Hessler AY, et al. Pichia pastoris as a host system for transformations[J]. Mol Cell Biol, 1985, 5: 3376-3382.
    [183] 杜中军,朱水芳,黄文胜等.毕赤酵母外源基因表达系统研究进展[J].生物技术通报,2004,4:7—11.
    [184] 张勇,邹仲敏,郭朝华等.鼠真核表达的双顺反子质粒载体pIRES2—EGFP—MyoD的构建及鉴定[J].重庆医学2003,32(8):1002-1003.
    [185] 秦瑞峰,顾晓明,陈金武等.鼠肌肉转录调节因子MyoD基因真核表达载体的构建[J].中国修复重建外科杂志,2001,15(5):257-260.
    [186] Soheila J, Maleki, Barry K, et al. High-level Expression and Purification of MyoD, Myogenin, and E12 [J]. Protein Expression and Purification, 1997, 9: 91-99.
    [187] 王均,贾弘提.鸡胚不同发育时期MyoD、生肌素及乙既胆碱受体基因的表达[J]。北京医科大学学报,1997,2(29):200—202
    [188] Atsushi Kobiyama, Yoshiaki Nihei, Yasushi Hirayama, et al. Molecular cloning and developmental expression paterns of the MyoD and MEF2 families of muscle transcription factors in the carp [J]. The Journal of Experimental Biology, 1998, 201: 2801-2813.
    [189] Genevieve K. Temple, Nicholas J. et al. Embryonic temperature and the relative timing of muscle specific genes during development in herring (Clupea harengus L.) [J]. The Journal of Experimental Biology, 2001, 204: 3629-3637.
    [190] Thomas E. Hall, Nicholas J. et al. Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod (Gadus morhua L) [J]. The Journal of Experimental Biology 206, 3187-3200 (2003)
    [191] YANG Wei, WANG Kun, CHEN Yan, et al. Functional Characterization of Recombinant Myostatin and Its Inhibitory Role to Chicken Muscle Development [J]. ACTA BIOCHIMICA and BIOPHYSICA SINICA 2003, 35(11): 1016-1022
    [192] 王武主编.鱼类增养殖学[M].北京,中国农业出版社,2000年.
    [193] Mcpherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member [J]. Nature, 1997, 387: 83-89.
    [194] 姜运良,李宁,吴常信等.不同品种猪肌肉生长抑制素基因单核昔酸多态性分析[J].遗传学报,2001,28(9):840—845.
    [195] Lee S J, Mcpherron A C. Myostatin and me control skeletal muscle mass [J]. Curr, Opin. Genet, Dey, 1999, 9(5): 604-607.
    [196] McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene [J]. Proc Natl Acad Sci U S A. 1997, 94 (23): 12457-61.
    [197] Langley B, Thomas M, Bishop A, et al. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression [J]. J Biol Chem. 2002, 277 (51): 49831-49840.
    [198] Rios R, Cameiro I, Myostatin is an inhibitor of myogenic differentiation [J]. Am J Physiol, 2002, 282(5): C993-999.
    [199] 杨威,王琨,陈岩等.重组肌肉抑制素功能分析及其对鸡肌肉发育的抑制作用[J].生物化学与生物物理学报,2003,35(11):1016-1022.
    [200] Dominique Joulia, Henri Bernardi, Veronique Garandel, Fanjaniriana Rabenoelina, Barbara Vemus, Gerard Cabello. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Experimental Cell Research, 2003, 286(2): 263-275.
    [201] 马现勇,马静云,曹永长等.肌肉生长抑素基因工程疫苗免疫动物的效果研究[J].广东畜牧兽医科技,2003,6(28):41—43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700