异构网络环境下多径并行传输若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着泛在网络由泛在互联阶段向泛在协同阶段演进,网络的异构性及终端的多接入特性为终端在网络重叠覆盖区域通过多种接入方式并行传输提供了基础及条件。多径并行传输系统,通过聚合多条链路的传输性能,可以有效提升网络资源利用率,提高业务传输速率及负载均衡能力。另外,通过及时将传输中断链路的数据迁移到其他并行链路可以有效提升网络的鲁棒性,保证数据可靠性。另一方面,当单个终端的能力受限无法完成特定的功能需求时,通过协同其周边环境多个终端设备形成一个能力增强、接口增多的虚拟大终端,成为解决终端资源受限与用户服务需求之间矛盾的突破口。
     本文针对异构网络环境下多径并行传输中的数据包乱序、网络资源公平性分配、拥塞控制机制、多终端协同业务传输等关键技术进行了研究,提出了基于虚拟终端的多径并行传输架构及优化方法、端到端多径并行传输乱序分析模型、基于网络效用的多用户多终端多径传输优化模型等,并通过搭建实验平台对以多终端协同为主要应用场景的异构终端设备及服务互发现、协作网络搭建及维护以及应用层实现的多流业务并发传输等关键技术进行了验证。主要研究工作包括以下几点:
     1.针对多径并行传输中影响传输性能的数据包乱序问题,通过多组仿真实验对多组场景的多个影响因素进行了分析。对多径并行传输中的数据包乱序产生原因、影响因素以及对系统造成的危害进行了系统的分析。基于以上分析,提出了基于累加概率分布的端到端数据包乱序分析模型,通过该模型可以很好的模拟真实网络环境的乱序情况,利用模型分析结果提出了解决数据包乱序的多种方法。最后,基于该模型通过最小化重排序时间获取多径传输系统最优吞吐的优化分析模型。
     2.为解决多径并行传输中所面临的瓶颈链路公平性问题,本文对多路径拥塞控制的设计原则进行分析,根据设计原则要求讨论现有多路径拥塞控制算法的性能,提出多路径传输拥塞控制算法设计原则,在保证网络资源公平的前提下,提升系统的整体性能,实现多路径传输效率的最大化。根据多用户多终端多路径传输特点,设计网络效用最优化的传输控制模型,通过设计分布式算法求解模型最优解,并验证了系统的稳定性。
     3.为解决单个终端在资源及能力上的不足,提出一种基于多终端协同的虚拟终端系统,基于该系统研究聚合终端的多路径并发传输控制。针对虚拟终端系统中如何实现多径并行传输过程中的业务流控制问题,利用排队论等理论工具建模该系统并通过优化分析给出不同业务类型需求下的分流控制解决方案,提升系统的传输性能。
     4.在上述研究的基础上,本文搭建多终端协同及多流并发传输关键技术验证演示平台,分别对异构网络融合、基于Wi-Fi通信协议自主服务发现及组网和应用层实现的多流并发传输控制方法进行研究,通过对典型应用场景的分析为相关技术的推广及应用提供可行的解决方案,并对本文研究的典型关键技术进行可行性验证和性能评估。
     以上研究成果,对异构网络环境中多终端协同及多路径并行传输系统在建模、架构、协议设计和实际应用方面奠定了重要基础,为泛在网络环境下的协同智能类应用的实施提供了理论支撑。
With the rapid development of ubiquitous networks from level interconnection to level cooperation, the heterogeneity for different networks and multi-access characters for multi-interface terminals provide the basis and conditions for the concurrent multipath transfer by multiple access methods in the network overlapped areas. Concurrent multipath transfer system can improve the utilization of network resource effectively and enhance capacity of transmit rate and load balancing by aggregating multi-access transmission performance. In addition, using a single interface is often insufficient to meet the requirements of popular, especially for bandwidth intensive services. In order to make full use of a wide variety of surrounding user devices, and further to provide users with real-time, high efficiency and high quality services, it has become a necessary demand for a variety of terminals to work together and jointly provide services.
     In this dissertation, the packet reordering in concurrent multipath transfer of heterogeneous networks, the fairness of network resource allocation, congestion control mechanisms and concurrent muti-streaming transfer system based on multi-terminals cooperation are discussed. In addition, the architecture and optimization algorithms of concurrent multipath transfer based on virtual terminal are proposed. Furthermore, an analysis model for packet reordering and a multi-user multi-terminal multipath transmission optimization model are also studied in order to optimize the system performance. The concrete contents of this dissertation are given in details as follows:
     1. In order to analyze the fundamental behavior and influencing factors of packet reordering, several sets of simulation-based multipath experiments are conducted with different aggregating paths. In addition, the relationship between reordering and number of paths is discussed. Furthermore, an end-to-end measurement study of packet reordering in concurrent multipath transfer is presented. To simply the analysis process, a cumulative distribution function of transmission delay for each packet is used. The model is proved to be an effective one by contrastive analysis. What's more, some solutions to handle it are provided with a further discussion. Finally, based on the model an optimal throughput optimization analysis model for concurrent multipath transfer is proposed by minimizing the reordering time in the receiver.
     2. To resolve the fairness problem of bottleneck links in concurrent multipath transfer system, the design principle of congestion control as well as the characteristic and fairness for concurrent multipath transfer is analyzed. In the meanwhile, an overview of the existing multipath congestion control methods is summarized and some open research problems are also stated. According to the characteristics of multi-user multi-terminal multi-path transmission, a transmission control model is proposed based on the network utility optimization. Furthermore, a distributed algorithm for solving the optimization problem is designed, and the stability of the system is verified.
     3. In order to solve the resource and capacity insufficient in a single terminal, a multi-terminal based collaborative virtual terminal system is proposed. Collaborating with multiple devices in their surroundings and aggregating capacities adaptively is an effective way to improve the user's experience. The problem of traffic flow assignment in this collaborating system is studied and the architecture for the virtual terminal system is also proposed. Based on queuing theory, the system model is analyzed by the optimization algorithm with the overall system delay and packet loss rate as the performance evaluation. The performance results demonstrate that this system can effectively improve the transmission performance of different types of applications, thus meeting the user's quality of experience.
     4. According to theoretical research, a key technology verification and demonstration platform for multi-terminal cooperation and concurrent multi-stream transfer is proposed. In this platform, the heterogeneous network convergence, Wi-Fi based independent service discovery and application layer concurrent multi-stream transmission control method are studied respectively. Through an analysis of typical application scenarios, this dissertation provides some viable solutions for the expanding and applying of related technology. What's more, this platform can also verify the typical key technologies and give some performance evaluations.
     In conclusion, all the research work in this dissertation lays an import foundation for the modeling architecture, protocol design and practical applying of muti-terminal cooperation and concurrent multipath transfer in the heterogeneous networks environment, and provides theoretical support for the implement of intelligence application in ubiquitous networks.
引文
[1]Zhuang W, Mohammadizadeh N. Shen X S. Multipath transmission for wireless Internet access-from an end-to-end transport layer perspective[J]. Journal of Internet Technology,2012,13(1):1-17.
    [2]宁焕生,王炳辉.RFID重大工程与国家物联网[M].北京:机械工业出版社,2009.
    [3]International Telecommunication Union. Ubiquitous network societies:the case of radio frequency identification[EB/OL]. http://www.itu.int/osg/spu/ni/ubiquitous/Papers /UNSImpactPaper.pdf,2006.
    [4]International Telecommunication Union. Japan's ubiquitous mobile information society[EB/OL]. http://www.emeraldinsight.com/journals.htm?articleid=874012&show =html,2004.
    [5]朱沛胜,段世惠.泛在网络发展现状分析[J].电信网技术,2009,7:18-21.
    [6]Castells M. Mobile communication and society[M]. Massachusetts:MIT Press,2007.
    [7]Tafazolli R. Technologies for the wireless future:wireless world research forum (WWRF)[M]. Chichester:John Wiley & Sons,2006.
    [8]Weiser M. The computer for the 21st century[J]. Scientific American,1991,265(3): 94-104.
    [9]ITU-T Y. Overview of ubiquitous networking and of its support in NGN, ITU-T Recommendation,2009.
    [10]张平,苗杰,胡铮,等.泛在网络研究综述[J].北京邮电大学学报,2010,33(5):1-6.
    [11]陈如明.泛在/物联/传感网其它信息通信网络关系分析思考[J].移动通信,2010,34(008):47-51.
    [12]黄怡,崔春风.移动泛在网络的发展趋势[J].中兴通讯技术,2007,13(4):1-3,33.
    [13]Cisco Visual Networking Index. Forecast and Methodology,2010-2015, June I, 2011 [EB/OL]. http://www.cisco.com/en/US/netsol/ns827/networking_solutions_white_papers_list.tml, 2013.
    [14]Budzisz L, Garcia J, Brunstrom A, et al. A taxonomy and survey of SCTP research[J]. ACM Computing Surveys,2012,44(184):18-36.
    [15]Prabhavat S, Nishiyama H, Ansari N, et al. On load distribution over multipath networks[J]. IEEE Communications Surveys and Tutorials,2012,14(3):662-680.
    [16]Ramaboli A L, Falowo O E, Chan A H. Bandwidth aggregation in heterogeneous wireless networks:A survey of current approaches and issues[J]. Journal of Network and Computer Applications,2012,35(6):1674-1690.
    [17]Habak K, Youssef M, Harras K A. DBAS:a deployable bandwidth aggregation system[C].2012 5th International Conference on New Technologies, Mobility and Security (NTMS). Istanbul:IEEE, May 2012:1-6.
    [18]Habak K, Youssef M, Harras K A. G-DBAS:a green and deployable bandwidth aggregation system[C].2012 IEEE Wireless Communications and Networking Conference (WCNC). Shanghai:IEEE, Apr.2012:3290-3295.
    [19]Saeed A, Habak K, Fouad M, et al. DNIS:a middleware for dynamic multiple network interfaces scheduling[J]. ACM SIGMOBILE Mobile Computing and Communications Review,2010,14(2):16-18.
    [20]Sharma P, Lee S, Brassil J, et al. Handheld routers:intelligent bandwidth aggregation for mobile collaborative communities[C]. Proceedings of First International Conference on Broadband Networks. San Jose, California:IEEE, Oct.2004:537-547.
    [21]Sivakumar H, Bailey S, Grossman R L. PSockets:the case for application-level network striping for data intensive applications using high speed wide area networks[C]. Proceedings of the 2000 ACM/IEEE Conference on Supercomputing (CDROM). Washington:IEEE Computer Society, Nov.2000:37.
    [22]Ostermann S, Allman M, Kruse H. An application-level solution to TCP's satellite inefficiencies[C]. Workshop on Satellite-based Information Services (WOSBIS). New York:Rye, Nov.1996:1-8.
    [23]Rodriguez P, Biersack E W. Dynamic parallel access to replicated content in the Internet[J]. IEEE/ACM Transactions on Networking (TON),2002,10(4):455-465.
    [24]Kaspar D, Evensen K, Engelstad P, et al. Using HTTP pipelining to improve progressive download over multiple heterogeneous interfaces[C].2010 IEEE International Conference on Communications (ICC). Cape Town, South Africa:IEEE, May 2010: 1-5.
    [25]Evensen K, Kaspar D, Griwodz C, et al. Using bandwidth aggregation to improve the performance of quality-adaptive streaming[J]. Signal Processing:Image Communication,2012,27(4):312-328.
    [26]Mohamed N, Al-Jaroodi J, Jiang H, et al. A user-level socket layer over multiple physical network interfaces[C]. IASTED Parallel and Distributed Computing and Systems (PDCS). Cambridge, MA:Springer, Nov 2002:804-810.
    [27]Stewart R. Stream control transmission protocol, IETF RFC 4960 2007. http://tools.ietf.org/pdf/rfc4960.pdf.
    [28]Iyengar J R, Amer P D, Stewart R. Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths[J]. IEEE-ACM Transactions on Networking,2006,14(5):951-964.
    [29]Iyengar J, Shah K, Amer P, et al. Concurrent multipath transfer using SCTP multihoming[C].2004 International Symposium on Performance Evaluation of Computer and Telecommunication Systems. San Jose, California:Jul.2004:1-17.
    [30]Koh S J, Chang M J, Lee M. mSCTP for soft handover in transport layer[J]. IEEE Communications Letters,2004,8(3):189-191.
    [31]Budzisz L, Ferrus R, Casadevall F. Design principles and performance evaluation of mSCTP-CMT for transport-layer based handover[C]. IEEE 69th Vehicular Technology Conference (VTC Spring 2012). Yokohama:IEEE, May 2009:1-5.
    [32]Abd El Al A, Saadawi T, Lee M. LS-SCTP:a bandwidth aggregation technique for stream control transmission protocol[J]. Computer Communications,2004,27(10): 1012-1024.
    [33]De Marco G, Longo M, Postiglione F, et al. On some open issues in load sharing in SCTP[C]. International Conference on Computer, Communication and Control Technologies(CCCT 2003). Orlando, Florida, USA:Aug.2003:1-6.
    [34]Liao J, Wang J, Zhu X. cmpSCTP:An extension of SCTP to support concurrent multi-path transfer[C].2008 IEEE International Conference on Communications (ICC'08). Beijing:IEEE, May 2008:5762-5766.
    [35]Ye G, Saadawi TN, Lee M. IPCC-SCTP:an enhancement to the standard SCTP to support multi-homing efficiently[C].2004 IEEE International Conference on Performance, Computing, and Communications. Phoenix, Arizona,USA:IEEE, Apr. 2004:523-530.
    [36]Fiore M, Casetti C. An adaptive transport protocol for balanced multihoming of real-time traffic[C].2005 IEEE Global Telecommunications Conference (GLOBECOM'05). Louis, Missouri, USA:IEEE, Dec.2005:1091-1096.
    [37]Fiore M, Casetti C, Galante G. Concurrent multipath communication for real-time traffic[J]. Computer Communications,2007,30(17):3307-3320.
    [38]Stewart R, Ramalho M, Xie Q, et al. Stream control transmission protocol (SCTP) partial reliability extension, IETF RFC 3758,2004. http://www.hjp.at/doc/rfc/rfc3758.html.
    [39]Ferorelli R, Grieco L A, Mascolo S, et al. Live Internet measurements using Westwood+ TCP congestion control[C].2002 IEEE Global Telecommunications Conference (GLOBECOM'02). Taipei, Taiwan:IEEE, Nov.2002:2583-2587.
    [40]Hsieh H, Sivakumar R. pTCP:an end-to-end transport layer protocol for striped connections[C]. Proceedings of the 10th IEEE International Conference on Network Protocols. Paris, France:IEEE, Nov.2002:24-33.
    [41]Zhang M, Lai J, Krishnamurthy A, et al. A transport layer approach for improving end-to-end performance and robustness using redundant paths[C]. USENIX Annual Technical Conference, General Track. Boston, MA, USA:USENIX Association, Jun.2004:99-112.
    [42]Ford A, Raiciu C, Handley M, et al. TCP extensions for multipath operation with multiple addresses, IETF RFC 6824,2013. http://www.hjp.at/doc/rfc/rfc6824.html.
    [43]Barr E S, Paasch C, Bonaventure O. MultiPath TCP:from theory to practice[M]. Networking 2011, Springer Berlin Heidelberg,2011:444-457.
    [44]Kim K, Shin K G. PRISM:improving the performance of inverse-multiplexed TCP in wireless networks[J]. IEEE Transactions on Mobile Computing,2007,6(12):1297-1312.
    [45]Phatak D S, Goff T, Plusquellic J. IP-in-IP tunneling to enable the simultaneous use of multiple IP interfaces for network level connection striping[J]. Computer Networks, 2003,43(6):787-804.
    [46]Hopps C E. Analysis of an equal-cost multi-path algorithm, IETF RFC 2992, 2000. http://tools.ietf.org/pdf/rfc2992.pdf.
    [47]Chebrolu K, Raman B, Rao R R. A network layer approach to enable TCP over multiple interfaces [J]. Wireless Networks,2005,11(5):637-650.
    [48]Rodriguez P, Chakravorty R, Chesterfield J, et al. Mar:A commuter router infrastructure for the mobile internet[C]. Proceedings of the 2nd International Conference on Mobile systems, Applications, and Services. Boston, MA, USA:ACM, Jun.2004:217-230.
    [49]Deb S, Nagaraj K, Srinivasan V. MOT A:engineering an operator agnostic mobile service[C]. Proceedings of the 17th Annual International Conference on Mobile Computing and Networking. Las Vegas, NV, USA:ACM, Sep.2011:133-144.
    [50]IEEE. Link aggregation for local and metropolitan area networks, IEEE Standard 802.1AX-2008,2008. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4668665.
    [51]Adiseshu H, Parulkar G, Varghese G. A reliable and scalable striping protocol[J]. ACM SIGCOMM Computer Communication Review,1996,26(4):131-141.
    [52]Sklower K, Lloyd B, Mcgregor G, et al. The PPP multilink protocol (MP), IETF RFC 1990,1996. http://www.hjp.at/doc/rfc/rfc1990.html.
    [53]Snoeren A C. Adaptive inverse multiplexing for wide-area wireless networks[C].1999 Global Telecommunications Conference,1999 (GLOBECOM'99). Newark, NJ, USA: IEEE, Dec.1999:1665-1672.
    [54]阳旺,李贺武,吴茜,等.互联网端到端多径可靠传输协议研究[J].计算机研究与发展,2012,49(2):261-269.
    [55]Bazzi A, Pasolini G, Andrisano O. Multiradio resource management:parallel transmission for higher throughput[J]. EURASIP Journal on Advances in Signal Processing,2008,2008(1):1-9.
    [56]Gauch A, Nishida Y. SCTP profiling framework for multi-homed environment[C]. Proceedings of the 1st International Workshop on Decentralized Resource Sharing in Mobile Computing and Networking. Los Angeles. CA, USA: ACM, Sep.2006:54-56.
    [57]Fracchia R, Casetti C, Chiasserini C, et al. WiSE:best-path selection in wireless multihoming environments[J]. IEEE Transactions on Mobile Computing,2007,6(10): 1130-1141.
    [58]Iyengar J R, Amer P D, Stewart R. Retransmission policies for concurrent multipath transfer using SCTP multihoming[C]. Proceedings of the 12th IEEE International Conference on Networks (ICON 2004). Singapore:IEEE, Dec.2004:713-719.
    [59]Sarwar G, Boreli R, Lochin E, et al. Mitigating receiver's buffer blocking by delay aware packet scheduling in multipath data transfer [C].2013 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA). Barcelona, Catalonia, Spain:Mar.2013:1119-1124.
    [60]Natarajan P, Ekiz N, Amer P D, et al. Concurrent multipath transfer during path failure[J]. Computer Communications,2009,15(32):1577-1587.
    [61]Dong Y, Wang D, Pissinou N, et al. Multi-path load balancing in transport layer[C].3rd EuroNGI Conference on Next Generation Internet Networks. Trondheim, Norway: IEEE, May 2007:135-142.
    [62]Wallace T D, Shami A. A review of multihoming issues using the stream control transmission protocol[J]. IEEE Communications Surveys and Tutorials,2012,14(2): 565-578.
    [63]Sun Z, Wang W. Investigation of cooperation technologies in heterogeneous wireless networks[J]. Journal of Computer Systems, Networks, and Communications,2010, 2010:1-12.
    [64]Zhuang W, Ismail M. Cooperation in wireless communication networks [J]. IEEE Wireless Communications,2012,19(2):10-20.
    [65]Hsieh H, Sivakumar R. A transport layer approach for achieving aggregate bandwidths on multi-homed mobile hosts[J]. Wireless Networks,2005,11(1-2):99-114.
    [66]Barakat C, Altman E, Dabbous W. On TCP performance in a heterogeneous network:a survey [J]. IEEE Communications Magazine,2000,38(1):40-46.
    [67]朱洪波,杨龙祥,朱琦.物联网技术进展与应用[J].南京邮电大学学报(自然科学版),2011,31(1):1-9.
    [68]Moon A, Kim H, Kim H, et al. Context-aware active services in ubiquitous computing environments[J]. ETRI Journal,2007,29(2):169-178.
    [69]Koshizuka N, Sakamura K. Ubiquitous ID:standards for ubiquitous computing and the Internet of Things[J]. IEEE Pervasive Computing,2010,9(4):98-101.
    [70]崔勇,张鹏.无线移动互联网:原理、技术与应用[M].北京:机械工业出版社,2012.
    [71]芮兰兰,孟洛明,邱雪松.终端业务上下文的定义方法及业务模型[J].电子与信息学报,2010,32(3):660-665.
    [72]Gladisch A, Daher R, Tavangarian D. Survey on Mobility and Multihoming in Future Internet[J]. Wireless Personal Communications,2012:1-37.
    [73]Shi L, Liu B, Sun C H, et al. Load-balancing multipath switching system with flow slice [J]. IEEE Transactions on Computers,2012,61(3):350-365.
    [74]Ford A, Raiciu C, Handley M, et al. Architectural guidelines for multipath TCP development, IETF RFC 6182,2011. http://www.hjp.at/doc/rfc/rfc6182.html.
    [75]Ou S M, Pan H, Li F. Heterogeneous wireless access technology and its impact on forming and maintaining friendship through mobile social networks [J]. International Journal of Communication Systems,2012,25(10SI):1300-1312.
    [76]Tinta S P, Mohr A E, Wong J L. Characterizing end-to-end packet reordering with UDP traffic[C]. IEEE Symposium on Computers and Communications(ISCC). Sousse, Tunisia:IEEE, July 2009:321-324.
    [77]Morton A, Ciavattone L, Ramachandran G, et al. Packet reordering metrics, IETF RFC 4737,2006:November 2006. http://tools.ietf.org/html/rfc4737.
    [78]Jayasumana A, Piratla N, Banka T, et al. Improved packet reordering metrics, IETF RFC 5236,2008. http://tools.ietf.org/html/rfc5236.txt.
    [79]Gharai L, Perkins C, Lehman T. Packet reordering, high speed networks and transport protocol performance[C]. Proceedings of the 13th International Conference on Computer Communications and Networks (ICCCN 2004). Chicago, IL:IEEE, October 2004: 73-78.
    [80]Kaspar D, Evensen K, Hansen A F, et al. An analysis of the heterogeneity and IP packet reordering over multiple wireless networks [C]. IEEE Symposium on Computers and Communications (ISCC 2009). Sousse, Tunisia:IEEE, Jul.2009:637-642.
    [81]Nebat Y, Sidi M. Analysis of resequencing in downloads[J]. International Journal of Communication Systems,2003,16(8):735-757.
    [82]Lane J R, Nakao A. Best-effort network layer packet reordering in support of multipath overlay packet dispersion [C]. IEEE GLOBECOM.New Orleans, LO:IEEE, Dec.2008: 1-6.
    [83]Tsai M F, Chilamkurti N, Park J H, et al. Multi-path transmission control scheme combining bandwidth aggregation and packet scheduling for real-time streaming in multi-path environment[J]. IET Communications,2010,4(8):937-945.
    [84]Paxson V. End-to-end internet packet dynamics[J]. IEEE-ACM Transactions on Networking,1999,7(3):277-292.
    [85]Piratla N M, Jayasumana A P. Metrics for packet reordering-A comparative analysis[J]. International Journal of Communication Systems,2008,21(1):99-113.
    [86]Bin Y, Jayasumana A P, Piratla N M. End-to-end packet delay and loss behavior in the internet[C]. Proceedings of the International Conference on Networking and Services (ICNS2006). San Francisco, CA:IEEE, July 2006:289-298.
    [87]Iyengar J R, Amer P D, Stewart R. Performance implications of a bounded receive buffer in concurrent multipath transfer[J]. Computer Communications.2007,30(4):818-829.
    [88]Nebat Y, Sidi M. Parallel downloads for streaming applications-a resequencing analysis[J]. Performance Evaluation,2006,63(1):15-35.
    [89]Zinner T, Tran-Gia P, Tutschku K, et al. Performance evaluation of packet reordering on concurrent multipath transmissions for transport virtualisation[J]. International Journal of Communication Networks and Distributed Systems,2011,6(3):322-340.
    [90]Leung K C, Li V, Yang D Q. An overview of packet reordering in transmission control protocol (TCP):Problems, solutions, and challenges[J]. IEEE Transactions on Parallel and Distributed Systems,2007,18(4):522-535.
    [91]Kim H, Lee S. Improving TCP performance for vertical handover in heterogeneous wireless networks [J]. International Journal of Communication Systems.2009,22(8): 1001-1021.
    [92]Kim D P, Koh S J. Performance enhancement of mSCTP for vertical handover across heterogeneous wireless networks[J]. International Journal of Communication Systems, 2009,22(12):1573-1591.
    [93]Prabhavat S, Nishiyama H, Ansari N, et al. Effective delay-controlled load distribution over multipath networks[J]. IEEE Transactions on Parallel Distributed Systems,2011, 22(10):1730-1741.
    [94]Yabandeh M, Zarifzadeh S, Yazdani N. Improving performance of transport protocols in multipath transferring schemes[J]. Computer Communications,2007,30(17): 3270-3284.
    [95]Wallace T D, Shami A. On-demand scheduling for concurrent multipath transfer under delay-based disparity [C]. Proceedings of the 8th International Wireless Communications and Mobile Computing Conference (IWCMC 2012). Limassol, Cyprus:IEEE, Aug. 2012:833-837.
    [96]Prabhavat S, Nishiyama H, Ansari N, et al. Effective delay-controlled load distribution over multipath networks[J]. IEEE Transactions on Parallel Distributed Systems,2011, 22(10):1730-1741.
    [97]Kandula S, Katabi D, Sinha S, et al. Dynamic load balancing without packet reordering[J]. Computer Communication Review,2007,37(2):53-62.
    [98]Bakhshi B, Khorsandi S. On the performance and fairness of dynamic channel allocation in wireless mesh networks[J]. International Journal of Communication Systems,2013,26(3):293-314.
    [99]Allman M, Paxson V, Stevens W. TCP congestion control, IETF RFC 5681,1999: September 2009. http://www.hjp.at/doc/rfc/rfc5681.txt.
    [100]Huang C M, Lin M S. Multimedia streaming using partially reliable concurrent multipath transfer for multihomed networks[J]. IET Communications,2011,5(5): 587-597.
    [101]Sathiaseelan A, Radzik T. Reorder notifying TCP (RN-TCP) with explicit packet drop notification (EPDN)[J]. International Journal of Communication Systems,2006,19(6): 659-678.
    [102]Wu D P, Wang R Y, Zhen Y. Link stability-aware reliable packet transmitting mechanism in mobile ad hoc network[J]. International Journal of Communication Systems,2012,25(12):1568-1584.
    [103]Tsai M F, Chilamkurti N K, Zeadally S, et al. Concurrent multipath transmission combining forward error correction and path interleaving for video streaming[J]. Computer Communications,2011,34(9SI):1125-1136.
    [104]Zhou X L, Zhang D C, Yang Y D, et al. Network-coded multiple-source cooperation aided relaying for free-space optical transmission[J]. International Journal of Communication Systems,2012,25(11):1465-1478.
    [105]Zheng K, Jiao X W, Liu M, et al. An analysis of resequencing delay of reliable transmission protocols over multipath[C].2010 IEEE International Conference on Communications (ICC 2010). Cape Town, South Africa:IEEE, May 2010:1-5.
    [106]郑坤,刘敏,李忠诚.基于D/G/1排队的多路径并行传输机制延迟研究[J].高技术通讯,2012,22(2):126-132.
    [107]王毅,廖晓菊,潘泽友.多路径传输控制协议技术综述[J].信息与电子工程,2011,9(1):7-11.
    [108]Floyd S, Fall K. Promoting the use of end-to-end congestion control in the Internet[J]. IEEE-ACM Transactions on Networking,1999,7(4):458-472.
    [109]Aydin I, Iyengar J, Conrad P, et al. Evaluating TCP-friendliness in light of concurrent multipath transfer[J]. Computer Networks,2012,56(7):1876-1892.
    [110]Becke M, Dreibholz T, Adhari H, et al. On the fairness of transport protocols in a multi-path environment[C].2012 IEEE International Conference on Communications (ICC). Ottawa, ON:2012 2012:2666-2672.
    [111]Hassayoun S, Iyengar J, Ros D. Dynamic Window Coupling for multipath congestion control[C]. IEEE International Conference on Network Protocols (ICNP 2011). Vancouver, Alberta, Canada:2011:341-352.
    [112]Briscoe B. Flow rate fairness:Dismantling a religion[J]. Computer Communication Review,2007,37(2):65-74.
    [113]Shah P A, Yasmin S, Asghar S, et al. A fluid flow model for SCTP traffic over the Internet[C].2012 International Conference on Emerging Technologies (ICET). IEEE, 2012:1-6.
    [114]Kelly F, Voice T. Stability of end-to-end algorithms for joint routing and rate control[J]. Computer Communication Review,2005,35(2):5-12.
    [115]Wang W H, Palaniswami M, Low S H. Optimal flow control and routing in multi-path networks[J]. Performance Evaluation,2003,52(2-3):119-132.
    [116]Han H Z, Shakkottai S, Hollot C V, et al. Multi-path TCP:A joint congestion control and routing scheme to exploit path diversity in the Internet[J]. IEEE-ACM Transactions on Networking,2006,14(6):1260-1271.
    [117]Le T A, Hong C S, Huh E. Coordinated TCP Westwood congestion control for multiple paths over wireless networks[C]. International Conference on Information Network (ICOIN 2012). Bali, Indonesia:2012:92-96.
    [118]Honda M, Nishida Y, Eggert L, et al. Multipath congestion control for shared bottleneck[C]. Proc. PFLDNeT workshop.2009:1-6.
    [119]Dreibholz T, Becke M, Pulinthanath J, et al. Applying TCP-friendly congestion control to concurrent multipath transfer[C]. International Conference on Advanced Information Networking and Applications (AINA 2010). Perth, Australia:2010:312-319.
    [120]Dreibholz T, Becke M, Adhari H, et al. On the impact of congestion control for Concurrent Multipath Transfer on the transport layer[C]. International Conference on Telecommunications (ConTEL 2011). Graz, Austria:2011:397-404.
    [121]Raiciu C, Handley M, Wischik D. Coupled congestion control for multipath transport protocols, IETF RFC 6536,2011. http://www.hjp.at/doc/rfc/rfc6356.html.
    [122]刘佩,任勇毛,李俊.多路径TCP拥塞控制算法研究[J].通信学报,2012,33(z2):233-238.
    [123]Liu Y, Wang B J, Xu K, et al. PACC:a path associativity congestion control and throughput model for multi-path TCP[C]. International Conference on Computational Science (ICCS) on the Ascent of Computational Excellence. Campus Nanyang Technolog Univ, Singapore:2011 2011:1278-1287.
    [124]孟宪晴.多径并行数据传送的拥塞控制机制研究[J].计算机技术与发展,2011, 21(10):99-102.
    [125]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学社,1994.
    [126]Chiang M. Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion control and power control[J]. IEEE Journal on Selected Areas in Communications,2005,23(1):104-116.
    [127]Mo J, Walrand J. Fair end-to-end window-based congestion control[J]. IEEE/ACM Transactions on Networking,2000,8(5).-566-567.
    [128]Chiang M, Low S H, Calderbank A R, et al. Layering as optimization decomposition: A mathematical theory of network architectures [J]. Proceedings of the IEEE,2007, 95(1):255-312.
    [129]Shakkottai S, Shakkottai S G, Srikant R. Network optimization and control. Now Publishers Inc,2008.
    [130]Li S, Sun W, Hua C. Fair resource allocation and stability for communication networks with multipath routing[J]. International Journal of Systems Science,2013:1-12.
    [131]Kelly F P, Maulloo A K, Tan D K. Rate control for communication networks shadow prices, proportional fairness and stability[J]. Journal of the Operational Research Society,1998,49(3):237-252.
    [132]Vanem E, Van D T. Multimedia communications with multiple devices using the personal virtual network service[C]. IEEE Proceedings on Wireless Communications and Networking Conference(WCNC2002). Orlando, Florida, USA:IEEE, Mar.2002: 223-227.
    [133]Dong L, Kang X, Song J. A survivable virtual terminal based on environment-awareness[C]. International Conference on Research Challenges in Computer Science (ICRCCS'09). Shanghai:IEEE, Dec.2009:153-156.
    [134]Guo S, Rui L, Qiu X, et al. An effective cooperation mechanism among multi-devices in ubiquitous network[C].2012 8th International Conference on Network and Service Management (CNSM). Las Vegas, USA:IEEE, Oct.2012:199-203.
    [135]Huang C M, Yang C C, Lin H Y. A bandwidth aggregation scheme for member-based cooperative networking over the hybrid VANET[C].2011 IEEE 17th International Conference on Parallel and Distributed Systems (ICPADS). Tainan, Taiwan:IEEE, Dec.2011:436-443.
    [136]Zinner T, Klein D, Tutschku K, et al. Performance of concurrent multipath transmissions-Measurements and model validation[C].2011 7th EURO-NGI Conference on Next Generation Internet (NGI). Kaiserslautern, Germany:IEEE, Jun.2011:1-8.
    [137]Shailendra S, Bhattacharjee R, Bose S K. An implementation of Min-Max optimization for multipath SCTP through bandwidth estimation based resource pooling technique[J]. International Journal of Electronics and Communications (AEU),2013, 67(3):246-249.
    [138]Liao J, Wang J, Li T, et al. Introducing multipath selection for concurrent multipath transfer in the future internet[J]. Computer Networks,2011,55(4):1024-1035.
    [139]Liu Y, Wu T, Xian X. Queue control based delay analysis and optimization for wireless mesh networks[C].2010 2nd International Conference on Education Technology and Computer (ICETC). Shanghai:IEEE, Jun.2010:104-108.
    [140]赵远林.无线泛在网络下虚拟终端系统若干关键技术研究[D].南京邮电大学,2013.
    [141]余雪勇,唐城,朱晓荣.泛在网下基于上下文感知的虚拟终端技术研究[J].计算机技术与发展ISTIC,2013,23(6):245-248.
    [142]王芙蓉,涂来.群特征无线移动网络—组织理论与技术[M].北京:科学出版社,2011.
    [143]Traw C B S, Smith J M. Striping within the network subsystem[J]. IEEE Network, 1995,9(4):22-32.
    [144]Prabhavat S, Nishiyama H, Ansari N, et al. On the performance analysis of traffic splitting on load imbalancing and packet reordering of bursty traffic[C]. IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC 2009). Beijing:IEEE, Nov.2009:236-240.
    [145]唐应辉,唐小我.排队论-基础与分析技术[M].北京:科学出版社,2006.
    [146]Brown S A. Household technology adoption, use, and impacts:Past, present, and future[J]. Information Systems Frontiers,2008,10(4):397-402.
    [147]Srivastava M B. Intelligent lighting control using wireless sensor networks for media production[J]. KSII Transactions on Internet and Information Systems (TIIS),2009, 3(5):423-443.
    [148]Wi-Fi Alliance. Wi-Fi cretified Wi-Fi direct[EB/OL]. http://www.cnetworksolution.com/uploads/wp_Wi-Fi_Direct_20101025_Industry.pdf 2010.
    [149]Fielding R, Gettys J, Mogul J, et al. Hypertext transfer protocol-http/1.1, IETF RFC 2616,1999. http://www.hjp.at/doc/rfc/rfc2616.html.
    [150]Evensen K, Kupka T, Kaspar D, et al. Quality-adaptive scheduling for live streaming over multiple access networks[C]. Proceedings of the 20th international workshop on Network and operating systems support for digital audio and video. ACM,2010:21-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700