甲醇制烯烃催化剂SAPO-34分子筛的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙烯和丙烯等低碳烯烃是现代工业发展不可或缺的基础原料,目前其主要来源于石油炼制工业。近年来的石油危机和国际政治经济的不稳定,使得寻求非石油路线生产低碳烯烃的工艺成为必要。甲醇可以通过煤、天然气或者生物质原料制取,来源广泛,生产技术成熟,因此以甲醇为中间产品生产低碳烯烃的技术被视为实现非石油路线生产低碳烯烃的关键环节。作为世界上最大的煤炭生产国和消费国,由煤经甲醇制低碳烯烃的技术在我国更具有非比寻常的意义。甲醇制烯烃(MTO)技术的核心环节就是催化剂的研究和开发。由于具有弱酸性、小孔等特性,SAPO-34分子筛在MTO反应中表现出很高的活性和低碳烯烃(C2-C4烯烃)选择性,对该催化剂的进一步研究和工艺的优化无疑有利于其更好地工业化应用。本文围绕SAPO-34的水热合成以及改性展开,重点从MTO反应工艺、水热合成条件、水热合成配方、催化剂的金属改性等几个方面进行了探索和研究,主要工作结果包括以下三个方面:
     (1)通过对MTO反应工艺进行探索和优化,研究了MTO反应的动力学和热力学特征,并确定了较适宜的反应工艺条件:反应原料为50%的甲醇水溶液,反应温度为400℃,甲醇液时空速1.5 h-1,常压反应体系。
     (2)采用水热法合成SAPO-34:以吗啡啉为模板剂,考察了水热合成条件和配方,合成出了纯相的SAPO-34分子筛。较适宜的合成条件为:晶化温度为180~200℃,晶化时间为24 h-48 h,动态晶化。原料成份比为:SiO2:Al2O3:P2O5:MOR:H2O=1.0:1.0:(0.8~1.2):(2.0~3.0):(30~90)。在单模板剂的基础上,采用三乙胺-吗啡啉双模板剂合成的催化剂比单模板剂合成的催化剂具有更好的MTO催化活性,TEA/MOR=3:1时合成的催化剂活性最好,乙烯选择性为48%,总低碳烯烃选择性达到87.9%。
     (3)研究了金属改性对于催化剂性能的影响。分别考察了多种金属改性的SAPO-34催化剂及其MTO反应催化性能。发现通过金属改性,可以有效地缩短反应诱导期,其中Mn、Ce、La改性的催化剂在缩短反应诱导期的同时,低碳烯烃选择性也得到提高;La、Ce改性SAPO-34在金属负载量为2%时具有最佳的低碳烯烃选择性。不同改性方法制备的催化剂,其组成、酸性特征以及金属负载量都有所区别。其中,过量浸渍法改性的SAPO-34分子筛催化效果最好,乙烯选择性比未改性前提高了10%左右;离子交换法次之,但其诱导期最短;浸渍法改性相对前两者影响最小。
The light olefins, especially ethylene and propylene, are indispensable basic raw materials for modern chemical industry. They are generally produced by the crude oil cracking process, which is greatly dependent on the petroleum resources. So people are searching for methods to replace the conventional oil route to get light olefins. One of these is the methanol-to-olefin process (MTO), because methanol can be obtained from multiple sources, such as coal, natural gas and biomass, and by using methanol as starting material, olefins can be produced without the involvement of oil. It is of great significance to develop the MTO process, especially for China which is abundant of coal and lack of oil. And China has made considerable progress in the research and industrialization of MTO technology.
     The key technology of MTO process is the research and development of catalyst, which is demanded to give high methanol conversion and high light olefin selectivity. Due to its weak acidity and small pore, the SAPO-34 molecular sieve is supposed to be one of the most excellent catalysts.
     In this dissertation, the MTO reaction conditions including reaction temperature, pressure, methanol concentration and liquid hourly space velocity (LHSV) were firstly investigated, and the optimal reaction condition was as the follows:50% aqueous methanol as feedstock,400℃,1.5 h-1 LHSV, and atmospheric pressure.
     SAPO-34 molecular sieve was synthesized by hydro thermal method and the synthetic conditions as well as the gel compositions are studied. Pure SAPO-34 crystals can be synthesized as the following conditions:crystallized at 80~200℃for 24 h-48 h under dynamic condition. The suitable gel composition was as follows:SiO2:Al2O3:P2O5: Morpholine:H2O=1.0:1.0:(0.8~1.2):(2.0~3.0):(30-90). The as synthesized SAPO-34 showed excellent catalytic activity in MTO reaction.
     The multiple template hydrothermal systems were studied by using triethylamine (TEA) and morpholine (MOR) as template in the synthesis of SAPO-34. Catalysts synthesized by bi-template showed higher catalytic activity than that synthesized by single template. With TEA/MOR=3:1, selectivity to ethylene reached 48%, and the overall selectivity of light olefins reached 87.9%.
     Metal modification of SAPO-34 was also studied. The effect of different metals was compared in large scope including Fe, Mn, La, Ce, Zn, Co and so on. It turned out that the Mn, Ce and La modified SAPO-34 exhibited high selectivity to light olefins. The influence of modification methods was also investigated. And as a result, the wet impregnation method presents better catalytic performance than incipient-wetness impregnation method and ion exchange method. Selectivity to ethylene of catalyst synthesized by wet impregnation method had increased 10% compared with unmodified catalyst. And catalyst modified by ion exchange method had shorter induction period in the MTO process.
引文
[1]任诚.非石油路线制取低碳烯烃的生产技术及产业前景[J].精细化工中体.2007,37(5):6-9.
    [2]张福琴,边钢月.我国乙烯工业“十一五”回顾与前景展望[J].石油科技论坛.2011,(2):13-17.
    [3]李玉芳,伍小明.我国聚丙烯的供需现状及发展前景[J].塑料制造.2011,(1/2):72-76.
    [4]白尔铮,胡云光.四种增产丙烯催化工艺的技术经济比较[J].工业催化.2003,11(5):7-12.
    [5]朱志钢.我国煤基甲醇制烯烃行业发展现状及其分析[J].山西化工.2010,30(1):26-29.
    [6]张丽平,辛忠.合成气直接制低碳烯烃研究进展[J].应用化工.2009,38(5):731-736.
    [7]王红秋,郑轶丹,梁川.低碳烯烃生产技术进展及前景分析[J].中外能源.2010,15(8):62-67.
    [8]张惠明.甲醇制低碳烯烃工艺技术新进展[J].化学反应工程与工艺.2008,24(2):178-182.
    [9]Tim F. UOP/Hydro MTO Process[C].5th Asia Petrochemicals and Gas Technology and Exhibition. Elsevier.2007:56-71.
    [10]李雅丽.Total在比利时Feluy的MTO示范装置成功投产[J].化学反应工程与工艺.2010,26(4):375.
    [11]道达尔甲醇制烯烃(MTO)示范项目取得成功[J].化工催化剂及甲醇技术.2010,(5):26.
    [12]王科,李杨.甲醇制丙烯工艺及催化剂技术研究新进展[J].天然气化工.2009,34(5):63-68.
    [13]甲醇制烯烃装置陆续进入试产[J].天然气化工.2010,35:78.
    [14]王天雁.甲醇制烯烃技术状况与发展趋势预测分析—MTO部分[J].科技资讯.2009,(2).
    [15]新一代甲醇制烯烃技术迈向商业化[J].河北化工.2011,34(1):62.
    [16]赵晓进.发展MTO、MTP之我见[J].大氮肥.2010,33(5):289-293.
    [17]赵以辉,苏传好.流化床甲醇制丙烯(FMTP)技术催化剂损耗问题探讨[J].河南化工.2011,28:34-36.
    [18]耿玉侠.流化床甲醇制烯烃(FMTP)工艺及工程技术开发[C].2010中国国际煤化工发展论坛.2010,北京
    [19]Stocker M. Methanol-to-hydrocarbons:Catalytic Materials and their Behavior. Microporous and Mesoporous Materials.1999,9:3-48.
    [20]Chang C D, Howe R F. Yurchak S. Methane Conversion Amsterdam:Elsevier, 1988.127.
    [21]Yijiao J, Michael H, Wei W. On the Reactivity of Surface Methoxy Species in Acidic Zeolites[J]. Journal of the American Chemical Society.2006,128(35):11679-11692.
    [22]虞贤波,刘烨,阳永荣,王靖岱.甲醇制烯烃反应机理[J].化学进展.2009,21(9):1757-1762.
    [23]Wei W, Andreas B, Michael S, et al. Evidence for an Initiation of the Methanol-to-Olefin Process by Reactive Surface Methoxy Groups on Acidic Zeolite Catalysts[J]. Journal of the American Chemical Society.2003,125(49):15260-15267.
    [24]Kissin Y. Chemical Mechanisms of Catalytic Cracking over Solid Acidic Catalysts: Alkanes and Alkenes[J]. Catalysis Reviews-Science and Engineering.2001,43(1/2): 85-146.
    [25]David L, Veronique Van S, Guy B, et al. The Rise and Fall of Direct Mechanisms in Methanol-to-olefin Catalysis:An Overview of Theoretical Contributions[J]. Industrial and Engineering Chemistry Research.2007,46(26):8832-8838.
    [26]Van den Berg J P, Wolthuizen. Van Hooff J H C, Rees L V, Editor.Proceedings[C].5th International Zeolite Conference. Heyden. London.1980,649.
    [27]Dahl I M, Kolboe S. On the Reaction-Mechanism for Propene Formation in the MTO Reaction over SAPO-34[J]. Catalysis Letters.1993,20(3-4):329-336.
    [28]Dahl I M, Kolboe S. On the Reaction-Mechanism for Hydrocarbon Formation from Methanol over SAPO-34.1:Isotopic Labeling Studies of the Co-Reaction of Ethene and Methanol [J]. Journal of Catalysis.1994,149(2):458-464.
    [29]Arstad B, Stein K. Methanol-to-hydrocarbon Reaction over SAPO-34 Moleculars Confined in the Catalyst Cavities at Short Time on Stream[J]. Catalysis Letters. 2001,71(3/4):209-212.
    [30]Song W G, Haw J F, Nicholas J B, et al. Methylbenzenes are the Organic Reaction Centers for Methanol-to-olefin Catalysis on HSAPO-34[J]. Journal of the American Chemical Society.2000,122:10726-10727.
    [31]谢子军,张同旺,候拴弟.甲醇制烯烃反应机理研究进展[J].化学工业与工程.2010,27(5):443-449.
    [32]Haw J F. Zeolite Acid Strength and Reaction Mechanisms in Catalysis[J]. Physical Chemistry Chemical Physics.2002,4:5431-5441.
    [33]Stian S, Finn J, Jespor N, et al. Conversion of Methanol into Hydrocarbons over zeolite H-ZSM-5:Ethene Formation is Mechanistically Separated from the Formation of Higher Alkenes[J]. Journal of the American Chemical Society.2006,128(46): 14770-14771.
    [34]Chang C D. Hydrocarbon from Methanol[C]. New york:Chemical Industries, Marcel Dekker.1983,10.
    [35]Hamon C, Nazaire S, et al. Production of Hydrocarbons from Methanol in the Presence of Zeolite Catalysts[P]. US.4447669.1984.
    [36]Marchi A J, Froment G F, Catalytic Conversion of Methanol into Light Alkenes on Mordenite-like Zeolites[J]. Applied Catalysis A.1993,94:91-106.
    [37]Zhidong Z, Martin H, et al. Catalytic Conversion of Methanol to Olefins on SAPO-n (n=11,34, and 35), CrAPSO-n, and Cr-SAPO-n Molecular Sievs[J]. Chemistry of Materials.2000,12:2781-2787.
    [38]戴卫理,曾基等.SAPO-46分子筛对MTO反应催化性能初探[J].石油学报(石油加工).2009,10(z).
    [39]Stephen W, Paul B. The Characteristics of SAPO-34 Which Influence the Conversion of Methanol to Light Olefins [J]. Microporous and Mesoporous Material.1999,29: 117-126.
    [40]Maria C, Stewart J, et al. Silicoaluminophosphate Molecular Sieves STA-7 and STA-14 and Their Structure-Dependent Catalytic Performance in the Conversion of Methanol to Olefins [J]. Journal of Physical Chemistry C.2009,113:15731-15741.
    [41]Vora B V, Pujado P R, et al. Conversion of Methanol to Ethylene and Propylene UOP/Hydro MTO process[C].4th International Gas Conversion Symposium, South Africa,1995.
    [42]Inui T. High Potential of Novel Zeolitic Materials as Catalysts for Solving Energy and Environmental Problems [J]. Studies in Surface Science and Catalysis.1997,105: 1441.
    [43]温朗友,闵恩泽.固体杂多酸催化剂研究进展[J].石油化工.2000,29(1):49-55.
    [44]蔡天锡,周永生.杂多酸催化剂上甲醇转化为烃的研究[J].催化学报.1984,5(2):180-184.
    [45]徐如人,庞文琴,屠昆岗等.沸石分子筛的结构与合成[M].吉林大学出版社,1987.
    [46]付晔,王乐夫等.晶化条件对SAPO-34的结晶度及催化活性的影响[J].华南理工大学学报(自然科学版).2001,29(4):30-32.
    [47]朱伟平,岳国,邢爱华,薛去鹏.影响SAPO-34分子筛形成和性能因素研究概况[J].石油与天然气化工.2010,39(5):378-383.
    [48]何长春,刘中民,杨立新等.三乙胺法合成磷酸铝分子筛SAPO-34的研究[J].天然气化工.1993,18.
    [49]何长春,刘中民,杨立新等.双模板剂法控制SAPO-34分子筛的晶粒尺寸[J].分子催化.1994,8(3).
    [50]刘红星,谢在库等.小晶粒SAPO-34分子筛的合成[J].华东理工大学学报.2003,29(5):527-530.
    [51]李军,张凤美等.双模板剂法SAPO-34分子筛的合成及其性能[J].石油炼制与化工.2005,36(6).
    [52]Inui T, Matsuda H. Preparation of Silico-alumino-phosphates by the Rapid Crystallization Method and Their Catalytic Performance in the Conversion of Methanol to Light Olefins[J]. Applied Catalysis.1990,58(1):155-163.
    [53]孔黎明,刘晓勤等.超声对SAPO-34分子筛合成的影响[J].南京理工大学学报.2007,31(4).
    [54]Leonardo M, Jiesheng C, Paul A, et al. Formation of Hydronium at the Broensted Site in SAPO-34 Catalysts[J]. Journal of Physical Chemistry.1993,97(31):8109.
    [55]German S, Dewi W, Lewis C, Richard A. Catlow. Modeling of Silicon Substitu-tion in SAPO-5 and SAPO-34 Molecular Sieves[J]. Journal of Physical Chemistry B.1997, 101(27):5249.
    [56]Sergei A, Zubkov, Leonid M, Kustov, Vadim B, Kazansky, et al. Investigation of Hydroxyl Groups in Crystalline Silicoaluminophosphate SAPO-34 by Diffuse Reflectance Infrared Spectroscopy [J]. Journal of the Chemical Society.1991,87(6): 897-900.
    [57]谭涓,刘中民等.SAPO-34分子筛晶化机理的研究[J].催化学报.1998,19(5):436-441.
    [58]谭涓,刘中民等.SAPO-34分子筛晶化过程中硅进入骨架的方式和机理[J].催化学报.1999,20(3):227-232.
    [59]Lei X, Aiping D, Yingxu W, et al. Synthesis of SAPO-34 with Only Si(4Al) Species: Effect of Si Contents on Si Incorporation Mechanism and Si Coordination Environment of SAPO-34[J]. Microporous and Mesoporous Materials.2008,115(3):332-337.
    [60]Barger P T, Height S A. Methanol Conversion Process Using SAPO Catalysts[P]. US 5095163,199141613.
    [61]Miles J van Niekerk, Jack C Q Fletcher, et al. Effect of Catalyst Modification on the Conversion of Methanol to Light Olefins over SAPO-34[J]. Applied Catalysis A.1996, 138(1):135-145.
    [62]Mees F D P, Van Der Voort P, Cool P, et al. Controlled Reduction of the Acid Site Density of SAPO-34 Molecular Sieve by Means of Silanation and Disilanation [J]. Journal of Physical Chemistry B.2003,107(14):3161-3167.
    [63]Hidaka T, Yokose E. Catalysts for Methanol Conversion Reactions[P]. US 6153798, 2000.
    [64]关新新,刘克成,武光军等.SAPO-34分子筛的氮化及在甲醇制烯烃(MTO)中的应 用[J].分子催化.2006,20(3):270-273.
    [65]X X Guan, F X Zhang, G J Wu, et al. Synthesis and Characterization of A Basic Molecular Sieve:Nitrogen-incorporated SAPO-34[J]. Materials Letters,2006, 60(25-26):3141-3144.
    [66]关新新,刘克成,武光军等.含N微孔SAPO-34分子筛的制备、表征及催化性能[J].石油学报(石油加工).2007,23(1):15-19.
    [67]Stanko Hotevar, Janez Levec, et al. Acidity and Catalytic Activity of MeAPSO-34 (Me=Co, Mn, Cr), SAPO-34, and H-ZSM-5 Molecular Sieves in Methanol Dehydration [J]. Journal of Catalysis.1992,135(2):518-532.
    [68]何长青,刘中民,杨立新等.CoAPSO-34分子筛的合成与性能[J].催化学报.1996,17:291-295.
    [69]Inui T, Kang M. Reliable Procedure for the Synthesis of Ni-SAPO-34 as a Highly Selective Catalyst for Methanol to Ethylene Conversion[J]. Applied Catalysis A: General.1997,164(1-2):211-223.
    [70]Inoue M, Dhupatemiya P, et al. Synthesis Course of the Ni-SAPO-34 Catalyst for Methanol to Olefin Conversion[J]. Microporous and Mesoporous Materials,1999,28: 19-24.
    [71]M J van Niekerk, J C Q Fletcher, C T Oconnor. Effect of Catalyst Modification on the Conversion of Methanol to Light Olefins over SAPO-34[J]. Applied Catalysis A: General.1996,138(1):135-145.
    [72]Misook K, Chul-Tae L. Synthesis of Ga-incorporated SAPO-34s (GaAPSO-34) and their Catalytic Performance on Methanol Conversion[J]. Journal of Molecular Catalysis A:Chemical.1999,150(1-2):213-222.
    [73]D R Dubois, D L Obrzut, J Liu, et al. Conversion of Methanol to Olefins over Cobalt-, Manganese- and Nickel-incorporated SAPO-34 Molecular Sieves[J]. Fuel Processing Technology,2003,83:203-218.
    [74]Inui T, Kang M. Effects of Decrease in Number of Acid Sites Located on the External Surface of Ni-SAPO-34 Crystalline Catalyst by the Mechanochemical Method [J]. Catalysis Letters.1998,53(3-4):171-176.
    [75]郑燕英,周晓红,葛兴等.Mg-SAPO-34研究[J].北京农学院学报,2001,16(1):80-83.
    [76]郑燕英,周小虹,葛兴等.Mg-SAPO-34研究(续)[J].北京农学院学报.2003,18(1):59-61.
    [77]Lei X, Zhongmin L, Aiping D. Synthesis, Characterization, and MTO Performance of MeAPSO-34 Molecular Sieves[J]. Studies in Surface Science and Catalysis.2004,147: 445-450.
    [78]朱伟平,李艺,邢爱华等.一种金属改性SAPO-34分子筛和含有该分子筛的催化剂的制备方法[P].CN 101555022,20090422.
    [79]D L Obrzut, P M Adekkanattu, J Thundimadathil, et al. Reducing Methane Formation in Methanol to Olefins Reaction on Metal Impregnated SAPO-34 Molecular Sieve[J]. Reaction Kinetics and Catalysis Letters.2003,80(1):113-121.
    [80]李红彬,吕金钊,王一婧,王新平.碱土金属改性SAPO-34催化甲醇制烯烃[J].催化学报,2009,30(6):509-513.
    [81]Sun H, S N Vaughn. Uses of Alkaline Earth Metal Containing Small Pore Non-zeolitic Molecular Sieve Catalysts in Oxygenate Conversion[P]. US 6040264A.2000321.
    [82]刘红星,谢在库.CaO改性SAPO-34分子筛的表面酸性及其催化性能[J].石油化工.2005,34:343-344.
    [83]刘红星,谢在库,陈庆龄等.甲醇转化制烯烃的方法[P].CN 1704390,20051207.
    [84]刘红星,谢在库,王伟等.SAPO分子筛的改性方法[P].CN 101318142,20081210.
    [85]刘红星,谢在库,陈庆龄等.用于甲醇制烯烃反应的催化剂[P],CN 1683079,20051009.
    [86]吕金钊.稀土(La,Y)改性SAPO-34分子筛催化转化甲醇制烯烃研究[D].大连理工大学,2009.
    [87]徐如人,庞文琴等.分子筛与多孔材料化学[M].科学出版社,2004.
    [88]刘红星,谢在库,张成芳等.用氟化氢三乙胺复合模板剂合成SAPO-34分子筛的晶化历程[J].催化学报.2003,24(11):849-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700