ZSM-5分子筛催化甲醇制丙烯过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丙烯生产的主要原料是石油,而石油资源又十分有限,以甲醇为原料制取丙烯,即MTP (Methanol to Propylene)技术越来越受到关注。MTP技术的研究重点在于催化剂的开发,主要集中在ZSM-5分子筛催化剂的改性研究。本文以ZSM-5分子筛为催化剂,在固定床积分反应器上研究了催化剂硅铝比、各种元素改性对催化剂性能的影响,并确定了最佳工艺条件。
     考察硅铝比对催化剂性能的影响,发现硅铝比对丙烯的选择性有较大影响,硅铝比越大甲醇转化率越低,丙烯选择性却随硅铝比增加而增加。且不同硅铝比催化剂其最佳的反应温度存在一定差异。最终确定在硅铝比50和硅铝比200的ZSM-5催化剂反应温度分别选取400℃和450℃。
     采用非金属元素P,过渡金属Zn、Cu、Co、Ag,稀土元素Ce、La,碱及碱土金属K、Mg分别对两种硅铝比催化剂进行改性研究。表明K改性硅铝比200的ZSM-5催化剂具有最佳的丙烯收率。进一步考察了K浓度对改性催化剂性能的影响。最终确定质量分数2%的K改性硅铝比200的ZSM-5催化剂为甲醇制丙烯反应的适宜催化剂。通过热重测试考察了K改性对催化剂稳定性的影响,结果发现,2%K改性对催化剂的稳定性起到了进一步的促进作用。改性后催化剂积碳量更少,表面的活性中心在反应过程受到的影响更小,从而使催化剂的寿命增加。
     在2%K改性ZSM-5分子筛催化剂基础上,考察了反应温度、进料空速、原料组成等因素对改性催化剂反应性能的影响,发现温度升高有利于提高甲醇转化率和丙烯选择性,但温度升高的同时,催化剂的结焦失活也进一步加快。空速提高甲醇转化率和丙烯收率都下降,这种趋势在空速大于3h-1后加剧。同时水在原料中的比重增加,甲醇转化率和丙烯收率下降,而水可以作为热载体将反应热及时移除,确保催化剂的寿命更长。确定最佳工艺条件为:反应温度450℃,原料进料空速为3h-1,纯甲醇进料。以异丁烯模拟碳四烯烃回收过程,考察以2%K改性的ZSM-5分子筛为催化剂,反应温度450℃,甲醇进料空速3h-1,常压条件下固定床积分反应器中反应对甲醇转化率和丙烯选择性的影响。发现当异丁烯与进料甲醇摩尔比为0.1时,在保持甲醇转化率在98.7%的同时,丙烯选择性可达44.5%。
Propylene is one of the most basic organic chemical materials, global propylene demand is increasing. Because oil is the main raw material for propylene production by now, which is very limited over the world. There is lots of concern about methanol as raw materials for preparation of propylene, that is MTP technology(Methanol to Propylene). The focus of MTP technology is development of catalysts which has good performance on methanol to propylene. It is mainly based on the modification of ZSM-5 used as catalyst. Therefor, ZSM-5 zeolite was used as catalyst, the impact of silica alumina ratio and the various elements on the catalytic properties were studied, and optimum process conditions were determined.
     First, We investigated the effect of silica alumina ratio on the performance of catalytic activities. It was found that silica alumina ratio had a greater impact on the selectivity of propylene, and different silica alumina ratio corresponded to different optimum reaction temperature. Such as ZSM-5 zeolites with Si/Al ratio 50 and 200,reaction temperature 400℃and 450℃.
     ZSM-5 zeolites with silica alumina ratio 50 and 200 were modified using non-metallic elements P, transition metals Zn, Cu, Co, Ag, rare earth elements Ce, La, alkali and alkaline earth metals Mg, K respectively The experimental results shown that under the evaluation conditions of the catalyst, K-modified ZSM-5 catalyst with silica alumina ratio of 200 had the best yield of propylene. The effect of the concentration of K on the modification of the catalyst studied as well, the mass fraction of 2% of the K-modified Si-Al-ZSM-5 with silica alumina ratio 200 catalysts is the best candidate for the reaction of methanol to propylene catalysts, the methanol conversion rate was 98.6%,43.93% selectivity of propene was selectivity. Meanwhile the catalyst stability of catalyst modified by K was investigated using thermogravimetric method, the test found that the catalyst stability of catalyst was improved. At the same conditions, the coke deposition on the surface of the modified catalyst was less than that of the original catalyst, the active sites on the surface of the modified catalyst was suffered less effect, thereby increasing the life of the catalyst.
     The influences of reaction temperature, feed space velocity, material composition and other factors on performance of modified catalyst were researched based on 2% K-modified ZSM-5 zeolite catalyst. We found that high temperature was beneficial to enhance the methanol conversion rate and selectivity of propylene, but high temperature resulted the catalyst coking deactivation at the same time. Increasing space velocity was harmful to the methanol conversion and yield of propylene, this trend was intensified with the space velocity more than 3Kg (Methanol)/Kg (cat.)-h. At the same time increasing the proportion of water in the raw material leaded to the decreasing rate of methanol conversion and yield of propylene, and the water can be used as heat carrier would promptly remove the reaction heat, ensuring a longer life of the catalyst. The optimum conditions for methanol to propylene were as follows:reaction temperature 450℃, raw material feed space velocity 3Kg (methanol)/ Kg (cat.)·h, pure methanol feed at the same time. Isobutylene represents carbon 4 olefins, which was used for backing to the reactor during the methanol to propylene process, the activity of 2%K modified catalyst was investigated under reaction temperature 450℃, feed space velocity 3h-1, atmospheric pressure, The results showed that, when the molar ratio of isobutylene and methanol was 1:10, the selectivity of propylene could reach 44.5% when the methanol conversion rate was 98.7%.
引文
[1]中投顾问.2010-2015年中国丙烯行业投资分析及前景预测报告[R].北京:中投顾问,2010
    [2]Rothaeme M,Holtmann H D. Methanol to propylene MTP-Lurgi's way[J].Erdol Erdgas Kohle,2002,5:234-237
    [3]邓志茹,范德成.我国能源结构问题及解决对策研究[J].现代管理科学,2009,6:84-86
    [4]张殿奎.大型煤气化合成甲醇制丙烯(MTP)是我国煤化工的发展趋势[J].化工技术经济,2007,25(1): 1-4
    [5]陈腊山.MTO/MTP技术的研究现状及应用前景[J].化肥设计,2008,46(1):3-6
    [6]陈国辉,马昌辉.谨慎看待我国甲醇产业的发展[J].国际石油经济,2007,15(10):63-69
    [7]沈雪松,张陆旻,曾义红等.甲醇制丙烯技术研究进展[J].上海化工,2009,34(9):29-31
    [8]Zeng Danlin, Yang Jun, Wang Jiqing, et al. Solid-state NMR studies of methanol-to-aromatics reaction over silver exchanged HZSM-5 zeolite[J].Microporous and Mesoporous Materials,2007,98(1-3): 214-219.
    [9]王科,李杨,陈鹏.甲醇制丙烯工艺及催化剂技术的研究新进展[J].天然气化工,2009,34(5):63-69
    [10]齐国祯,谢在库,钟思青,等.煤或天然气经甲醇制低碳烯烃工艺研究新进展[J].现代化工2005,25(2)9-13.
    [11]黄晓昌,方奕文,乔晓辉.甲醇制烃催化剂及其反应机理研究进展[J].工业催化,2008,16(1):23-27
    [12]M. Stocker. Methanol to hydrocarbons:catalytic materials and their behavior[J]. Mircroporous and Mesoporous Materials,1999,29:3-48
    [13]Masahiko Sawa, Miki Niwa, Yuichi Murakami. Development of Long-life Dealuminated Mordenite for Methanol Conversion to hydrocarbons[J]. Journal of Physical Chemistry B,1987,8:1637-1640
    [14]Lok B M, Messina C A, Patton R L, et al. Silicoaluminophosphate molecular sieves:another new class of microporous crystalline inorganic solids[J]. J. Am. Chem. Soc.,1984,106:6092-6093
    [15]Djieugoue M A, Prakash A M. Catalytic Study of Methanol-to-Olefins Conversion in Four Small-Pore Silicoaluminophosphate Molecular Sieves:Influence of the Structural Type, Nickel Incorporation, Nickel Location, and Nickel Concentration[J]. J. Phys. Chem. B,2000,104(27):6452-6461
    [16]张大治.分子筛催化转化氯甲烷制取低碳烯烃及其反应机理的研究[D].大连:中国科学院大连化学物理研究所,2007.
    [18]Barger P T, Heights A. Methanol Conversion Process Using SAPO Catalysts [P]. US,5095163, 199141313
    [19]关新新,刘克成,武光军等.SAPO-34分子筛的氮化及在甲醉制烯烃(MTO)的应用[J].分子催化.2006,20(3):270-273.
    [20]李红彬.碱土金属改性SAPO-34催化甲醇制烯烃[D].大连.大连理工大学,2009
    [21]王亚楠.甲醇制烯烃催化剂SAPO-34分子筛的合成与改性[D].大连.大连理工大学,2008
    [22]吕金钊.稀土(La,Y)改性SAPO-34分子筛催化转化甲醇制烯烃研究[D].大连.大连理工大学,2009
    [24]徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成[M].吉林大学出版社,1987.
    [25]温鹏宇,梅长松,刘红星等.ZSM-5硅铝比对甲醇制丙烯反应产物的影响[J].化学反应工程与工艺;2007,23(6):481-486
    [26]王志彦,李金来.不同硅铝比HZSM-5分子筛催化剂上甲醇制丙烯反应催化性能[J].化学反应工程与工艺,2008,24(5):440-444
    [27]季东,苏怡,刘涛等.ZSM-5沸石分子筛增产丙烯表面改性的研究进展[J].分子催化,2007,21(4):371-377
    [28]孙书红,王宁生,闫伟建.ZSM-5沸石合成与改性技术进展[J].工业催化,2007,15(6):6-10
    [29]张飞,姜建准,张明森等.甲醇制低碳烯烃催化剂的制备与改性[J].石油化工,2006,35(10):919-923
    [30]梅长松,谢在库,温鹏宇等.甲醇转化制丙烯的高稳定性分子筛催化剂及其制备方法[P].中国专利:101279281A,2008-10-8
    [31]梅长松,谢在库,温鹏宇等.高丙烯/乙烯比甲醇转化制丙烯催化剂的制备方法[P].中国专利:101347743A,2009-l-21
    [32]温鹏宇,梅长松,杨为民等.甲醇转化制丙烯催化剂的制备方法[P].中国专利:101239326A,2008-8-13
    [33]梅长松,杨为民,刘红星等.用于甲醇制丙烯的ZSM-5介孔分子筛催化剂及其制备方法[P].中国专利:101279282A,2008-10-8
    [34]梅长松,谢在库,温鹏宇等.甲醇转化制丙烯的高稳定性分子筛催化剂及其制备方法[P].中国专利:101279281A,2008-10-8
    [35]谢在库,梅长松,杨为民等.甲醇制丙烯的催化剂[P].中国专利:101279280A,2008-10-8
    [36]梅长松,谢在库,杨为民等.甲醇转化制丙烯的方法[P].中国专利:101172918A,2008-5-7
    [37]解红娟,王军威,冯月兰等.水热处理Zn/HZSM-5催化剂对丙烷芳构化反应的影响[J].分子催化,2000,14(4):289~293
    [38]杨抗震,周钰明,张一卫等.水蒸气处理对P-ZSM-5催化性能的影响[J].分子催化,2007,21(3):220-223
    [39]夏春江.甲醇制丙烯工艺催化剂的汽蒸过程分析[J].煤化工,2009,144(5):41-44
    [40]金文清,赵国良,滕加伟等.氢氧化钠改性ZSM-5分子筛的碳四烯烃催化裂解性能[J].化学反应工程与工艺,2007,23(3):193-199
    [41]郭胜强,毛东森,劳嫣萍等,氟改性对纳米HZSM-5分子筛催化剂甲醇制丙烯的影响[J].催化学报,2009,30(12):1248-1254
    [42]柯明,汪燮卿,张风美.磷改性ZSM-5分子筛催化裂解制乙烯性能的研究[J].石油学报(石油加工),2003,19(4):28—34
    [43]刘爱松,张昕,钟进等.Si02改性HZSM-5催化剂催化C4烯烃裂解生产丙烯[J].石油化工,2006,35(8): 735-739
    [44]崔飞,张璐璐,李建青等.改性HZSM-5催化剂用于MTP反应的研究[J].天然气化工,2008,33(4): 13-16
    [45]张大治,魏迎旭,沈江汉等.氯甲烷在镁修饰的ZSM-5分子筛催化剂上催化转化研究[J].天然气化工,2006,31(3):14-18
    [46]王志彦,李金来.Fe改性HZSM-5分子筛催化剂的表征及其MTP(甲醇制丙烯)反应活性研究[J].世界科技研究与发展,2008,30(2):135-137
    [47]Zhang Jin, Xiao Guoming, Liang Henghong. Study on catalyst for pyridine synthesis [J].Journal of Southeast University(English Edition),2004,20(l):62-67
    [48]张建军,周钰明,杨抗震等.W-ZSM-5催化剂C4烯烃裂解制丙烯催化性能研究[J].分子催化,2008,22(3):236-241
    [49]张金军,张亚男.La-ZSM-5分子筛催化合成吡啶碱的研究[J].泰山学院学报,2009,31(3):44-49
    [50]李海波,张陆曼,曾义红等.HZSM-5催化剂上甲醇制丙烯反应条件的研究[J].化学世界,2009,12:727-730
    [51]温鹏宇,梅长松,刘红星等.甲醇分压和ZSM-5晶粒大小对甲醇制丙烯的影响[J].化学反应工程与工艺,2007,23(5):385-390
    [52]何海军,韩金兰,王乃计等.Lurgi MTP工艺的技术经济分析[J].煤质技术,2006,3:45-47
    [53]毛东森,郭胜强,卢冠中.甲醇转化制丙烯技术进展[J].石油化工,2008,37(12):1328-1333
    [54]朱伟平,薛云鹏,李艺等.甲醇制烯烃研究进展[J].神华科技,2009,7(3):72-77
    [55]滕加伟,杨为民.甲醇制丙烯S-MTP技术进展[J].化工进展,2008,27(2):521-253
    [56]薛祖源.加快国内丙烯生产和发展的探讨(二)[J].乙烯工业,2007,19(4):1-7
    [57]张惠明.甲醇制低碳烯烃工艺技术新进展[J].化学反应工程与工艺,2008,24(2):178-182
    [58]高晋生,张德祥.甲醇制低碳烯烃的原理和技术进展[J].煤化工,2006,125(4):7-13
    [59]虞贤波,刘烨,杨永荣等.甲醇制烯烃反应机理[J].化学进展,2009,21(9):1757-1762
    [60]胡浩,叶丽萍,应卫勇等.甲醇制烯烃反应机理和动力学研究进展[J].工业催化,2008,16(3):18-23
    [61]Chang C D, Silvestri A J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Cata,l 1977,47:249-259.
    [62]ForesterT R,Howe R F. In situ FT-IR studies of methanol and dimethyl ether in ZSM-5[J]. J Am Chem Soc,1987,109:5076.
    [63]Salehirad F,Anderson M W. Solid-state13CMAS NMR study Of methanol to hydrocarbon chemistry overH-SAPO-34[J].J Cata,1 1996,164:301-314.
    [64]Wang W, Buchholz A, Seiler M, et al. Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts[J]. J Am Chem Soc,2003,125: 15260-15267.
    [65]Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic catalysts by in situ solid-state NMR spectroscopy [J]. Catal Today,2006,113:102-114.
    [66]Stocker M. Methanol-to-hydrocarbons:catalytic materials and their behavior[J]. Microporous Mesoporous Mater,1999,29:3-48.
    [67]Lesthaeghe D., Speybroeck V. Van., Marin G.B.,et al. What role do oxonium ions and oxonium ylides play in the ZSM-5 catalysed methanol-to-olefin process[J]. Chemical Physics Letters, 2006,41(6):309-315
    [68]Kolboe S.24-P-18-Studies of the methanol to hydrocarbons reaction using isotopic labelling. Mounting evidence for a hydrocarbon pool mechanism[J]. Studies in Surface Science and Catalysis,2001,135:275
    [69]Chen N Y, Reagan W J. Evidence of autocatalysis in meth anol to hydrocarbon reactions over zeolite
    catalysts[J]. J Cata,11979,59:123-12
    [70]Hutchings G.J., Watson G.W., Willock D.J. Methanol Conversion to Hydrocarbons over Zeolite Catalysts:Comments on the Reaction Mechanism for the Formation of the First Carbon-Carbon Bond[J].Microporous Mesoporous Mater,1999,29(1-2):67-77
    [71]Jiang.Y, Huang.J, Weitkamp.J, Hunger.M. In situ MAS NMR and UV/VIS spectroscopic studies of hydrocarbon pool compounds and coke deposits formed in the methanol-to-olefin conversion on H-SAPO-34[J].Studies in Surface Science and Catalysis.2007,170(2):1137-1144
    [72]Morten B., Svelle S., Joensen F., et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. Journal of Catalysis,2007,24 (9):195-207
    [73]Dahl I M, Kolboe S.On the reaction mechanism for hydrocarbon formation for methanol over SAPO-34.1.Isotopic labeling studies of the co-reaction of ethane and methanol [J]. Journal of catalysis,1994,149:458-464
    [74]Svelle S, Ronning P, Kolboe S. Kinetic studies of zeolite-catalyzed methylation reactions 1. Coreaction of [12C]ethene and [13C]methanol[J] Journal of Catalysis 2004 (224):115-123
    [75]Svelle S, Ronning P, Olsbye U., et al. Kinetic studies of zeolite-catalyzed methylation reactions. Part 2.Co-reaction of [12C]propene or [12C]n-butene and [13C]methanol[J]. Journal of Catalysis,2005 (234):385-400
    [76]Choudhary V.R.,Banedee S.,Panjala D.,Product Distribution in the Aro-matization of Dilute Ethane over H-GaAMFI Zeolite:Effect of Space Velocity. Microporous Mesoporous Mater,2002,51(3):203-210
    [77]Comerais F X, Perot G, Chevalier F. New evidence for ethers as intermediates in the conversion of dimethyl ether into olefins[J]. J Chem Res,1980,362.
    [78]Olsbye U, Bjorgen M, Svelle S., et al. Mechanistic insight into the methanol to hydrocarbons reaction[J]. Catalysis Today,2005 (106):108-111
    [79]Morten B., Svelle S., Joensen F., et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:On the origin of the olefinic species[J]. Journal of Catalysis,2007.24 (9):195-207
    [80]Svelle S, Joensen F,Nerlov J, et a.l Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethane formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc,2006,128:14770-14771.
    [81]古化公司研究院物化室色谱组集体编弓.气相色谱实用手册[M].北京:化学工业出版社,1990.
    [82]温鹏宇,梅长松,刘红星等.甲醇制丙烯过程中ZSM-5催化剂的失活行为[J].石油学报(石油加工),2008,24(4):446-450
    [83]齐国祯,谢在库,钟思青等.甲醇制烯烃反应副产物的生成规律分析[J].石油与天然气化工,2006,35(1):5-9
    [84]Chen D, Rebo H P, Gronvold A,et al. Methanol conversion to light olefins over SAPO-34:Kinetic modeling of coke formation [J]. Microporous Mesoporous Mater,2000,35-36:121-135.
    [85]Alain S, Mark A W, James F H. Reactions of butylbenzene isomers on zeolite H-beta:methanol to olefins hydrocarbon pool chemistry and secondary reactions of olefins[J]. Journal of Physical Chemistry B,2002,106(34):8768-8773
    [86]闫国春.甲醇制烯烃工艺副产碳四的综合利用[J].内蒙古石油化工,2007,8:38-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700