Tau和MAP-2在CCK-8减轻吗啡致空间记忆损害中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿片类物质的长期应用可以导致药物耐受和成瘾。阿片成瘾者在形成对药物依赖的病理性记忆的同时还伴有正常的认知和学习记忆的损害。空间记忆是一类关于场景和事件的记忆,急慢性吗啡作用均可导致空间学习和记忆的损害。八肽胆囊收缩素(Cholecystokinin octopeptide, CCK-8)作为一种目前最强的抗阿片肽类物质以多种形式广泛存在于中枢和周围神经系统,在食物性记忆模型,回避反应以及空间识别中发挥了重要的调节作用。然而,CCK-8对吗啡致记忆损害作用及其相关机制尚未见报道。
     已知突触可塑性是学习和记忆的生理基础,而海马的突触可塑性改变与空间记忆密切相关。神经细胞骨架系统在神经元突触可塑性调节中发挥着重要的作用。Tau和MAP-2作为微管相关蛋白分别定位于轴突和树突,它们通过影响微管的稳定性参与了突触前、突触后可塑性以及神经元稳态可塑性的调节。以往研究结果提示tau和MAP-2的表达及磷酸化状态与学习和记忆密切相关。但是,tau和MAP-2是否参与了CCK-8对吗啡致突触可塑性改变的影响尚不明确。
     因此,本实验观察了外源性CCK-8对慢性及急性吗啡作用小鼠空间记忆的影响,然后,进一步在整体和细胞水平探讨了tau和MAP-2在CCK-8调节吗啡致突触可塑性改变中的作用,以明确CCK-8改善吗啡致空间记忆损害的作用机制。
     第一部分:CCK-8对吗啡作用小鼠空间记忆的影响
     目的:应用Morris水迷宫分别观察吗啡依赖和急性吗啡作用对小鼠空间参考记忆的影响;在吗啡作用小鼠侧脑室给予不同剂量的CCK-8,以评价外源性CCK-8对吗啡致空间记忆损害的作用,同时观测了CCK-8单独作用对空间参考记忆的作用。
     方法:①按照剂量递增的方式建立小鼠吗啡依赖模型(第1-6天皮下注射吗啡剂量分别为20,40,60,80,100,100mg/kg,每天2次,间隔12小时),或者侧脑室注射不同剂量(0.001,0.01,0.1和1μg)的CCK-8每天2次,间隔12小时,在接下来的7天进行Morris水迷宫的适应、训练和测试,训练和测试均在药物注射后30分钟进行。在此期间小鼠继续每天2次进行皮下注射100mg/kg吗啡或者侧脑室注射CCK-8,以观测慢性吗啡和外源CCK-8单独作用对小鼠空间参考记忆的影响;在每次皮下注射吗啡前30分钟予侧脑室给予不同剂量(0.001,0.01,0.1和1μg)的CCK-8以观测外源性CCK-8对慢性吗啡致空间参考记忆损害的作用。②应用2天Morris水迷宫模型,分别在第一天训练前以及第二天测试前30分钟腹腔注射1,5,10mg/kg的吗啡或者侧脑室注射CCK-8(0.001,0.01,0.1和1μg)以观测急性吗啡和外源性CCK-8单独作用对空间参考记忆获得和再现的影响;分别在吗啡前或者吗啡后给予不同剂量的CCK-8(0.001,0.01,0.1和1μg)以观测外源性CCK-8对急性吗啡损害空间参考记忆获得的作用。
     结果:①本部分实验共使用552小鼠用于最终的统计学分析。
     ②慢性吗啡处理明显降低了小鼠在空间探索实验中的成绩,但是并不影响小鼠在定向航行实验中的表现,并且慢性吗啡作用对空间记忆的损害可以延迟至吗啡自发戒断后7天;相对于生理盐水对照组,单独给予CCK-8(0.1和1μg)组小鼠在定向航行实验和空间探索实验的成绩均有明显的提高;CCK-8(0.01,0.1和1μg)+吗啡组在定向航行实验和空间探索实验的成绩较吗啡组明显提高。
     ③训练前腹腔注射吗啡(5和10mg/kg)明显损害小鼠在定向航行实验和空间探索实验的表现,但是测试前腹腔注射吗啡(1,5和10mg/kg)对小鼠在水迷宫中的表现无明显影响;训练前侧脑室注射CCK-8(0.01,0.1和1μg)以及测试前注射CCK-8(0.1和1μg)均可提高小鼠在定向航行实验和空间探索实验中的成绩;训练前和测试前给予CCK-8(0.1和1μg)均可明显减轻吗啡(10mg/kg)对小鼠空间参考记忆获得的影响,但是CCK-8(0.001和0.01μg)却无明显的作用。
     小结:①慢性吗啡作用明显损害了小鼠的空间参考记忆,并且这种损害作用可以延迟至吗啡停药后7天;侧脑室预给予CCK-8可改善慢性吗啡诱导的空间参考记忆损害,并且CCK-8单独作用也可明显促进小鼠的空间参考记忆;②急性吗啡作用明显影响了小鼠空间参考记忆的获得,但不损害空间参考记忆的再现;训练前和测试前给予CCK-8均可明显改善吗啡致空间参考记忆获得的损害;训练前或测试前单独给予CCK-8可分别促进小鼠空间参考记忆的获得和再现,且呈剂量依赖性。
     第二部分:CCK-8减轻吗啡致空间记忆损害的机制研究1CCK-8对吗啡作用小鼠海马乙酰胆碱含量以及树突棘密度的影响
     目的:通过观测外源性CCK-8对急慢性吗啡作用小鼠海马乙酰胆碱含量以及树突棘密度的影响,明确CCK-8减轻吗啡致空间记忆损害的突触可塑性机制。
     方法:建立急慢性吗啡作用动物模型,应用液质联用技术及高尔基染色观察乙酰胆碱的含量以及树突棘密度。
     结果:本部分实验共有48只小鼠用于统计学分析。CCK-8(1μg)预处理可明显翻转急性吗啡作用后海马乙酰胆碱含量的降低;CCK-8(1μg)急性作用可使海马乙酰胆碱递质含量明显升高;慢性吗啡或CCK-8单独作用均可明显增加海马乙酰胆碱的含量,但CCK-8(1μg)预处理并不影响吗啡作用。CCK-8(1μg)预处理可明显抑制慢性吗啡作用后海马CA1区的树突棘密度的降低;慢性CCK-8单独作用可明显升高海马CA1区的树突棘密度。2CCK-8对吗啡作用小鼠海马tau和MAP-2表达的影响
     目的:通过观测海马微管相关蛋白tau和MAP-2表达的改变,探讨骨架蛋白系统在CCK-8对吗啡致突触可塑性改变中的作用。
     方法:应用RT-PCR以及Western Blot检测海马组织tau和MAP-2的mRNA及蛋白表达。
     结果:本部分实验共有48只小鼠用于统计学分析。急性吗啡或CCK-8单独作用均不影响海马tau和MAP-2的表达, CCK-8(1μg)预处理可明显抑制急性吗啡作用后tau Ser396以及MAP-2Ser136、Thr1620/1623位点磷酸化的增加;而tau Ser262位点的磷酸化水平在急性吗啡作用后无明显变化,在CCK-8急性作用后明显增高。
     CCK-8(1μg)预处理可明显翻转慢性吗啡作用后海马tau和MAP-2表达的降低,而慢性CCK-8单独作用仅可上调MAP-2的表达,对tau的表达无明显作用;CCK-8(1μg)预处理明显抑制了慢性吗啡诱导tauSer262和Ser396以及MAP-2Ser136和Thr1620/1623位点磷酸化水平的上调;CCK-8(1μg)慢性作用也可抑制tau和MAP-2在各位点的磷酸化。3CCK-8对吗啡诱导tau和MAP-2磷酸化改变的机制研究
     目的:在建立吗啡急、慢性作用细胞模型的基础上,观察外源性CCK-8对吗啡诱导tau和MAP-2磷酸化相关激酶以及磷酸化酶的作用,初步探讨CCK-8影响吗啡诱导tau和MAP-2磷酸化的具体机制。
     方法:建立吗啡急性和慢性作用细胞模型,应用Western Blot以及酶活性试剂盒检测tau和MAP-2磷酸化以及PKA,GSK-3β以及PP2A的活性。
     结果:SH-SY5Y细胞的cAMP水平在吗啡作用3小时以内降低,而在24小时以后明显上调;100M吗啡作用48小时后,应用10M纳洛酮进行催促戒断后cAMP水平明显上调。因此,分别以100M吗啡作用SH-SY5Y细胞30分钟以及48小时作为急慢性吗啡细胞模型。
     与动物实验结果一致,CCK-8可明显抑制急慢性吗啡作用后tau和MAP-2磷酸化水平的上调;为了明确tau和MAP-2磷酸化的机制,进一步观察了PKA,GSK-3β以及PP2A活性的变化,结果发现上述三种酶活性在急性吗啡作用后明显下调,而在慢性吗啡作用后均明显上调;PKA的特异抑制剂H-89可明显降低慢性吗啡诱导tau Ser262磷酸化水平的升高,而应用GSK-3β特异抑制剂SB216763后tau的Ser396位点以及MAP-2的Ser136和Thr1620/1623位点的磷酸化水平均明显下降。
     10-6M CCK-8干预可明显翻转急性吗啡作用引起的PP2A活性的下降,急性CCK-8单独作用明显抑制PKA和GSK-3β的活性,但是对PP2A活性并无明显影响;CCK-8可明显抑制慢性吗啡引起的PKA和GSK-3β活性的增高,同时慢性单独作用也可明显降低PKA和GSK-3β的活性。
     小结:外源性CCK-8可通过增加海马乙酰胆碱含量以及树突棘密度减轻吗啡致空间记忆的损害;CCK-8可通过下调tau和MAP-2的磷酸化水平调节吗啡诱导的突触可塑性变化。
     结论:本文系统研究了外源性CCK-8对急慢性吗啡致空间记忆损害的影响以及突触可塑性机制,在整体和细胞水平观察了CCK-8对急慢性吗啡处理后tau和MAP-2表达及磷酸化改变的影响,并探讨了tau和MAP-2磷酸化的相关酶活性机制。得出以下结论:
     1侧脑室给予CCK-8(0.01、0.1、1μg)可明显减轻吗啡依赖小鼠空间参考记忆的损害;训练前和测试前给予CCK-8(0.1、1μg)均可明显减轻急性吗啡诱导的空间参考记忆获得的损害。提示大剂量外源性CCK-8可通过自身对学习和记忆的影响和/或对阿片肽的拮抗作用参与了其减轻吗啡诱导空间记忆损害的过程。
     2CCK-8(1μg)可通过增加海马乙酰胆碱含量以及树突棘密度减轻吗啡致空间记忆的损害,且通过下调tau和MAP-2的磷酸化水平调节吗啡诱导的突触可塑性变化。
     3急性吗啡作用主要通过抑制PP2A活性上调tau和MAP-2磷酸化水平,而慢性吗啡作用则通过增强PKA和GSK-3β活性诱导了tau和MAP-2的磷酸化;急慢性CCK-8单独作用主要通过抑制PKA和/或GSK-3β活性使tau和MAP-2磷酸化水平下降;CCK-8干预可通过上调急性吗啡作用引起的PP2A活性下降及下调慢性吗啡引起的PKA和GSK-3β活性增高,抑制了吗啡诱导tau和MAP-2磷酸化水平的增高。
Long-term application of opioids can lead to tolerance and adiiction.Meanwhile, cognitive and learning and memory was impaired by opioidstreatment. Spatial learning and memory is a kind of scenes and events memory,and morphine dependence or acute morphine treatment could induce spatialmemory impairment. Cholecystokinin octopeptide (CCK-8), one of the mostefficient anti-opioid peptides, is widely spread in the central and peripheralnervous system, which play an important role in modulating memory processsuch as avoidance reaction, spatial identification and so on. However, theeffect of CCK-8on morphine induced memory impairment and its relatedmechanism is unclear.
     Synaptic plasticity is the physiological basis of learning and memory, andspatial learning and memory impairment is closely related to the synapticplasticity change in hippocampus region. The skeletal system plays animportant role in regulating synaptic plasticity. Tau and MAP-2regulates thepre-synaptic and postsynaptic plasticity and steady-state plasticity of neuronsby affecting the stability of microtubules which are located in the axon anddendrites respectively. Study showed that phosphorylation state of tau andMAP-2was also participated in the learning and memory process. But,whether tau and MAP-2were responsible for the effect of CCK8on morphineinduced synaptic plasticity change is not clear.
     We use Morris water maze to observe the effect of exogenous CCK8onspatial reference memory impairment in acute and chronic morphine-treatedmice. Then we aimed to clarify the role of skeleton associated protein ineffects of CCK-8on synaptic plasticity change induced by morphine toexplore the mechanism of CCK-8on memory impairment by morphine.
     Part1: Effects of CCK-8on spatial memory in morphine-treated mice
     Objective: We use Morris water maze to observe the effect of morphinedependence and acute morphine on spatial reference memory; different dosesof exogenous CCK-8were given before morphine to evaluate effect of CCK-8on spatial memory in morphine-treated mice; effect of exogenous CCK-8treatment alone on spatial reference memory was also observed.
     Methods:①Morphine dependent model was established by increasingdoses manner (1-6days, morphine was subcutaneous injected at dose followed:20,40,60,80,100,100mg/kg, respectively,2times a day,12hours interval);different doses (0.001,0.01,0.1and1ug) of CCK-8was given by lateralventricle injection,2times a day at12hours interval. Morris water maze inthe next7days to adapt, training and testing, training and tests are conducted30minutes after drug injection. During this period, morphine100mg/kg orCCK-8were still given to mice; to observe effect of exogenous CCK-8onspatial reference memory in chronic morphine-treated mice, CCK-8was given30minutes before every morphine injection.②we adopted a2-day Morriswater maze model to assess acute drug treatment on spatial memory.1,5andor CCK-8(0.001,0.01,0.1and1μg, i.c.v)30minutes before training and testto assess effect of morphine or CCK-8on spatial reference memoryacquisition and retrieval respectively;10mg/kg morphine(i.p) was given30minutes before training, and different doses of CCK-8(0.001,0.01,0.001and1μg) were given30minutes before morphine or test to observe exogenousCCK-8on acute morphine induced spatial memory acquisition impairment.
     Results:①552mice were included in the final statistical analyses.
     ②Chronic morphine significantly impaired spatial reference memory onthe probe test but did not affect the performance in place navigation trails;Spatial reference memory impairment by chronic morphine could delay to7days after morphine spontaneous withdrawal; CCK-8(0.1and1μg) alonesignificantly improved the spatial reference memory; CCK8(0.01,0.1and1μg) significantly improved the impairment of spatial reference memoryinduced by chronic morphine.
     ③Morphine (5and10mg/kg) treatment30minutes before training significantly impaired spatial reference memory acquisition in mice, whichshowed a poor performance in place navigation trails and probe test in watermaze experiment, but morphine (1,5, and10mg/kg) treatment30minutesbefore test had no effect on memory retrieval; CCK-8(0.01,0.01and1μg)treatment30minutes before training or CCK-8(0.1and1μg) before test couldpromote the acquisition and retrieval of spatial reference memory respectively;CCK-8(0.1and1μg) before training or test could significantly improveimpairment of spatial memory acquisition by morphine (10mg/kg) in mice,but CCK-8(0.001and0.01μg) had no obvious effect.
     Summary:①This part of study found that chronic morphine obviouslyimpaired spatial reference memory, and the damage can be delay to7daysafter morphine withdrawal; CCK-8(0.01,0.1,1μg) could improve the spatialreference memory damage induced by chronic morphine; at the same time,CCK-8(0.1and1μg) alone could significantly improved the spatial referencememory in mice.
     ②Acute morphine significantly affected the spatial reference memoryacquisition in mice, but did not affect memory retrieval; CCK-8before thetraining or test significantly improved impairment of memory acquisitioninduced by morphine; CCK-8treatment alone could improved spatialreference memory acquisition or retrieval.
     Part2: mechanism of CCK-8alleviating spatial memory impairment bymorphine
     1effect of CCK-8on acetylcholine content and dendritic spine density inhippocampus of morphine-treated mice
     Objective: Acetylcholine content and dendritic spine density change inhippocampus were observed to clarify the role of synaptic plasticity change inCCK-8on spatial memory in morphine-treated mice.
     Methods: We established acute or chronic morphine mice model first,then LC-MS and Golgi staining were adopted to detect acetylcholine levelsand density of dendritic spines in morphine or CCK-8treatment.
     Results:48mice were included in the final statistical analyses. Acute morphine significantly decreased the content of acetylcholine in thehippocampus, but acetylcholine content increased after chronic morphinetreatment; Acute or chronic CCK-8(1μg) could significantly increaseacetylcholine content in hippocampus; pre-injection of CCK-8(1μg) couldobviously reverse acetylcholine content decreased by acute morphine, but hadno obvious effect on chronic morphine. Chronic morphine significantlyreduced density of dendritic spines in the hippocampus; Chronic CCK-8(1μg)alone obviously increased density of dendritic spines in the hippocampus;Pre-injection of CCK-8(1μg) could obviously reversed effect of hronicmorphine on density of dendritic spines in hippocampus.
     2effect of CCK-8on tau and MAP-2expression in hippocampus ofmorphine-treated mice
     Objective: Microtubule associated protein tau and MAP-2expression inhippocampus were observed, in order to investigate the role of skeletonprotein system in synaptic plasticity changes.
     Methods: Tau and MAP-2expression in hippocampus by morphine andCCK-8treatment were detected by RT-PCR and Western Blot.
     Results:48mice were included in the final statistical analyses. Acutemorphine or CCK-8treatment alone did not affect tau and MAP-2expressionin hippocampal, pre-injection of CCK-8(1μg) could obviously reverse theeffect of acute morphine induced phosphorylation of tau Ser396, MAP-2Ser136and Thr1620/1623; phosphorylation of tau Ser262had no obviouschange after acute morphine treatment, and was increased by acute CCK-8treatment.
     Pre-injection of CCK-8(1μg) could obviously reverse the effect chronicmorphine on tau and MAP-2expression-downregulation and phosphorylationup-regulation in hippocampal; chronic CCK-8(1μg) treatment had no effecton the expression of tau, but obviously up-regulated the expression of MAP-2,and deceased phosphorylation level of tau and MAP-2.
     3mechanism of CCK-8downregulating morphine induced tau and MAP-2phosphorylation
     Objective: On the basis of acute morphine and morphine chronic cellmodel is established, we focused on activity of kinase and phosphorylaserelated to tau and MAP-2phosphorylation, in order to clarify the mechanismsof tau and MAP-2phosphorylation by morphine or CCK-8treatment.
     Methods: We observed intracellular cAMP level by time distinguishfluorescence detection, in order to confirm the acute and chronic morphinecell model was success established. Western Blot and enzyme activity kitswere used to detected tau and MAP-2phosphorylation and PKA, GSK-3βandPP2A activity changes.
     Results: cAMP level in SH-SY5Y cells is decreased within3h andincreased after24h of morphine treatment; cAMP level obviouslyup-regulated by10M naloxone in SH-SY5Y cell treaed with100Mmorphine for48h. SH-SY5Y treated with100M morphine for30minutes or48hours as acute or chronic morphine cell model.
     Cosistant with animal experiment, pre-treatment of CCK-8obviouslydecreased phosphorylation level of tau and MAP-2induced by acute orchronic morphine; to explore the mechanism of tau and MAP-2phosphorylation, PKA, GSK-3β and PP2A activity were detected. Resultsshowed that PKA, GSK-3β and PP2A activity were significantly decreased orincreased in acute or chronic morphine treatment SH-SY5Y cell; the PKAspecific inhibitors H-89could significantly reversed tau Ser262phosphorylation by chronic morphine, and GSK-3β specific inhibitorsSB216763significantly reversed phosphorylation of tau in Ser396and MAP-2in Ser136and Thr1620/1623.
     Acute CCK-8could increase activity of PKA and decrease activity ofGSK-3β respectively, PP2A activity showed no obvious change; ChronicCCK-8could obviously decreased the activity of PKA and GSK-3β butincreased PP2A activity significantly. Pre-injection with10-6M of CCK-8could obviously reverse PP2A activity by acute morphine treatment, andreverse PKA and GSK-3β activity by chronic morphine treatment.
     Summary: This part of the study indicated that exogenous CCK-8couldrelieve morphine induced changes in synaptic plasticity by regulatingacetylcholine content and dendritic spines density in hippocampus; the rationof phosphorylation and dephosphorylation level of tau and MAP-2might beparticipated in effect of CCK-8on morphine induced synaptic plasticitychange.
     Conclusions: This study reveals the effect of exogenous CCK-8on acuteand chronic morphine-induced spatial reference memory impairment andsynaptic plasticity mechanism, effect of CCK-8on morphine-inducedphosphorylation of tau and MAP-2and its mechanism were observed inanimal and SH-SY5Y cell. We can reach the conclusion as follows:
     1CCK-8(0.01,0.1,1μg) could improve the spatial reference memorydamage induced by chronic morphine; CCK-8(0.1and1μg) before thetraining or test significantly improved impairment of memory acquisitioninduced by acute morphine. High dose of CCK-8may improve spatialmemory loss by morphine through anti-opiod way and/or the effect onmemory regulation itself.
     2Exogenous CCK-8(1μg) could relieve morphine induced changes insynaptic plasticity by regulating acetylcholine content and dendritic spinesdensity in hippocampus, and phosphorylation level of tau and MAP-2might be participated in effect of on morphine induced synaptic plasticitychanges.
     3Acute morphine increased phosphorylation level of tau and MAP-2bydecreasing PP2A activity, PKA and GSK-3β might be major responsiblefor tau and MAP-2phosphorylation by chronic morphine treatment;10-6Mof CCK-8might decreased tau and MAP-2phosphorylation throughinhibiting PKA and/or GSK-3β activity; pre-injection with10-6M ofCCK-8could obviously reversed PP2A activity by acute morphinetreatment, and reversed PKA and GSK-3β activity by chronic morphinetreatment.
引文
1Alaei H, Borjeian L, Azizi M, et al. Treadmill running reverses retentiondeficit induced by morphine. Eur J Pharmacol.2006,536(1-2):138-141
    2Spain JW, Newsom G.C. Chronic opioids impair acquisition of both radialmaze and Y-maze choice escape. Psychopharmacology (Berl),1991,105(1):101-106
    3Zheng XG., Li XW, Yang XY, et al. Effects of scopolamine andphysostigmine on acquisition of morphine-treated rats in Morris watermaze performance. Acta Pharmacol Sin,2002,23(5):477-480
    4Castellano C, Brioni JD, Nagahara AH, et al. Post-training systemic andintra-amygdala administration of the GABA-B agonist baclofen impairsretention. Behav Neural Biol,1989,52(9):170-179
    5Izquierdo I. Effect of beta-endorphin and naloxone on acquisition, memory,and retrieval of shuttle avoidance and habituation learning in rats.Psychopharmacology (Berl),1980,69(5):111-115
    6Schulteis G., Martinez JL, Hruby VJ. Stimulation and antagonism ofopioid delta-receptors produce opposite effects on active avoidanceconditioning in mice. Behav Neurosci,1988,102(5):678-686
    7Friswell J, Phillips C, Holding J, et al. Acute effects of opioids on memoryfunctions of healthy men and women. Psychopharmacology (Berl),2008,198(2):243-250
    8Wen D, Cong B, Ma C, et al. The effects of exogenous CCK-8on theacquisition and expression of morphine-induced CPP. Neurosci Lett,2012,510(1):24-28
    9Yu H, Wen D, Ma C, et al. Effects of exogenous cholecystokininoctapeptide on acquisition of naloxone precipitated withdrawal inducedconditioned place aversion in rats. PLoS One,2012,7(7):e41860
    10Li YQ, Xue YX, He YY, et al. Inhibition of PKMzeta in nucleusaccumbens core abolishes long-term drug reward memory. J Neurosci.2011,31(14):5436-5446
    11Shen F, Li YJ, Shou XJ, et al. Role of the NO/sGC/PKG signaling pathwayof hippocampal CA1in morphine-induced reward memory. NeurobiolLearn Mem,2012,98(2):130-138
    12Liu Y, Zhou QX, Hou YY, et al. Actin polymerization-dependent increasein synaptic Arc/Arg3.1expression in the amygdala is crucial for theexpression of aversive memory associated with drug withdrawal. Neurosci,2012,32(35):12005-12017
    13Wang WS, Kang S, Liu WT, et al. Extinction of aversive memoriesassociated with morphine withdrawal requires ERK-mediated epigeneticregulation of brain-derived neurotrophic factor transcription in the ratventromedial prefrontal cortex. Neurosci,2012,32(40):13763-13775
    14Izquierdo I. Effect of naloxone and morphine on various forms of memoryin the rat: possible role of engogenous opiate mechanisms in memoryconsolidation. Psychopharmacology (Berl),1979,66(2):199-203
    15Izquierdo I, Dias RD, Souza DO, et al. The role of opioid peptides inmemory and learning. Behav Brain Res,1980,1(6):451-468
    16Miladi Gorji H, Rashidy-Pour A, Fathollahi Y. Effects of morphinedependence on the performance of rats in reference and working versionsof the water maze. Physiol Behav,2008,93(3):622-627
    17Zhu F, Yan CX, Zhao Y, et al. Effects of pre-training morphine on spatialmemory acquisition and retrieval in mice. Physiol Behav,2011,104(5):754-760
    18Li Z, Wu CF, Pei G, et al. Reversal of morphine-induced memoryimpairment in mice by withdrawal in Morris water maze: possibleinvolvement of cholinergic system. Pharmacol Biochem Behav,2001,68(3):507-513
    19Miladi-Gorji H, Rashidy-Pour A, Fathollahi Y. Effects of morphinedependence on the performance of rats in reference and working versionsof the water maze. Physiol Behav,2008,93(3):622-627
    20Dougherty KD, Walsh TJ, Bailey S, et al. Acquisition of a morris watermaze task is impaired during early but not late withdrawal from morphine.Pharmacol Biochem Behav,1996,55(2):227-235
    21Vaseghi G, Rabbani M, Hajhashemi V. The effect of nimodipine onmemory impairment during spontaneous morphine withdrawal in mice:Corticosterone interaction. Eur J Pharmacol,2012,695(1-3):83-87
    22Dong Z, Zhong W, Tian M, et al. Morphine withdrawal affects bothdelayed-escape behaviour in Morris water maze and hippocampalNR2A/2B expression ratio. Brain Res,2008,1207:164-173
    23Izquierdo I. Effect of naloxone and morphine on various forms of memoryin the rat: possible role of engogenous opiate mechanisms in memoryconsolidation. Psychopharmacology (Berl),1979,66(2):199-203
    24Castellano C. Effects of morphine and heroin on discrimination learningand consolidation in mice. Psychopharmacologia,1975,42(3):235-242
    25Farahmandfar M, Karimian SM, Naghdi N, et al. Morphine-inducedimpairment of spatial memory acquisition reversed by morphinesensitization in rats. Behav Brain Res,2010,211(2):156-63
    26Becker C, Pohl M, Thiebot MH, et al. Delta-opioid receptor-mediatedincrease in cortical extracellular levels of cholecystokinin-like material bysubchronic morphine in rats. Neuropharmacology,2000,39(2):161-171
    27Hamilton ME, Redondo JL, Freeman AS. Overflow of dopamine andcholecystokinin in rat nucleus accumbens in response to acute drugadministration. Synapse,2000,38(3):238-242
    28Doi T, Jurna I. Analgesic effect of intrathecal morphine demonstrated inascending nociceptive activity in the rat spinal cord an in effectiveness ofcaerulein and cholecystokinin octapeptide. Brain Res,1982,234(2):399-407
    29Itoh S, Katsuura G, Maeda Y. Caerulein and cholecystokinin suppressbeta-endorphin-induced analgesia in the rat. Eur J Pharmacol,1982,80(4):421-425
    30Dourish CT, O'Neill MF, Coughlan J, et al. The selective CCK-B receptorantagonist L-365,260enhances morphine analgesia and prevents morphinetolerance in the rat. Eur J Pharmacol,1990,176(1):35-44
    31Lu L, Huang M, Ma L, et al. Different role of cholecystokinin (CCK)-Aand CCK-B receptors in relapse to morphine dependence in rats. BehavBrain Res,2001,120(1):105-110
    32Rezayat M, Azizi N, Zarrindast MR. On the mechanism(s) ofcholecystokinin (CCK): receptor stimulation attenuates morphinedependence in mice. Pharmacol Toxicol,1997,81(3):124-129
    33Rezayat M, Nikfar S, Zarrindast MR. CCK receptor activation mayprevent tolerance to morphine in mice. Eur J Pharmacol,1994,254(1-2):21-26
    34Wen D, Ma CL, Cong B, et al. Effects of CCK-8and its receptorantagonists given intracerebroventricularly on withdrawal symptom ofmorphine dependent rats. Chinese Pharmacological Bulletin,2011,27(10):1363-1368
    35Flood JF, Garland JS, Morley JE. Evidence that cholecystokinin-enhancedretention is mediated by changes in opioid activity in the amygdala. BrainRes,1992,585(1-2):94-104
    36Itoh S, Katsuura G., Takashima A. Interactions of cholecystokinin,beta-endorphin, and their antagonists on passive avoidance behavior in rats.Can J Physiol Pharmacol,1987,65(11):2260-2264
    37Hebb AL, Poulin JF, Roach SP, et al. Cholecystokinin and endogenousopioid peptides: interactive influence on pain, cognition, and emotion.Prog Neuropsychopharmacol Biol Psychiatry,2005,29(8):1225-1238
    38Quesada A, Micevych P. Estrogen and CCK1receptor modification ofmu-opioid receptor binding in the cortex of female rats. Brain Res,2006,1073-1074:316-320
    39Wen D, Ma CL, Cong B, et al. Effects of CCK-8and its receptorantagonists on μ-opioid receptor in prefrontal cortex,cauduate putamenand hippocampus of morphine withdrawal rats. Chinese PharmacologicalBulletin.2010,26(7):867-871
    40Hashimoto T, Arion D, Unger T, et al. Alterations in GABA-relatedtranscriptome in the dorsolateral prefrontal cortex of subjects withschizophrenia. Mol Psychiatry,2008,13(2):147-161
    41Balleine B, Davies A, Dickinson A. Cholecystokinin attenuates incentivelearning in rats. Behav Neurosci,1995,109(2):312-319
    42Lofberg C, Harro J, Gottfries CG., et al. Cholecystokinin peptides andreceptor binding in Alzheimer's disease. J Neural Transm,1996,103(7):851-860
    43Li JS, Yang F, Zhao X. Protection of lithium on hippocampalcholecystokinin and nitric oxide synthase neuron in lead exposed rats.Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi,2006,24(3):147-150
    44Li JS, Yang F, Zhao X. Effects of lithium on rat hippocampuscholecystokinin protein expression and learning and memory. Wei ShengYan Jiu,2005,34(6):678-80
    45Lo CM, Samuelson LC, Chambers JB, et al. Characterization of micelacking the gene for cholecystokinin. Am J Physiol Regul Integr CompPhysiol,2008,294(3):803-810
    46Schneider R, Osterburg J, Buchner A, et al. Effect of intranasallyadministered cholecystokinin on encoding of controlled and automaticmemory processes. Psychopharmacology (Berl),2009,202(4):559-567
    47Schneider R, Stohr C, Pietrowsky R. Intranasally administeredCholecystokinin decreases controlled memory. Biol Psychol,2005,69(3):297-314
    48Nomoto S, Miyake M, Ohta M, et al. Impaired learning and memory inOLETF rats without cholecystokinin (CCK)-A receptor. Physiol Behav,1999,66(5):869-872
    49Li XL, Aou S, Hori T, et al. Spatial memory deficit and emotionalabnormality in OLETF rats. Physiol Behav,2002,75(1-2):15-23
    50Lemaire M, Bohme G.A, Piot O, et al. CCK-A and CCK-B selectivereceptor agonists and antagonists modulate olfactory recognition in malerats. Psychopharmacology (Berl),1994,115(4):435-440
    51Voits M, Hasenohrl RU, Huston JP, et al. Repeated treatment withcholecystokinin octapeptide improves maze performance in aged Fischer344rats. Peptides,2001,22(8):1325-1330
    52Maekawa F, Nakamori T, Uchimura M, et al. Activation of cholecystokininneurons in the dorsal pallium of the telencephalon is indispensable for theacquisition of chick imprinting behavior. J Neurochem,2007,102(5):1645-1657
    53Meziane H, Devigne C, Tramu G., et al. Effects of anti-CCK-8antiserumon acquisition and retrieval by mice in an appetitive task. Peptides,1993,14(1):67-73
    54Liu JK, Kato T. Simultaneous determination of cholecystokinin-likeimmunoreactivity and dopamine release after treatment with veratrine,NMDA, scopolamine and SCH23390in rat medial frontal cortex: a brainmicrodialysis study. Brain Res,1996,735(1):30-35
    55Balschun D, Reymann KG. Cholecystokinin (CCK-8S) prolongs'unsaturated' theta-pulse induced long-term potentiation in rat hippocampalCA1in vitro. Neuropeptides,1994,26(6):421-427
    56Yasui M, Kawasaki K. CCKB-receptor activation augments the long-termpotentiation in guinea pig hippocampal slices. Jpn J Pharmacol,1995,68(4):441-447
    57Gulpinar MA, Yegen BC. The physiology of learning and memory: role ofpeptides and stress. Curr Protein Pept Sci,2004,5(6):457-473
    58Winnicka MM, Wisniewski K. Dopaminergic projection to the centralamygdala mediates the facilitatory effect of CCK-8US and caerulein onmemory in rats. Pharmacol Res,1999,39(6):445-450
    59Winnicka MM, Wisniewski K. Bilateral6-OHDA lesions to thehippocampus attenuate the facilitatory effect of CCK-8us and caerulein onmemory in rats. Pharmacol Res,2000,41(3):347-353
    60Baptista V, Zheng ZL, Coleman FH, et al. Cholecystokinin octapeptideincreases spontaneous glutamatergic synaptic transmission to neurons ofthe nucleus tractus solitarius centralis. J Neurophysiol,2005,94(4):2763-2771
    1Jaworski J, Kapitein LC, Gouveia SM, et al. Dynamic microtubulesregulate dendritic spine morphology and synaptic plasticity. Neuron,2009,61(1):85-100
    2Hoogenraad CC, Akhmanova A. Dendritic spine plasticity: new regulatoryroles of dynamic microtubules. Neuroscientist,2010,16(6):650-661
    3Kapitein LC, Yau KW, Hoogenraad CC. Microtubule dynamics indendritic spines. Methods Cell Biol,2010,97:111-132
    4Sever S. Dynamin and endocytosis. Curr Opin Cell Biol,2002,14(4):463-467
    5Sklair-Tavron L, Shi WX, Lane SB, et al. Chronic morphine inducesvisible changes in the morphology of mesolimbic dopamine neurons. ProcNatl Acad Sci USA,1996,93(20):11202-11207
    6Robinson TE, Kolb B. Morphine alters the structure of neurons in thenucleus accumbens and neocortex of rats. Synapse,1999,33(2):160-162
    7Marie-Claire C, Courtin C, Roques BP, et al. Cytoskeletal genes regulationby chronic morphine treatment in rat striatum. Neuropsychopharmacology,2004,29(12):2208-2215
    8Lew GM. Changes in microtubular tau protein after morphine in a culturedhuman neuroblastoma cell line. Gen Pharmacol,1997,29(5):869-872
    9陈亦刚.tau蛋白异常磷酸化与鼠步下回避反应的关系.实用医学杂志,2008,22:55-58
    10曹铭辉,纪风涛,何惠燕等.急、慢性吗啡处理对大鼠大脑皮层tau蛋白和神经微丝磷酸化水平的影响.病理生理杂志,2010,9:1718-1721
    11Koss DJ, Drever BD, Stoppelkamp S, et al. Age-dependent changes inhippocampal synaptic transmission and plasticity in the PLB1(Triple)Alzheimermouse. Cell Mol Life Sci,2013, Epub ahead of print
    12Ardiles AO, Tapia-Rojas CC, Mandal M, et al. Postsynaptic dysfunction isassociated with spatial and object recognition memory loss in a naturalmodel ofAlzheimer's disease. Proc Natl Acad Sci USA,2012,109(34):13835-13840
    13Lénárt N, Szegedi V, Juhász G, et al. Increased tau phosphorylation andimpaired presynaptic function in hypertriglyceridemic ApoB-100transgenic mice. PLoS One,2012,7(9):e46007
    14马志健,牛海艳,易西南.血管性痴呆模型大鼠海马CA3区微管相关蛋白-2的表达及其意义.现代生物医学进展,2009,12:35-38
    15Sánchez C, Díaz-Nido J, Avila J. Phosphorylation of microtubule-associate-d protein2(MAP2) and its relevance for the regulation of theneuronalcytoskeleton function. Prog Neurobiol,2000,61(2):133-168
    16Guo Y, Sánchez C, Udin SB. MAP2phosphorylation and visual plasticityin Xenopus. Brain Res,2001,905(1-2):134-141
    17Hu L, Jing XH, Cui CL, et al. NMDA receptors in the midbrain play acritical role in dopamine-mediated hippocampal synaptic potentiationcaused by morphine. Addict Biol,2012, Epub ahead of print
    18Lintas A, Chi N, Lauzon NM, et al. Identification of a dopaminereceptor-mediated opiate reward memory switch in the basolateralamygdala-nucleus accumbens circuit. J Neursic,2011,31(31):11172-11783
    19Azizbeigi R, Ahmadi S, Babapour V, et al. Nicotine restoresmorphine-induced memory deficit through the D1and D2dopaminereceptor mechanisms in the nucleus accumbens. J Psychopharmacol,2011,25(8):1126-1133
    20Hashimoto T, Arion D, Unger T, et al. Alterations in GABA-relatedtranscriptome in the dorsolateral prefrontal cortex of subjects withschizophrenia. Mol Psychiatry,2008,13(2):147-161
    21Ragozzino ME, Wenk GL, Gold PE. Glucose attenuates amorphine-induced decrease in hippocampal acetylcholine output: an invivo microdialysis study in rats. Brain Res,1994,655(1-2):77-82
    22Decker MW, McGaugh JL. The role of interactions between thecholinergic system and other modulatory systems in learning and memory.Synapse,1991,7(2):151-168
    23Heijna MH, Padt M, Hogenboom F, et al. Opioid receptor-mediatedinhibition of dopamine and acetylcholine release from slices of rat nucleusaccumbens,olfactory tubercle and frontal cortex. Eur J Pharmacol,1990,181(3):267-278
    24Li Z, Wu CF, Pei G, et al. Reversal of morphine-induced memoryimpairment in mice by withdrawal in Morris water maze Possibleinvolvement of cholinergic system. Pharmacol Biochem Behav,2001,68(3):507-513
    25Wang J, Chen Y, Carlson S, et al. Interactive effects of morphine andscopolamine, MK-801, propanolol on spatial working memory in rhesusmonkeys. Neurosci Lett,2012,523(2):119-124
    26Itoh J, Ukai M, Kameyama T. Dynorphin A-(1-13) potently improves theimpairment of spontaneous alternation performance induced by themu-selective opioid receptor agonist DAMGO in mice. J Pharmacol ExpTher,1994,269(1):15-21
    27Imperato A, Obinu MC, Casu MA, et al. Chronic morphine increaseshippocampal acetylcholine release: possible relevance in drug dependence.Eur J Pharmacol,1996,302(1-3):21-26
    28Miller EC, Zhang L, Dummer BW, et al. Differential modulation ofdrug-induced structural and functional plasticity of dendritic spines. MolPharmacol,2012,82(2):333-343
    29Zhang B, Chen X, Lin Y, et al. Impairment of synaptic plasticity inhippocampus is exacerbated by methylprednisolone in a rat model oftraumatic brain injury. Brain Res,2011,1382:165-172
    30Cea-del Rio CA, Lawrence JJ, Tricoire L, et al. M3muscarinicacetylcholine receptor expression confers differential cholinergicmodulation to neurochemicallydistinct hippocampal basket cell subtypes. JNeurosci,2010,30(17):6011-6024
    31Zhang LL, Wei XF, Zhang YH, et al. CCK-8S increased the filopodia andspines density in cultured hippocampal neurons of APP/PS1and wild-typemice. Neurosci Lett,2013,542:47-52
    32Tirumalai PS, Howells RD. Regulation of calbindin-D28K geneexpression in response to acute and chronic morphine administration.Brain Res Mol Brain Res,1994,23(1-2):144-150
    33Kelz MB, Chen J, Carlezon WA Jr, et al. Expression of the transcriptionfactor deltaFosB in the brain controls sensitivity to cocaine. Nature,1999,401(6750):272-276
    34Erdtmann-Vourliotis M, Mayer P, Riechert U, et al. Identification of brainregions that are markedly activated by morphine in tolerant but not innaive rats. Brain Res Mol Brain Res,1998,61(1-2):51-61
    35Fan X, Zhang J, Zhang X, et al. Acute and chronic morphine treatmentsand morphine withdrawal differentially regulate GRK2and GRK5geneexpression in rat brain. Neuropharmacology,2002,43(5):809-816
    36Fan XL, Zhang JS, Zhang XQ, et al. Differential regulation of beta-arrestin1and beta-arrestin2gene expression in rat brain by morphine.Neuroscience,2003,117(2):383-389
    37Kaewsuk S, Hutamekalin P, Ketterman AJ, et al. Morphine inducesshort-lived changes in G-protein gene expression in rat prefrontal cortex.Eur J Pharmacol,2001,411(1-2):11-16
    38Przew ocka B, Lasoń W, Przew ocki R. The effect of chronic morphineand cocaine administration on the Gs and Go protein messenger RNAlevels in therat hippocampus. Neuroscience,1994,63(4):1111-1116
    39Priel A, Tuszynski JA, Woolf NJ. Neural cytoskeleton capabilities forlearning and memory. J Biol Phys,2010,36(1):3-21
    40Jaworski J, Kapitein LC, Gouveia SM, et al. Dynamic microtubulesregulate dendritic spine morphology and synaptic plasticity. Neuron,2009,61(1):85-100
    41Hoogenraad CC, Akhmanova A. Dendritic spine plasticity: new regulatoryroles of dynamic microtubules. Neuroscientist,2010,16(6):650-661
    42Borsodi A, Toth G. Microtubule disassembly increases the number ofopioid receptor binding sites in rat cerebrum membranes. Neuropeptides,1986,8(1):51-54
    43Dewachter I, Ris L, Croes S, et al. Modulation of synaptic plasticity andTau phosphorylation by wild-type and mutant presenilin1. NeurobiolAging,2008,29(5):639-652
    44Chen YG. Specific tau phosphorylation sites in hippocampus correlate withimpairment of step-down inhibitory avoidancetask in rats. Behav BrainRes,2005,158(2):277-284
    45Tan W, Cao X, Wang J, et al. Tau hyperphosphorylation is associated withmemory impairment after exposure to1.5%isoflurane withouttemperaturemaintenance in rats. Eur J Anaesthesiol,2010,27(9):835-841
    46Liao X, Zhang Y, Wang Y, The effect of cdk-5overexpression on tauphosphorylation and spatial memory of rat. Sci China C Life Sci,2004,47(3):251-257
    47Lew GM. Changes in microtubular tau protein after morphine in a culturedhuman neuroblastoma cell line. Gen Pharmacol,1997,29(5):869-872
    48Ferrer-Alcón M, La Harpe R, Guimón J, et al. Downregulation of neuronalcdk5/p35in opioid addicts and opiate-treated rats: relation toneurofilament phosphorylation. Neuropsychopharmacology,2003,28(5):947-955
    49Fang F, Cao Q, Song F, et al. Effects of long-term morphine exposure onthe cAMP system and c-Fos phosphorylation in differentiated SH-SY5Ycells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,1999,21(4):262-267
    50Blazquez-Llorca L, Garcia-Marin V, Merino-Serrais P, et al. Abnormal tauphosphorylation in the thorny excrescences of CA3hippocampal neuronsin patients withAlzheimer's disease. J Alzheimers Dis,2011,26(4):683-698
    51Liu F, Grundke-Iqbal I, Iqbal K, et al. Contributions of proteinphosphatases PP1, PP2A, PP2B and PP5to the regulation of tauphosphorylation. Eur J Neurosci,2005,22(8):1942-1950
    52Sánchez C, Pérez M, Avila J. GSK3beta-mediated phosphorylation of themicrotubule-associated protein2C (MAP2C) prevents microtubulebundling. Eur J Cell Biol,2000,79(4):252-260
    53Hely TA, Graham B, Ooyen AV. A computational model of dendriteelongation and branching based on MAP2phosphorylation. J Theor Biol,2001,210(3):375-384
    54Chen LJ, Wang YJ, Tseng GF. Compression alters kinase and phosphataseactivity and tau and MAP2phosphorylation transiently whileinducing thefast adaptive dendritic remodeling of underlying cortical neurons. JNeurotrauma,2010,27(9):1657-1669
    55Xie N, Li H, Wei D, et al. Glycogen synthase kinase-3and p38MAPK arerequired for opioid-induced microglia apoptosis. Neuropharmacology,2010,59(6):444-451
    56Xu J, Tian W, Ma X, et al. The molecular mechanism underlyingmorphine-induced Akt activation: roles of protein phosphatasesandreactive oxygen species. Cell Biochem Biophys,2011,61(2):303-311
    57Gabra BH, Bailey CP, Kelly E, et al. Evidence for an important role ofprotein phosphatases in the mechanism of morphine tolerance. Brain Res,2007,1159:86-93
    58Wang XJ, Han JS. Modification by cholecystokinin octapeptide of thebinding of mu-, delta-, and kappa-opioid receptors. J Neurochem,1990,55(4):1379-1382
    59Wang XJ, Fan SG, Ren MF, et al. Cholecystokinin-8suppressed3H-etorphine binding to rat brain opiate receptors. Life Sci,1989,45(2):117-123
    60Wen D, Ma CL, Zhang YJ, et al. Cholecystokinin receptor-1mediates theinhibitory effects of exogenous cholecystokinin octapeptide on cellularmorphine dependence. BMC Neurosci,2012,13:63
    61Staljanssens D, De Vos WH, Willems P, et al. Time-resolved quantitativeanalysis of CCK1receptor-induced intracellular calcium increase. Peptides,2012,34(1):219-225
    1Rawson RA, Maxwell J, Rutkowski B. OxyContin abuse: who are the users?Am J Psychiatry,2007,164(11):1634-6
    2Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance,withdrawal and addiction. Br J Pharmacol,2008,154(2):384-96
    3De Vries TJ, Shippenberg TS. Neural systems underlying opiate addiction.J Neurosci,2002,22(9):3321-5
    4Frenois F, Stinus L, Di Blasi F, A specific limbic circuit underlies opiatewithdrawal memories. J Neurosci,2005,25(6):1366-74
    5Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptationsmediating opioid dependence. Physiol Rev,2001,81(1):299-343
    6Aston-Jones G, Harris GC. Brain substrates for increased drug seekingduring protracted withdrawal. Neuropharmacology,2004,47(1):167-79
    7Koob GF, Le Moal M. Drug addiction, dysregulation of reward, andallostasis. Neuropsychopharmacology,2001,24(2):97-129
    8Di Chiara G, Imperato A. Drugs abused by humans preferentially increasesynaptic dopamine concentrations in the mesolimbic system offreelymoving rats. Proc Natl Acad Sci U S A,1988,85(14):5274-8
    9Robinson TE, Berridge KC. The neural basis of drug craving: anincentive-sensitization theory of addiction. Brain Res Brain Res Rev,1993,18(3):247-91
    10Koob GF. Neural mechanisms of drug reinforcement. Ann N Y Acad Sci,1992,654:171-91
    11Sell LA, Morris J, Bearn J, et al. Activation of reward circuitry in humanopiate addicts. Eur J Neurosci,1999,11(3):1042-8
    12Sell LA, Morris JS, Bearn J, et al. Neural responses associated with cueevoked emotional states and heroin in opiate addicts. Drug Alcohol Depend,2000,60(2):207-16
    13Volkow ND, Fowler JS, Wang GJ. The addicted human brain viewed in thelight of imaging studies: brain circuits and treatment strategies.Neuropharmacology,2004,47(Suppl1):3-13
    14Zijlstra F, Veltman DJ, Booij J, Neurobiological substrates of cue-elicitedcraving and anhedonia in recently abstinent opioid-dependent males. DrugAlcohol Depend,2009,99(1-3):183-92
    15Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmac-ology,2010,35(1):217-38
    16Volkow ND, Fowler JS, Wang GJ. The addicted human brain viewed in thelight of imaging studies: brain circuits and treatment strategies.Neuropharmacology,2004,47(Suppl1):3-13
    17Bliss TV, Collingridge GL. A synaptic model of memory: long-termpotentiation in the hippocampus. Nature,1993,361(6407):31-9
    18Chen BT, Bowers MS, Martin M, et al. Cocaine but not natural rewardself-administration nor passive cocaine infusion produces persistent LTP inthe VTA. Neuron,2008,59(2):288-97
    19Reynolds JN, Hyland BI, Wickens JR. A cellular mechanism ofreward-related learning. Nature,2001,413(6851):67-70
    20Schultz W. Dopamine signals for reward value and risk: basic and recentdata. Behav Brain Funct,2010,23:6-24
    21Stuber GD, Klanker M, de Ridder B, et al. Reward-predictive cuesenhanced excitatory synaptic strength onto midbrain dopamine neurons.Science,2008,321(5896):1690-2
    22Gerdeman GL, Partridge JG, Lupica CR, et al. It could be habit forming:drugs of abuse and striatal synaptic plasticity. Trends Neurosci,2003,26(4):184-92
    23Harnett MT, Bernier BE, Ahn KC, et al. Burst-timing-dependent plasticityof NMDA receptor-mediated transmission in midbrain dopamine neurons.Neuron,2009,62(6):826-38
    24Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: therole of reward-related learning and memory. Annu Rev Neurosci,2006,29:565-98
    25Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat RevNeurosci,2007,8(11):844-58
    26Kasanetz F, Deroche-Gamonet V, Berson N, Transition to addiction isassociated with a persistent impairment in synaptic plasticity. Science,2010,328(5986):1709-12
    27Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptationsmediating opioid dependence. Physiol Rev,2001,81(1):299-343
    28Drdla R, Gassner M, Gingl E, et al. Induction of synaptic long-termpotentiation after opioid withdrawal. Science,2009,325(5937):207-10
    29Zijlstra F, Veltman DJ, Booij J, et al. Neurobiological substrates ofcue-elicited craving and anhedonia in recently abstinent opioid-dependentmales. Drug Alcohol Depend,2009,99(1-3):183-92
    30De Vries TJ, Shippenberg TS. Neural systems underlying opiate addiction.J Neurosci,2002,22(9):3321-5
    31Di Chiara G, Imperato A. Drugs abused by humans preferentially increasesynaptic dopamine concentrations in the mesolimbic system of freelymoving rats. Proc Natl Acad Sci U S A,1988,85(14):5274-8
    32Schultz W. Dopamine neurons and their role in reward mechanisms. CurrOpin Neurobiol,1997,7(2):191-7
    33Bellone C, Lüscher C. Cocaine triggered AMPA receptor redistribution isreversed in vivo by mGluR-dependent long-term depression. Nat Neurosci,2006,9(5):636-41
    34Borgland SL, Malenka RC, Bonci A. Acute and chronic cocaine-inducedpotentiation of synaptic strength in the ventral tegmental area:electrophysiological and behavioral correlates in individual rats. J Neurosci,2004,24(34):7482-90
    35Dong Y, Saal D, Thomas M, et al. Cocaine-induced potentiation of synapticstrength in dopamine neurons: behavioral correlates in GluRA(-/-) mice.Proc Natl Acad Sci U S A,2004,101(39):14282-7
    36Kauer JA, Malenka RC. Synaptic plasticity and addiction. Nat RevNeurosci,2007,8(11):844-58
    37Fourgeaud L, Mato S, Bouchet D. A single in vivo exposure to cocaineabolishes endocannabinoid-mediated long-term depression in the nucleusaccumbens. J Neurosci,2004,24(31):6939-45
    38Mato S, Chevaleyre V, Robbe D, A single in-vivo exposure to delta9THCblocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci,2004,7(6):585-6
    39Di Chiara G, Imperato A. Drugs abused by humans preferentially increasesynaptic dopamine concentrations in the mesolimbic system of freelymoving rats. Proc Natl Acad Sci U S A,1988,85(14):5274-8
    40Schultz W. Dopamine neurons and their role in reward mechanisms. CurrOpin Neurobiol,1997,7(2):191-7
    41Johnson SW, North RA. Two types of neurone in the rat ventral tegmentalarea and their synaptic inputs. J Physiol,1992,450:455-68
    42Ungless MA, Whistler JL, Malenka RC, et al. Single cocaine exposure invivo induces long-term potentiation in dopamine neurons. Nature,2001,411(6837):583-7
    43Saal D, Dong Y, Bonci A, et al. Drugs of abuse and stress trigger a commonsynaptic adaptation in dopamine neurons. Neuron,2003,37(4):577-82
    44Argilli E, Sibley DR, Malenka RC, et al. Mechanism and time course ofcocaine-induced long-term potentiation in the ventral tegmental area. JNeurosci,2008,28(37):9092-100
    45Borgland SL, Malenka RC, Bonci A. Acute and chronic cocaine-inducedpotentiation of synaptic strength in the ventral tegmental area:electrophysiological and behavioral correlates in individual rats. J Neurosci,2004,24(34):7482-90
    46Borgland SL, Taha SA, Sarti F, et al. Orexin A in the VTA is critical for theinduction of synaptic plasticity and behavioral sensitization to cocaine.Neuron,2006,49(4):589-601
    47Chen BT, Bowers MS, Martin M, Cocaine but not natural rewardself-administration nor passive cocaine infusion produces persistent LTP inthe VTA. Neuron,2008,59(2):288-97
    48Bossert JM, Ghitza UE, Lu L, et al. Neurobiology of relapse to heroin andcocaine seeking: an update and clinical implications. Eur J Pharmacol,2005,526(1-3):36-50
    49Brown RM, Lawrence AJ. Neurochemistry underlying relapse to opiateseeking behaviour. Neurochem Res,2009,34(10):1876-87
    50De Vries TJ, Shippenberg TS. Neural systems underlying opiate addiction.J Neurosci,2002,22(9):3321-5
    51Russo SJ, Dietz DM, Dumitriu D, et al. The addicted synapse: mechanismsof synaptic and structural plasticity in nucleus accumbens. Trends Neurosci,2010,33(6):267-76
    52Bellone C, Lüscher C. mGluRs induce a long-term depression in theventral tegmental area that involves a switch of the subunit composition ofAMPA receptors. Eur J Neurosci,2005,21(5):1280-8
    53Bellone C, Lüscher C. Cocaine triggered AMPA receptor redistribution isreversed in vivo by mGluR-dependent long-term depression. Nat Neurosci,2006,9(5):636-41
    54Nugent FS, Kauer JA. LTP of GABAergic synapses in the ventraltegmental area and beyond. J Physiol,2008,586(6):1487-93
    55Laviolette SR, Gallegos RA, Henriksen SJ, et al. Opiate state controlsbi-directional reward signaling via GABAA receptors in the ventraltegmental area. Nat Neurosci,2004,7(2):160-9
    56Laviolette SR, van der Kooy D. GABA(A) receptors in the ventraltegmental area control bidirectional reward signalling betweendopaminergic and non-dopaminergic neural motivational systems. Eur JNeurosci,2001,13(5):1009-15
    57Beckstead MJ, Ford CP, Phillips PE, et al. Presynaptic regulation ofdendrodendritic dopamine transmission. Eur J Neurosci,2007,26(6):1479-88
    58Johnson SW, North RA. Opioids excite dopamine neurons byhyperpolarization of local interneurons. J Neurosci,1992,2(2):483-8
    59Barrett AC, Negus SS, Mello NK, et al. Effect of GABA agonists andGABA-A receptor modulators on cocaine-and food-maintained respondingand cocaine discrimination in rats. J Pharmacol Exp Ther,2005,315(2):858-71
    60Brebner K, Childress AR, Roberts DC. A potential role for GABA(B)agonists in the treatment of psychostimulant addiction. Alcohol Alcohol,2002,37(5):478-84
    61Nugent FS, Penick EC, Kauer JA. Opioids block long-term potentiation ofinhibitory synapses. Nature,2007,446(7139):1086-90
    62Nugent FS, Niehaus JL, Kauer JA. PKG and PKA signaling in LTP atGABAergic synapses. Neuropsychopharmacology,2009,34(7):1829-42
    63Niehaus JL, Murali M, Kauer JA. Drugs of abuse and stress impair LTP atinhibitory synapses in the ventral tegmental area. Eur J Neurosci,2010,32(1):108-17
    64Guan YZ, Ye JH. Ethanol blocks long-term potentiation of GABAergicsynapses in the ventral tegmental area involving mu-opioid receptors.Neuropsychopharmacology,2010,35(9):1841-9
    65Dacher M, Nugent FS. Morphine-induced modulation of LTD atGABAergic synapses in the ventral tegmental area. Neuropharmacology,2011,61(7):1166-71
    66Aston-Jones G, Harris GC. Brain substrates for increased drug seekingduring protracted withdrawal. Neuropharmacology,2004,47Suppl1:167-79
    67Bossert JM, Ghitza UE, Lu L, et al. Neurobiology of relapse to heroin andcocaine seeking: an update and clinical implications. Eur J Pharmacol,2005,526(1-3):36-50
    68Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: therole of reward-related learning and memory. Annu Rev Neurosci,2006,29:565-98
    69Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptationsmediating opioid dependence. Physiol Rev,2001,81(1):299-343
    70Christie MJ. Cellular neuroadaptations to chronic opioids: tolerance,withdrawal and addiction. Br J Pharmacol,2008,154(2):384-96
    71Bonci A, Williams JT. Increased probability of GABA release duringwithdrawal from morphine. J Neurosci,1997,17(2):796-803
    72Madhavan A, He L, Stuber GD, et al. micro-Opioid receptor endocytosisprevents adaptations in ventral tegmental area GABA transmission inducedduring naloxone-precipitated morphine withdrawal. J Neurosci,2010,30(9):3276-86
    73Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the 'darkside' of drug addiction. Nat Neurosci,2005,8(11):1442-4
    74Adams ML, Kalicki JM, Meyer ER, et al. Inhibition of the morphinewithdrawal syndrome by a nitric oxide synthase inhibitor,NG-nitro-L-arginine methyl ester. Life Sci,1993,52(22):PL245-9
    75Hall S, Milne B, Jhamandas K. Nitric oxide synthase inhibitors attenuateacute and chronic morphine withdrawal response in the rat locus coeruleus:an in vivo voltammetric study. Brain Res,1996,739(1-2):182-91
    76Chen BT, Hopf FW, Bonci A. Synaptic plasticity in the mesolimbic system:therapeutic implications for substance abuse. Ann N Y Acad Sci,2010,1187:129-139
    77Glass MJ, Lane DA, Colago EE, et al. Chronic administration of morphineis associated with a decrease in surface AMPA GluR1receptor subunit indopamine D1receptor expressing neurons in the shell and non-D1receptorexpressing neurons in the core of the rat nucleus accumbens. Exp Neurol,2008,210(2):750-761
    78Robinson TE, Gorny G, Savage VR, et al. Widespread but regionallyspecific effects of experimenter-versus self-administered morphine ondendritic spines in the nucleus accumbens, hippocampus, and neocortex ofadult rats. Synapse,2002,46(4):271-279
    79Heifets BD, Castillo PE. Endocannabinoid signaling and long-termsynapticplasticity. Annu Rev Physiol,2009,71:283-306
    80Lovinger DM. Presynaptic modulation by endocannabinoids. Handb ExpPharmacol,2008,184:435-477
    81Drake CT, Chavkin C, Milner TA. Opioid systems in the dentate gyrus.Prog Brain Res,2007,163:245-263
    82Harrison JM, Allen RG, Pellegrino MJ, et al. Chronic morphine treatmentalters endogenous opioid control of hippocampal mossy fiber synaptictransmission. Neurophysiol,2002,87(5):2464-2470
    83Frenois F, Stinus L, Di Blasi F, et al. A specific limbic circuit underliesopiate withdrawal memories. Neurosci,2005,25(6):1366-1374
    84Hou YY, Lu B, Li M, et al. Involvement of actinrearrangements within theamygdala and the dorsal hippocampus in aversive memories of drugwithdrawal in acute morphine-dependent rats. Neurosci,2009,29(39):12244-12254
    85Bao G, Kang L, Li H, et al. Morphine and heroin differentially modulate invivo hippocampal LTP in opiate-dependent rat. Neuropsychopharmacology,2007,32(8):1738-1749
    86Gibson HE, Edwards JG, Page RS, et al. TRPV1channels mediatelong-term depression at synapses on hippocampal interneurons. Neuron,2008,57(5):746-759
    87Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptationsmediating opioid dependence. Physiol Rev,2001,81(2):299-343
    88Lu G, Zhou QX, Kang S, et al. Chronic morphine treatment impairedhippocampal long-term potentiation and spatial memory via accumulationof extracellular adenosine acting on adenosine A1receptors. Neurosci,2010,30(14):5058-5070
    89Billa SK, Sinha N, Rudrabhatla SR, et al. Extinction of morphinedependentconditioned behavior is associated with increased phosphorylation of theGluR1subunit of AMPA receptors at hippocampal synapses. Eur JNeurosci,2009,29(1):55-64
    90De Vries TJ, Shippenberg TS. Neural systems underlying opiate addiction.Neurosci,2002,22(9):3321-3325
    91Van den Oever MC, Goriounova NA, Li KW, et al. Prefrontal cortexAMPA receptor plasticity is crucial for cue-induced relapse toheroin-seeking. Nat Neurosci,2008,11(9):1053-1058
    92Taubenfeld SM, Muravieva EV, Garcia-Osta A, et al. Disrupting thememory of places induced by drugs of abuse weakens motivationalwithdrawal in a context-dependent manner. Proc Natl Acad Sci USA,2010,107(27):12345-12350
    93Valjent E, Bertran-Gonzalez J, Aubier B, et al. Mechanisms of locomotorsensitization to drugs of abuse in a twoinjection protocol.Neuropsychopharmacology,2010,35(2):401-415
    94Kalivas PW, Alesdatter JE. Involvement of N-methyl-D-aspartate receptorstimulation in the ventral tegmental area and amygdala in behavioralsensitizationto cocaine. Pharmacol Exp Ther,1993,267(1)486-495
    95Ungless MA, Whistler JL, Malenka RC, et al. Single cocaine exposure invivo induces long-term potentiation in dopamine neurons. Nature,2001,411(6837):583-587
    96Mameli M, Halbout B, Creton C, et al. Cocaine-evoked synaptic plasticity:persistence in the VTA triggers adaptations in the NAc. Nat Neurosci,2009,12(8):1036-1041
    97Volkow ND, Fowler JS, Wang GJ. The addicted human brain viewed in thelight of imaging studies: brain circuits and treatment strategies.Neuropharmacology,2004,47(Suppl1):3-13
    98Wolf ME. Addiction: making the connection between behavioral changesand neuronal plasticity in specific pathways. Mol. Interv,2002,2(3):146-157
    99Taubenfeld SM, Muravieva EV, Garcia-Osta A, et al. Disrupting thememory of places induced by drugs of abuse weakens motivationalwithdrawal in a context-dependent manner. Proc Natl Acad Sci USA,2010,107(27):12345-12350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700