放大制备甲醇制低碳烯烃催化剂性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤或天然气为原料,经由甲醇制低碳烯烃(MTO)的工艺过程,被认为是一条极具魅力的非石油制低碳烯烃的路线。甲醇制低碳烯烃反应催化剂的研究是MTO工艺技术研究领域的重要课题,其中催化剂的放大研究是催化剂工业化进程中的重要阶段,也是必经阶段。论文在中试装置上放大制备了MTO催化剂SAPO-34分子筛,在实验室流化床中考察了其催化性能和再生条件。
     采用体积为1m3的晶化反应釜放大制备SAPO-34分子筛催化剂,并在实验室反应-再生流化床反应装置中,对甲醇制低碳烯烃反应-再生进行了研究,获得了较佳的反应-再生过程的操作条件。在密相段为Φ30mm×320mm、稀相段为Φ68mm×160mm的流化床反应器中,采用放大制备的SAPO-34分子筛催化剂,研究了反应温度、空速(WHSV)、进料组成随反应时间对产物中低碳烯烃(乙烯+丙烯)摩尔分率的影响;在流化床中对失活催化剂进行再生实验,考察了再生温度和再生时间对再生催化剂催化性能的影响;用XD、SEM、N2等温吸附/脱附、NH3-TPD等手段对催化剂进行表征。
     实验结果表明,在475℃,空速2.5h-1,甲醇90wt%进料时,产物中低碳烯烃(乙烯+丙烯)的摩尔分率高达90.3%;再生温度600℃,再生时间90min条件下催化剂的再生效果最好,且微观结构没有发生明显变化,可以循环使用;放大催化剂再现了实验室制备催化剂的良好催化性能。
Methanol to olefins process based on coal or natural gas is considered to be the most attractive process to take place of petroleum route process. Research on the catalyst for methanol to olefins is of importance for the methanol to olefins process technology development. And in the process of industrialization of catalyst, investigation of catalyst scale-up preparation is an important stage as well as an essential stage. The paper gives some results about the performances of SAPO-34 molecular sieve catalyst prepared in the test device over methanol to olefins reaction.
     SAPO-34 molecular sieves are synthesized in autoclave being of lm3 and used as the catalyst for methanol to olefins reaction in the lab's reaction-regeneration fluidized bed with dimensions ofΦ30mm×320mm for its dense section andΦ68mm×160mm for its thin section. The effects of reaction temperature, space velocity (WHSV) and feed composition on molar fraction of ethylene and propylene are investigated. Meanwhile, the deactivated catalyst is regenerated in the fluidized bed and then the catalytic performances of the regenerated catalyst is studied to decide the optimal temperature and time of the regeneration. Also, the catalyst SAPO-34 and the regenerated catalyst are characterized by means of XRD, SEM, N2 isothermal adsorption/desorption, NH3-TDP, respectively.
     The results indicate that, under optimal conditions for proceeding operation methanol to olefins:i. e. temperature of 475℃, WHSV of 2.5h-1 and feed methanol composition of 90wt%, the total molar fraction of ethylene and propylene among the products can reach 90.3% which is very close to the molar fraction while the MTO reaction was catalyzed by the lab catalyst SAPO-34, and the regenerated catalyst performs as well as the fresh one when regenerated at 600℃for 90min. Also, the catalyst SAPO-34 and the regenerated catalyst were characterized by means of XRD, SEM, N2 isothermal adsorption/desorption, NH3-TPD. It comes out that, the microstructure and the distribution of the strong and weak acid site have no evident changes. The study shows that pilot-scale SAPO-34 catalyst acts as well as laboratorial SAPO-34 catalyst.
引文
[1]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术[M].北京:化学工业出版社.2004,87-99
    [2]Stephen T. Synthesis of SAPO-34 with essentially pure cha framework[P]. US 0275790, 2009
    [3]Norsk Hydro. Procedure for synthesis of crystalline micro porous silico-alumino-phosphates[P]. WO 9313013,1993
    [4]Mees F D P, Van Der Voort P, Cool P, et al. Controlled reduction of the acid site density of SAPO-34 molecular sieve by means of silanation and disilanation[J]. J Phys Chem B. 2003,107(14):3161-3167
    [5]许磊,杜爱萍,刘中民,等.骨架富含Si(4AI)结构的SAPO-34分子筛的合成及其对甲醇制烯烃反应的催化性能[J].催化学报.2008,29(8):727-732
    [6]刘红星,谢在库,张成芳,等.用TEAOH-C4H9NO复合模板剂合成SAPO-34分子筛的研究Ⅱ.SAPO-34分子筛的表面酸性和催化性能[J].催化学报.2004,25(9):707-710
    [7]Ye L P, Cao F H, Ying W Y, et al. Effect of different TEAOH/DEA combinations on SAPO-34's synthesis and catalytic performance [J]. Journal of Porous Material.2010, 18(2):225-232
    [8]Chen J Q, Bozzano A, Glover B, et al. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today.2005,106:103-107
    [9]Stocker M. Methanol-to-hydrocarbons:catalytic materials and their behavior[J]. Micro Meso Mater.1999,29:3-48
    [10]Vora B V, Marker T L, Barger P T, et al. Economic route for natural gas conversion to ethylene and propylene[J]. Stud Surf Sci Catal.1997,107:87-98
    [11]Kuechiler K H. Catalyst fluidization in oxygenate to olefin reaction systems[P]. WO 2005061418,2005
    [12]John R S. Method and reactor system for converting oxygenate contaminants in an MTO reactor system product effluent to Hydrocarbons[P]. US 200439239,2004
    [13]Senetar J. Selective dimethyl ether recover and recycle in a methanol to olefin process[P]. WO 2004094355,2004
    [14]蔡光宇,孙承林,刘中民.一种由甲醇或二甲醚制取乙烯、丙烯等低碳烯烃方法[P].CN 1166478A,1997
    [15]Liu Z M. Coal to chemicals[M]. Beijing:Belfer center.2007:123-130
    [16]杨为民,刘俊涛,钟思青,等.生产乙烯、丙烯的方法[P].CN 10117291,2008
    [17]清华大学.一种由甲醇或二甲醚生产低碳烯烃的工艺方法及其系统[P].CN 1356299A.2002
    [18]Wu X C, Abraha M G, Anthony R G. Methanol conversion on SAPO-34:reaction condition for fixed-bed reactor[J]. Appl Catal.2004,260:63-69
    [19]Chen D, Rebo H P, Granvold A, et al. Methanol conversion to light olefins over SAPO-34:kinetic modeling of coke formation[J]. Micro Meso Mater.2000,35-36:121-135
    [20]Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic catalysts by in situ solid-state NMR spectroscopy[J]. Catal Today.2006, 113:102-114
    [21]Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation for methanol over SAPO-34,1. Isotopic labeling studies of the co-reaction of ethane and methanol[J]. J Catal.1994,149:458-464
    [22]Dahl I M, Kolboe S. On the reaction mechanism for hydrocarbon formation for methanol over SAPO-34,2. isotopic labeling studies of the co-reaction of propene and methanol[J]. J Catal.1996,161:304-309
    [23]Chang C D, Lang W H, Smith R L. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts Ⅱ. presure effects[J]. J Catal.1979,53:169-173
    [24]Gayubo A G, Aguayo A T, Sanchez del Campo A E, et al. Kinetic modeling of methanol transformation into olefins on a SAPO-34 catalyst[J]. Ind Eng Chem Res.2000,39(2): 292-300
    [25]Inui T. Structure-reactivity relationships in methanol to olefin conversion on various microporous crystalline catalysts[J]. Stud Surf Sci Catal.1991,233-242
    [26]Liu Z M, Liang J. Methanol to olefin conversion catalysis[J]. Current Opinion in Solid State and Materials Science.1999,4(1):80-84
    [27]Nawaz S, Kolboe S, Kvisle S, et al. Selectivity and deactivation profiles of zeolite type material in the MTO process[J]. Stud Surf Sci Catal.1991,421-427
    [28]Chang C D, Lang W H, Silvestri A J. Manufacture of light olefins[P]. US 4062905A,1977
    [29]Chang C D, Silvestri A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal.1997,47:249-259
    [30]Iglesia E, Wang T, Yu S Y. Chain growth reactions of methanol on SAPO-34 and H-ZSM-5[J]. Stud Surf Sci Catal.1998,119:527-532
    [31]Triantafillidis C S, Vlessidis A G. Effect of the degree and type of dealumination method on the structural, compositional and acidic characteristics of HZSM-5 zeolite[J]. Micro Meso Mater.2001,47:369-388
    [32]Dehertog W J H, Froment G F. Production of light alkenes from methanol on ZSM-5 catalysts[J]. Applied Catalysis A:General.1991,711(1-4):153-165
    [33]Brown D M, Bhatt B L, Hsiung T H, et al. Novel technology for the synthesis of dimethyl ether from syngas[J]. Catal Today.1991,8(3):279-304
    [34]lone K G, Vostrikova L A, Petrova A V, et al. Synthesis and study of properties of ZSM-11 type silicates of Ⅰ-Ⅷ elements[J]. Stud Surf Sci Catal.1984,18:151-158
    [35]Chang C D, Chu C T W, Perkins P D, et al. Olefins from methanol and/or dimethyl ether[P]. US 4476338,1984
    [36]Inui T, Norinaga N, Takegami Y. Rapid synthesis of zeolite catalysts for methanol to olefin conversion by the precursor heating methanol[J]. Applied Catalysis A:General. 1983,8(2):187-197
    [37]Lok B M, Messina C A. Silicoaluminophosphate molecular sieves:another new class of microporous crystalline inorganic solids[J]. J Am Chem Soc.1984,106:6092-6093
    [38]Pastore H O, Coluccia S, Marchese L. Porous aluminophosphates:From molecular sieves to designed acid catalysts [J]. Annual Review of Materials Research.2005,35: 351-395
    [39]何长青,刘中民,蔡光宇,等.以二乙胺为模板剂合成磷酸硅铝分子筛[P].CN1096496A,1994
    [40]刘中民,蔡光宇,何长青,等.一种以三乙胺为模板剂的合成磷酸硅铝分子筛及其制备[P].CN 1088483A,1994
    [41]陈庆龄,谢在库,刘红星,等.硅磷铝分子筛的制备方法[P].CN 1467155A,2004
    [42]陈庆龄,谢在库,刘红星,等.合成硅磷铝分子筛的方法[P].CN 1590295A,2005
    [43]Cao G, Shah M J. Synthesis of aluminophosphates and silicoaluminophosphates[P]. EP 2525160,2005
    [44]Nishiyama N, Kawaguchi M, Hirota Y, et al. Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction[J]. Appl Catal.2009,362:193-199
    [45]Exxon. Use of alkaline earth metal containing small pore nonzeolitic molecular sieve catalysts in oxygenate conversion[P]. US 6040264,2000
    [46]Inui T, Kang M. Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene convesion[J]. Applied Catalysis A:General. 1997,164:211-223
    [47]谢在库,刘红星,陈庆龄,等.Zn改性的SAPO-34分子筛的制备及其催化性能[J].石油化工.2003,32:310-313
    [48]许磊,田鹏,刘中民,等.具有微孔、中孔结构的SAPO-34分子筛及合成方法[P].CN 101121533A,2008
    [49]Wendelbo R, Akporiaye D E, Andersen A, et al. Microporous crystalline silico-alumino-phosphate composition, catalytic materical comprising said composition and use of these for production of olefins from methanol[P]. US 6334994,2002
    [50]Chae H J, Song Y H, Jeong K E, et al. Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction[J]. J Phys Chem S.2010,71: 600-603
    [51]Inui T, Matsuda H, Okaniwa H, et al. Preparation of silicoaluminophosphate by the rapid crystallization method and their catalytic performance in MTO[J]. Applied Catalysis A: General.1990,58:155-163
    [52]徐如人,庞文琴,屠坤岗.沸石分子筛的结构和合成[M].长春:吉林大学出版社.1987
    [53]张立雄,姚建峰,曾昌凤,等.一种SAPO-34分子筛的制备方法[P].CN 1693202A,2005
    [54]张毅航,张秀成,程惠亭,等.液相晶化法制备SAPO-34分子筛的方法[P].CN101125665A,2008
    [55]Jhung S H, Chang J S, Hwang J S, et al. Selective formation of SAPO-5 and SAPO-34 molecular sieves with microwave irradiation and hydrothermal heating [J]. Micro Meso Mater.2003,64:33-39
    [56]Vomscheld R, Briend M, Peltre M J, et al. The role of the template in directing the Si distribution in SAPO zeolite[J]. J Phys Chem.1994,98:9614-9618
    [57]Salador P, Kladnig W. Surface reactivity of zeolites type hydrogen-Y and sodium-Y with methanol[J]. J Chem Soc Faraday Trans.1977,73:1153-1168
    [58]Salehirad F, Anderson M W. Solid-state 13C MAS NMR study of methanol-to-hydrocarbon chemistry over H-SAPO-34[J]. J Catal.1996,164:301-314
    [59]Forester T R, Howe R F. In Situ FTIR studies of methanol and dimethyl ether in ZSM-5[J]. J Am Chem Soc.1987,109:5076
    [60]Hutchings G J, Watson G W, Willock D J. Methanol conversion to hydrocarbons over zeolite catalysts:comments on the reaction mechanism for the formation of the first carbon-carbon bond[J]. Micro Meso Mater.1999,29:67-77
    [61]Chang C D, Bibby D M, Howe R F, et al. Methane conversion[J]. Elsevier, Amsterdam. 1988:127
    [62]Marchi A J, Froment G F. Catalytic conversion of methanol to light alkenes on SAPO-34 molecular sieves[J]. Appl Catal.1991,71:139
    [63]齐国帧,谢在库,刘红星,等.甲醇制烯烃反应过程中SAPO-34分子筛催化剂的积碳行为研究[J].石油化工.2006,35(1):29-32
    [64]钟莉,王亚明.分子筛催化剂的再生[J].工业催化.2005,13(2):7-10
    [65]何长青,刘中民,蔡光宇,等.以双模板剂合成磷酸硅铝分子筛的方法[P].CN1106715A,1995
    [66]李军,张凤美,李黎声,等.双模板剂法SAPO-34分子筛的合成及其性能[J].石油炼制与化工.2005,36(6):49-52
    [67]Dubois D R, Obrzut D L, Liu J. Conversion of methanol to olefins over cobalt-manganese and nickel-incorporated SAPO-34 molecular sieves [J]. Fuel Processing Technology.2003,83:203-218
    [68]Kang M. Methanol conversion on metal-incorporated SAPO-34(MeAPSO-34)[J]. Journal of Molecular Catalysis A:Chemical.2000,160:437-444
    [69]李红彬,吕金钊,王一婧,等.碱土金属改性SAPO-34催化甲醇制烯烃[J].催化学报.2009,30(6):509-513
    [70]刘红星,谢在库,张成芳,等.用氟化氢-三乙胺复合模板剂合成SAPO-34分子筛的晶化历程[J].催化学报.2003,24(11):849-855
    [71]田鹏,刘中民,杨立新,等.一种小孔磷硅铝分子筛的磷改性方法[P].CN101121531A,2008
    [72]谭经品.催化剂工业放大中的一些技术问题[J].石油炼制.1993,24(9):26
    [73]黄祥健,毛连生,谢在库,等.催化剂焙烧设备的工业放大对乙苯脱氢催化剂的影响[J].石油学报.2007,23(1):28-34
    [74]Biay I. Illustration of process scale-up in heterogeneous catalyst preparation[J]. Preparation of Catalysts V. Elsevier, Amsterdan,1991:1
    [75]唐占忠.齐格勒型苯加氢催化剂的放大生产与工业应用[J].石油炼制与化工.1995,26(1):62-63
    [76]奚奎华,戴厚良,桂寿喜,等.甲苯择形催化剂的工业放大生产及工业侧线试验[J].石油炼制与化工.2000,31(10):30-34
    [77]雒廷亮,程平,鲁丰乐,等.磷钨杂多酸催化剂制备工艺的放大研究[J].河南化工.2006,23(12):14-16
    [78]高玉兰,方向晨,王刚,等.器外预硫化加氢催化剂的工业放大[J].炼油技术与工程.2005,35(4):34-35
    [79]方维平,王纲,傅泽民,等.条形加氢处理催化剂的工业放大问题[J].工业催化.1998,(2):35-39
    [80]Qi G Z, Xie Z K, Yang W M, et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins[J]. Fuel Process Technol.2007,88(5): 437-441
    [81]Kaarsholm M, Joensen F, Nerlov J, et al. Phosphorous modified ZSM-5:Deactivation and product distribution for MTO[J]. Chem Eng Sci.2007,62(20):5527-5532
    [82]Chang C D. Hydrocarbons from methanol[J]. Catal Rev-Sci Eng.1983,25(1):1-118
    [83]Wilson S, Barger P. The characteristics of SAPO-34 which influence the conversion of methanol to light olefins[J]. Micro Meso Mater.1999,29(1-2):117-126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700