催化裂解多产低碳烯烃催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的快速发展,市场对以乙烯和丙烯为代表的低碳烯烃的需求增长迅速,目前乙烯和丙烯的生产主要是通过蒸汽裂解技术,然而,随着丙烯衍生物需求量的激增,通过蒸汽热裂解的方法联产得到的丙烯产量已不能满足国内外市场上对丙烯日益增长的需要,此外,蒸气热裂解技术还存在着能耗和设备投资过高、裂解原料操作弹性差、环境污染较严重等问题,催化裂解技术发展可以很好地解决以上问题,因此催化裂解技术成为研究的热点,其核心主要是催化剂及其催化裂解工艺。
     本文合成了高岭土微球基质表面附晶生长ZSM-5的复合分子筛,并对其进行了XRD、SEM、NH3-TPD、BET表征;在小型固定床微反实验装置上,对该复合分子筛及其它机械混和分子筛/高岭土催化剂的催化裂解反应性能进行了考察,旨在探索和开发出一种多产低碳烯烃的催化剂。
     首先,以水玻璃、硫酸铝、正丁胺、浓硫酸等为原料通过水热合成出了ZSM-5分子筛,考察了ZSM-5分子筛合成条件的影响,详细考察了晶化温度、晶化时间、pH值、硅铝比、模板剂用量、n(H2O)/n(SiO2)比的影响,结果表明,当pH值为10,硅铝比为60,晶化时间为24h,晶化温度为180℃, n(H2O)/n(SiO2)=30,模板剂用量为5.5ml时,可以合成出较高结晶度的ZSM-5分子筛。
     其次,合成得到了高岭土微球基质的表面附晶生长ZSM-5复合分子筛,通过XRD、SEM、NH3-TPD、BET方法对附晶分子筛进行了表征,表征结果表明,在高岭土微球上成功地生长了更加微小的ZSM-5晶粒,大小约为3μm,成功地合成出了一种廉价的具有多级孔道结构的新型催化裂解催化剂。
     第三,在小型固定床微反实验装置上,以直馏柴油为反应原料进行了催化裂解微反活性评价实验,分别考察了HZSM-5、Hβ、HY分子筛与高岭土微球(WQ)机械混和催化剂及高岭土附晶ZSM-5复合催化剂在不同反应温度下的反应性能。结果发现从低碳烯烃收率来看,高岭土附晶ZSM-5复合分子筛>高岭土和ZSM-5分子筛机械混和催化剂>Hβ分子筛机械混和催化剂>高岭土和HY分子筛机械混和催化剂。
     第四,在小型固定床微反实验装置上,考察了不同类型分子筛、不同硅铝比的ZSM-5分子筛及高岭土附晶ZSM-5复合分子筛对正丁烷原料的催化裂解反应性能,并考察了不同质量空速及反应温度对产品分布的影响。结果表明:高岭土附晶ZSM-5复合催化剂的反应性能最好,在反应条件为:原料气质量空速为5h-1;反应温度为600℃时,正丁烷的转化率达到了89.71%,低碳烯烃收率达到40.46%,干气收率为38.49%。
With developing our country economy fast, the requirement of the market for ethylene and propylene is growing rapidly. At present, the ethylene and propylene are producted by steam thermal cracking. However, the production of propylene by stream thermal cracking has been unable to meet with the growing market for the needs of propylene. In addition, there are still problems for steam thermal cracking. For example, energy consumpting and equipment investment is too high, the materials of cracking could choose the range of small, the environmental pollutions seriously and so on. Catalytic cracking technology could solve the above problems, so catalytic cracking technology is becoming a hot research, mainly in terms of process and catalyst.
     In this article ZSM-5 zeolite is synthesized on the surface of Kaolin microspheres successfully, and it was characterized by XRD、SEM、NH3-TPD、BET. It was studied in a small experimental device of fixed-bed microreactor with other catalysts of mechanical mixing zeolite/Kaolin, in order to explorate and develop a catalyst for light olefins.
     The first, ZSM-5 zeolite is synthesized in the hydrothermal system by the materials of waterglass,aluminumsulfate, butylanmine, sulfuric acid. The impact of ZSM-5 zeolite synthesis conditions is studied, studied in detail in the crystallization temperature, crystallization time, pH, Si/Al, the amount of template, the concentration. The results show that a higher crystallinity ZSM-5 zeolite can be synthesized, as the pH is 10, the Si-Al ratio is 60, the crystallization time is 24h, crystallization temperature is 180℃, n(H2O)/n(SiO2)=30, the amunt of template is 5.5ml.
     The second, ZSM-5 zeolite grew successfully on the surface of Kaolin microsphers, the ZSM-5 overgrowth on Kaolin was characterized by XRD、SEM、NH3-TPD、BET. The characterization results showed that the surface of Kaoline grew more microscopic crystal of ZSM-5, it is about 3μm, a new catalytic cracking catalysts with an inexpensive multi-channel had been successfully synthesized.
     The third, a diesel raw material occurred catalytic cracking in the small fixed bed micro-reactor, HZSM-5/WQ. Hβ/WQ.HY/WQ mechanical mixed catalysts of 5% 10% 15% three content mass fraction were studied at 500℃、550℃、600℃. The reactivity of the ZSM-5 overgrowth on Kaolin was studied at 500℃、550℃、600℃.The results showed that:The yield of propylene, the ZSM-5 overgrowth on Kaolin>ZSM-5/WQ mechanical mixed catalysts>β/WQ mechanical mixed catalysts>Y/WQ mechanical mixed catalysts.
     The forth,in the small fixed bed micro-reactor, n-butane as the reaction to raw materials, the gas speed in the raw materials and the temperature of reaction were studied on catalytic cracking reaction. Under certain conditions, compared to thermal cracking with quart sand as filler and catalytic cracking, the results showed that the ZSM-5 overgrowth on Kaolin had the best reaction performance. The optimal reaction condition was at mass flow speed of the n-butane 5h-1 and 600℃. The conversion was 89.71% at mass flow speed of the n-butane 5h-1 and 600℃, the yield of light olefins reached 40.46%, the yield of dry gas reached 38.49%.
引文
[1]俞文欣.世界乙烯需求趋紧[J].国际化工信息,2005,(10):8-1 1
    [2]胡玉梅.我国丙烯行业发展趋势及市场分析[J].国际石油经济,2005,13(3):20~24
    [3]钱伯章.增产丙烯技术及其进展[J].石油炼制与化工,2001,32(11):19~23
    [4]赵万恒.低碳烷烃脱氢技术评价[J].化工设计,2010,10(3):11~13
    [5]张惠明.甲醇制低碳烯烃工艺技术新进展[J].化学反应工程与工艺,2008,4(2):178~181
    [6]曹勇.世界乙烯工业现状及发展趋势[J].当代石油化工,2007,15(7):15~18
    [7]王魏,谢朝钢.催化裂解(DCC)新技术的开发与应用[J].石油化工技术经济,2005,21(1):8-13
    [8]石华信.增产丙烯的几种主要技术措施[J].石油化工要闻,2004,5(13):13~15
    [9]赵亮,卜蔚达.催化裂解多产低碳烯烃研究进展[J].化学工程与装备,2010,3(3):110~112
    [10]侯典国,汪燮卿,谢朝钢,施至诚.催化热裂解工艺机理及影响因素[J].乙烯工业,2002,14(4):1-5
    [11]孙锦宜.催化剂材料的研究动向[J].化学工业与工程技术,1996,(1):47
    [12]汪慧智.新型分子筛催化剂的研究进展[J].化学工程师,2006,2(125):27~29
    [13]刘红星,谢在库,张成芳,陈庆龄.SAPO-34分子筛研究新进展[J]..工业催化,2002,4(10):49~54
    [14]张大治.分子筛催化转化氯甲烷制取低碳烯烃及其反应机理的研究[D].中国科学院研究生院(大连化学物理研究所),2007.
    [15]朱向学,张士博,钱新华,牛雄雷,宋月芹,刘盛林,徐龙伢.水蒸气处理对ZSM-5酸性及其催化丁烯裂解性能的影响[J].催化学报,2004,7(25):571~576
    [16]曹永新,田占宾,彩张丽云.煤系高岭土酸处理法合成4A沸石[J].辽宁化工,2007,6(36):389~391
    [17]Aldridge L P, Mclaughlin J R, Pope C G. Cracking of n-Hexane over LaX Catalysts[J]. J.Catal,1973,30:409-416
    [18]Erofeev V I, Adyaeva L V, Ryabov V. Pyrolysis of Straight-Run Naphtha on ZSM-5 Zeolites Modified with Alkaline-Earth Metal Cations. Russ J. Appl [J]. Chem,2001,74 (2):235-237
    [19]Yoshimura Y, Kijima N. Catalytic Cracking of Naphtha to Light Olefins [J]. Catal Surveys from Jpn,2000,4(2):157-167
    [20]王晓宁,周新宇,姜桂元,赵震,徐春明,段爱军.稀土改性HZSM-5分子筛催化裂解混合C4烃制低碳烯烃性能的研究[J].稀土,2008,5(29):30~35
    [21]于善青,田辉平,朱玉霞,贺振富,龙军.稀土改性对Y分子筛Al原子结构的影响[A].第十五届全国分子筛学术大会论文集[C],2009.
    [22]吕金钊.稀土改性SAPO-34分子筛催化转化甲醇制烯烃研究[D].大连理工大学,2009
    [23]付强.ZSM-5分子筛总酸量与酸强度对甲醇催化转化制二甲醚的影响[A].第十五届全国分子筛学术大会论文集[C],2009
    [24]邓风.脱铝分子筛中B酸和L酸协同效应的固体核磁共振和量化计算研究[A].第十 五届全国分子筛学术大会论文集[C],2009
    [25]刘鸿洲,汪燮卿.ZSM-5分子筛中引入过渡金属对催化热裂解反应的影响[J].石油炼制与化工,2001,32(2):48~51
    [26]Conrad W. Ingram, Robert J. Lancashire. On the formation of C3 hydrocarbons during the conversion of ethanoul using H-ZSM-5 catalyst[J]. Catalysis Letters,1995,31(4):25-58
    [27]S. K. Saha, S.Sivasanker. Influence of Zn-and Ga-doping on the conversion of ethanol to hydrocarbons over ZSM-5[J]. Catalysis Letters,1992,15(2):142-163
    [28]张晓华,施岩.磷改性ZSM-5分子筛催化裂解石脑油制丙烯的性能研究[J].化学与黏合,2010,32(4):33~47
    [29]柯明,汪燮卿,张凤美.磷改性ZSM-5分子筛催化裂解制乙烯性能的研究[J].石油学报(石油加工),2003,(04):25~61
    [30]Haw J F, Song W, Marcus D M, Nicholas J B. Themechanism of methanol to hydrocarbon catalysis[J]. Acc. Chem. Res,2003,36:317-326
    [31]Patcas F C. The methanol-to-olefins conversion over zeolite-coated ceramic foams[J]. J.Catal,2005,231:194-200
    [32]任丽萍,赵国良,滕加伟,王仰东,谢在库.La修饰ZSM-5分子筛催化剂用于C4烯烃催化裂解制丙烯[J].工业催化,2007.15(3):30~34
    [33]季东,汪毅,刘涛,苏怡,李萍,高雄厚.高硅分子筛ZSM-23催化裂解C4烷烃制乙烯丙烯的研究[J].分子催化,2007.21(3):193~199
    [34]李晓红,王洪涛,齐国祯,钟思青,周兴贵,谢在库.SAPO-34分子筛上丁烯催化裂解制乙烯和丙烯[J].石油化工,2009.38:1174-1179
    [35]祝颖.HMCM-49分子筛上1-丁烯的催化裂解[J].哈尔滨师范大学自然科学学报,2010.26(2):57~60
    [36]Taralas G, Vassilatos V. Thermal and Catalytic Cracking of n-Heptane in Presence of CaO,MgO and Calcined Dolomites[J]. Can.J.Chem.Eng,1991.69:1413-1419
    [37]许国梁,朱向学,刘盛林,谢素娟,徐龙伢SAPO-11/ZSM-5复合催化剂在丁烯催化裂解中的应用[A].第十三届全国催化学术会议论文集[C].2006
    [38]龙旭,薛海宏,王禅,刘昭铁,吕剑,刘忠文.高结晶小晶粒ZSM-5分子筛的制备[A].第七届全国催化剂制备科学与技术研讨会论文集[C],2009
    [39]陶文梅,郭向可,解明江,彭路明,郭学锋,丁维平.一步法合成多级孔结构的ZSM-5分子筛[A].中国化学会第27届学术年会第11分会场摘要集[C],2010.
    [40]顾立军,马丁,姚颂东,王春雷,中文杰,包信和.具有多级孔结构的ZSM-5分子筛与碳化硅复合催化剂[A].第十五届全国分子筛学术大会论文集[C],2009
    [41]马忠林,赵天波,宗保宁.ZSM-5/丝光沸石混晶分子筛的合成、表征及性能研究[J].石油学报(石油加工),2004.20(2):21~27
    [42]李再婷,蒋福康,谢朝钢,许友好.催化裂解工艺技术及其工业应用[J].当代石油石化,2001,(10)
    [43]卢光泯,李鹏,初青柏,等.一种高度炼化一体化的乙烯发展方案[J].北工技术经济,2006.24(12):9-12
    [44]Characterization and catalytic performance of SAPO-11 for dehydration of ethanol to ethylene[A].13-(th) Asian Chemical Congress Abstract Book(3)[C],2009
    [45]袁树来.中国煤系高岭岩(土)及加工利用[J].中国建材工业出版社,2001.1(2):28-42
    [46]陈祖熊,张建中.二维高岭土材料的制备与性质[J].华东理工大学学报,1995.2(21):16~25
    [47]胡丹,许刚,周克飞,等.ZSM-5分子筛合成及反应条件的研究[J].分子催化,2007.1(03):48~56
    [48]Tapp N J, Milestone N B. Bibby D M. Synthesis of A1PO4-11 [J]. Zeolites,1988. 8(1):183-188
    [49]朱向学,刘盛林,牛雄雷,等.ZSM-5分子筛上C_4烯烃催化裂解制丙烯和乙烯[J].石油化工,2004,33(4):320-324
    [50]马立清,翁惠新.正丁烷催化裂解制乙烯和丙烯的研究[J].天然气化工,2010.2(35):18~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700