认知无线电网络MAC层关键技术及安全认证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信业务需求的快速增长,宝贵而有限的无线电频谱资源变得越来越稀缺。而认知无线电技术主张利用动态频谱的思想,主动感知无线通信环境,根据一定的学习和调度算法,实时自适应地改变系统的工作参数,动态地检测和有效地利用空闲频谱,允许在时间上、频率上以及空间上进行多维的频谱复用,这将大大降低频谱和带宽限制对无线通信技术发展的束缚,从而提高频谱利用率。为了在认知无线电网络多个用户之间实现动态频谱共享,媒体访问控制(Media Access Control, MAC)层关键技术面临诸多挑战,例如认知用户的信道接入机制及控制信令的设计、多个请求接入网络的应用调度、信道间高效的切换技术以及认知无线电网络的安全机制等。
     本文主要围绕认知无线电网络MAC层的关键问题进行研究,分别从认知用户的接入调度、MAC层控制信令设计及多信道切换的角度出发,对认知用户如何自适应地利用频谱资源同时又满足一定的服务质量(Quality of Service,QoS)参数的问题进行了研究,针对动态ad hoc应用环境提出了相应的解决方案。另外,对认知无线电网络中频谱感知结果的安全认证也进行了理论探讨。本文的主要工作和贡献如下:
     1.为了充分利用信道机会并高效地进行数据发送,将认知无线电网络中认知用户的可用信道机会进行建模,提出了一个QoS感知的自适应机会信道接入(Adaptive Opportunistic Channel Access,AOCA)调度算法。基于所感知到的信道状态信息,将单信道和多信道情景下认知用户的可用信道机会建模,根据信道接入需求动态地调度物理层的信道感知操作,从而使得用户自适应地最大化信道利用率,同时不增加认知用户的额外开销。所提出的AOCA调度算法的优越性在于它能够自适应调度信道接入并提供QoS支持,所采用的QoS参数包括空闲缓冲区的大小、队列长度以及冲突比。仿真结果表明,该算法具有很好的自适应性和灵活性,并能够取得较好的效率。
     2.为了在认知无线电网络中灵活高效地利用动态的信道机会,提出了一种基于控制信道预约的认知无线电网络MAC协议。针对现有认知无线电网络MAC协议控制信道利用率低和限制网络规模扩展的缺点,该协议引入了竞争控制信道和预留控制信道。其中竞争控制信道为不同类型的业务预留相应的接入机会。认知用户在接入过程中,首先在竞争控制信道上预约预留控制信道子帧,然后再通过预留控制信道,基于请求带宽预约数据信道,同时用户通过维护信道状态表来分配和回收信道资源。仿真结果表明,该协议可以有效地调度多用户多信道的接入,具有很好的可扩展性。与其它基于固定控制信道的MAC协议相比,大大降低了发生冲突和拥塞的概率,进而降低了端到端时延,并提供了良好的端到端吞吐性能
     3.在异类认知无线电网络中,为了保证认知用户在多信道切换过程中满足一定的QoS需求,同时又尽可能地避免隐藏信道和暴露信道对性能的影响,提出了一个灵活的自适应垂直信道切换算法。该算法基于频谱共享的概念,假设存在一个频谱池,认知用户据此动态自适应地调度信道感知,维护一定的备用空闲频谱信息,以便认知用户在必要时进行切换调度。该算法采用信道带宽作为QoS参数来刻画网络的异类性。仿真主要考虑了切换阻塞概率、切换开销和冲突概率这三个评价指标。结果表明在异步认知无线电网络和同步认知无线电网络中,所提出的切换算法都明显地改善了切换期间的服务性能,并提供了较稳定的通信吞吐。
     4.针对基于无线电环境图(Radio Environment Map,REM)的认知无线电网络的认证技术进行了研究,提出了一种基于混沌序列和信道编码技术的认证协议。在分布式的感知数据汇集过程和决策结果的分发过程中,认证信息被当作秘密数据,并以随机噪声的形式嵌入到信道数据(即经过信道编码的感知数据)中,而由秘密数据的嵌入所造成的错误能够通过纠错编码技术纠正。接收用户能够提取该秘密信息并判断所接收到的数据是否来自合法用户。通过安全分析和讨论证明,所提出的认证方案具有很好的可靠性和安全性。
The rapid growth of the ubiquitous wireless services has imposed great pressure on the fixed and limited radio spectrum. Given this fact, the research society has adopted the new concept of cognitive radio (CR) to change the traditional static spectrum allocating and to use spectrum dynamically. Cognitive radio has been proposed as a way to improve spectrum efficiency by detecting the unoccupied spectrum, changing the system operation parameters (e.g., symbol rate, power, bandwidth, latency) in real-time to use radio resources according to a certain learn and schedule algorithm. Therefore, in theory, it can achieve the multi-dimension spectrum utilization including frequency, time and space, which greatly reduces the limitation of spectrum and bandwidth to wireless communication technology. Thus, spectrum utilization is enhanced. However, there are lots of new challenges in order to realize dynamic spectrum sharing among cognitive users in cognitive radio networks. First of all, media access control (MAC) layer faces many difficulties that are not presented in the conventional wireless networks. Especially, how to design a cognitive users accessing mechanism and control signaling, how to schedule several channel access request and how to implement channel handoff in dynamical environment are all open research issues. Additionally, the security mechanism for cognitive radio also has lots of threats.
     This thesis mainly focuses on the MAC layer key technology of CR networks and performs the theory analysis and experiment research. During the process of access schedule, MAC layer control signaling and multi-channel handoff, how CR user adaptively utilizing spectrum and satisfying some quality of service (QoS) parameters are studied in detail. Several solutions are presented for CR ad hoc application environment. In addition, the authentication security for the spectrum sensing result and membership maintaining of CR networks are also explored. The main contents and contributions are as following:
     1. In order to fully utilize channel opportunity and efficiently transmit data in cognitive radio networks, this chapter models the available channel opportunity and proposes an adaptive opportunistic channel access (AOCA) schedule algorithm. Based on the channel state information sensed, available channel opportunity is modeled in single channel and multichannel scenario, respectively. The schedule algorithm can adaptively schedule channel sensing leveraging the MAC layer decisions and maximize channel utilization without imposing any additional burden on cognitive users. Different from other CR algorithms, AOCA algorithm provides cognitive users with QoS support. The QoS is identified as terminals’buffer space and queue length along with the collision ratio with other users. The simulation results demonstrate that the proposed channel schedule scheme can utilize the channel adaptively and flexibly in CR networks. Therefore it can achieve good efficiency.
     2. In order to utilize the dynamic channel opportunity flexibly and efficiently in cognitive radio networks, a multi-channel adaptive MAC protocol is presented. The proposed protocol employs the concept of competing control channel (CCC) and reserving control channel (RCC) to improve the low utilization and lack of expansibility in related works. In order to access the channel, cognitive users reserve the sub-frame of RCC through CCC, which obligates the access opportunity for different traffic. Then they apply the data channel based on the required bandwidth using RCC. The channel is distributed and recycled by updating a channel state table. Simulations show that the proposed protocol can effectively schedule the accessing of users and exhibit good scalability. Compared with other fixed control channel based protocol, it significantly reduces the probability of collision and congestion, thereby improves the end-to-end delay and network throughput.
     3. For the sake of executing vertical handoff for cognitive user without interfering primary user while offering the desired QoS and eliminating the influence caused by hidden channel and exposed channel simultaneously, this paper proposes a flexible vertical channel handoff algorithm for heterogeneous cognitive radio networks. This algorithm is very flexible and effective. It can adaptively schedule channel sensing by utilizing the concept of spectrum pooling. The key QoS parameter adopted in this algorithm is channel bandwidth which denotes the heterogeneity of the networks. The handoff process is analyzed using Markov model. We evaluate the major performance metrics such as handoff blocking probability, handoff cost and collision probability by simulation. The results indicate the proposed algorithm can significantly improve the performance and provide stable communication in the synchronous and asynchronous CR networks.
     4. With the intent of efficiently occupying under-utilized spectrum, radio environment map (REM) based CR networking is proposed to facilitate the distributed spectrum sensing. In this chapter, we identify the security threats and propose a chaos sequence and channel encoding based adaptive authentication protocol for REM-based CR networks. In the duration of distributed data aggregating and decision results distributing, authentication information is secret data and sensing information is useful data. Employing channel encoding techniques and chaos sequence, authentication data is embedded into channel data as random noise. The error of host data caused by secret data can be corrected via error correction encoding technique. The receiver can then use the secret information extracted from channel data to authenticate if the received data is sent by the user claimed. To the best of our knowledge, that is the first attempt to provide authentication mechanism for REM-enabled CR network.
引文
[1] McHenry, M. A., NSF spectrum occupancy measurements project summary, Shared Spectrum Company Report, Aug. 2005.
    [2] Thomas, R.W., Cognitive networks, Ph.D. Dissertation, Virginia Polytechnic and State University, Blacksburg, VA, June 15, 2007.
    [3] Mahmoud, Q., Cognitive networks-towards self-aware networks, John Wiley and Sons, 2007, ISBN 9780470061961.
    [4] Mitola III, J. and Maguire, G. Q., Cognitive radios: making software radios more personal, IEEE Personal Communication, Vol. 6, No. 4, Aug. 1999, pp. 13-18.
    [5] Mitola III, J., Cognitive radio: an integrated agent architecture for software defined radio, Ph.D. dissertation, Computer communication system laboratory, Department of Teleinformatics, Royal Institute of Technology (KTH), Stockholm, Sweden, May 2000.
    [6] Berger, R. J., Open spectrum: a path to ubiquitous connectivity, ACM Queue, Vol.1, No. 3, 2003, pp.60-68.
    [7] Akyildiz, I. F., Lee, W. Y., Vuran M. C. and Mohanty, S., Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey, Computer Networks, Vol. 50, No. 13, 2006, pp. 2127-2159.
    [8] FCC spectrum policy task force, Report of spectrum efficiency working group [Online], Available: Second report and order, Federal Communications Commission, ET-Docket 04-186 and 02-380, Adopted November 4, 2008, Released November 14, 2008.
    [9] FCC, Notice of proposed rule making and order, FCC Et Docket no. 03-322, 2003.
    [10] Haykin, S., Cognitive radar: a way of the future, IEEE Signal Processing Magazine, Vol. 23, No. 1, 2006, pp. 30-41.
    [11] Nuallain, E.O., A proposed propagation-based methodology with which to address the hidden node problem and security/reliability issues in cognitive radio, in: Proceedings of 4th International Conference on Wireless Communications, Networking and Mobile Computing, Publication Date: 12-14 Oct. 2008, pp. 1– 5.
    [12] Krishnamurthy, S., Thoppian, M., Venkatesan, S. and Prakash, R., Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks, in: Proceedings of IEEE MILCOM 2005, October 2005.
    [13]李军,异构无线网络融合理论与技术实现,电子工业出版社,2009, pp. 1-35。
    [14] Akyildiz, I. F., Lee, Won-Yeol, Vuran, M. C. and Mohanty, S., A survey on spectrum management in cognitive radio networks, IEEE CommunicationsMagazine, Vol. 46, No. 4, Apr. 2008, pp. 40-48.
    [15] Brown, T.X., An analysis of unlicensed device operation in licensed broadcast service bands, in: Proceedings of IEEE DySPAN 2005, November 2005, pp. 11–29.
    [16] Ganesan, G. and Li, Y.G., Agility improvement through cooperative diversity in cognitive radio networks, in: Proceedings of GLOBECOM, November 2005, pp. 2505–2509.
    [17] Tang, H., Some physical layer issues of wide-band cognitive radio system, in: Proceedings of IEEE DySPAN 2005, November 2005, pp. 151–159.
    [18] Sahai, A., Hoven, N. and Tandra, R., Some fundamental limits in cognitive radio, in: Proceedings of Forty-second Allerton Conference on Communication, Control and Computing 2004, October 2004.
    [19] Sibille, A., Antón-Haro, C., Burr, A. and Luise, M., Special issue of european wireless 2007: Advanced physical layer schemes for robust wireless communications, Guest Editorial, European Transaction on Telecommunications, Vol. 19, No. 7, Sept. 2008.
    [20] Rashid, M.M., Hossain, J., Hossain, E. and Bhargava, V. K., Opportunistic spectrum access in cognitive radio networks: a queuing analytic model and admission controller design, in: Proceedings of IEEE GLOBECOM 2007 proceedings, pp. 4647-4652.
    [21] Su, H. and Zhang, X., Cross-Layer based opportunistic MAC protocols for QoS provisioning over cognitive radio wireless networks, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 118-130.
    [22]程赓,多跳认知无线电网络频谱管理与选路策略研究,华中科技大学,博士学位论文,2007年10月。
    [23]黄联芬,基于环境认知的无线Mesh网络MAC协议的研究,厦门大学博士学位论文,2008年8月。
    [24] Haykin, S., Cognitive Radio: brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, February 2005, pp. 201-220.
    [25] Noam, E., Taking the next step beyond spectrum auctions: open spectrum access, IEEE Communications Magazine, Vol. 33, No. 12, Dec. 1995, pp.66-73.
    [26] Demestichas, P., Papadopoulou, L., Stavroulaki, V., Theologou, M.,Vivier, G., Martinez, G. and Galliano, F., Wireless beyond 3G: managing services and network resources, IEEE Communications Magazine, Vol. 35, No. 8, Aug, 2002, pp. 80-82.
    [27] Burbank J. L., Hammons A.R. and Jones S.D., A common lexicon and design issues surrounding cognitive radio networks operating in the presence of jamming, in: Proceedings of IEEE MILCOM 2008, pp. 1-7.
    [28] Zhu, L. and Zhou, H., Two types of attacks against cognitive radio network MACProtocols, in: Proceedings of The International Conference on Computer Science and Software Engineering, Vol. 4, 2008, pp. 1110-1113.
    [29] Zhang, Y., Xu, G. and Geng, X., Security threats in cognitive radio networks, in: Proceedings of 10th IEEE International Conference on HPCC, 2008, pp. 1036-1041.
    [30] Kang, X., Liang, Y. C., Garg, H. K. and Zhang, L., Sensing-based spectrum sharing in cognitive radio networks, in: Proc. GLOBECOM 2008, pp.4401-4405.
    [31] Mi?ic, J. and Mi?ic, V. B., Making the best of limited resources: Optimized differential sensing in cognitive PANs, Computer Networks, Vol. 54, No. 4, 19 March 2010, pp. 605-617.
    [32] Jitvanichphaibool, K., Zhang, R. and Liang Y. C., Optimal resource allocation for two-way relay-assisted OFDMA, in: Proceedings of GLOBECOM 2008, pp. 4123-4127.
    [33] Ghasemi, A. and Sousa, E. S., Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs, IEEE Communications Magazine, Vol. 46, No. 4, April 2008, pp. 32-39.
    [34] Zeng, Y. H. and Liang, Y. C., Eigenvalue based spectrum sensing algorithms for cognitive radio, IEEE Transactions on Communications, Vol. 57, No. 6, June 2009, pp. 1784-1793.
    [35] Yang, K. and Wang, X., Cross-layer network planning for multi-radio cognitive wireless networks, IEEE Transactions on Communications, vol. 56, No. 10, October 2008,pp. 1705-1714.
    [36] Li, K. and Wang, X., Cross-layer design of wireless mesh networks with network coding, IEEE Transactions on Mobile Computing, Vol. 7, No. 11, November 2008, pp. 1363-1373.
    [37] Liang, Y. C., Zeng, Y. H., Peh, E. C. Y. and Hoang, A. T., Sensing-throughput tradeoff for cognitive radio networks, IEEE Transactions on Wireless Communications, Vol. 7, No. 4, 2008, pp.1326-1337.
    [38] Xiang, J., Zhang, Y. and Skeie, T., Medium access control protocols in cognitive radio networks, Wireless Communications and Mobile Computing, Vol. 10, No. 1, 2010, pp. 31 - 49.
    [39] Eshet, J. and Liang, B., Randomly ranked mini slots for fair and efficient medium access control in ad hoc networks,IEEE Transactions on Mobile Computing, Vol. 6, No. 5, May 2007, pp. 481-493.
    [40] Ma, M. and Tsang, D. H. K., Joint design of spectrum sharing and routing with channel heterogeneity,Physical Communication, Vol. 2, No. 1-2, March-June 2009, pp. 127-137.
    [41] Tajer, Ali and Wang, X., Beacon-assisted spectrum access with cooperative cognitive transmitter and receiver, IEEE Transactions on Mobile Computing, Vol. 9, No. 1, January 2010, pp. 112-126.
    [42] Chen, R., Park, J. M., Hou, Y. T. and Reed, J. H., Toward secure distributed spectrum sensing in cognitive radio networks, IEEE Communications Magazine, Vol. 46, No. 4, 2008, pp. 50-55.
    [43] Zheng, H. and Cao, L., Device-centric spectrum management, in: Proceedings of IEEE DySPAN 2005, November 2005, pp. 56–65.
    [44] Weiss, T. A., and Jondral, F. K., Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency, IEEE Communications Magazine, Vol. 42, No. 3, 2004, pp. S8-S14.
    [45] Brodersen, R. W., A. Wolisz, D. Cabric, S. M. Mishra and D. Willkomm, CORVUS: a cognitive radio approach for usage of virtual unlicensed spectrum, White Paper
    [46] Akyildiz, I.F. and Li, Y., OCRA: OFDM-based cognitive radio networks, Broadband and Wireless Networking Laboratory Technical Report, March 2006.
    [47] Zhao, Q. and Sadler, B. M., A survey of dynamic spectrum access, IEEE Signal Processing Magazine, Vol. 24, No. 3, 2007, pp. 79-89.
    [48] E2R Deliverable D5.3 , Algorithms and performance, including FSM & RRM/Network planning. http://e2r2.motlabs.com/, Apr. 2005.
    [49]陈东,李建东,庞继勇,马静,认知无线电OFDM系统中无静默期带内感知方法,电子与信息学报,2008,30(11):2638-2641。
    [50]陈劫,廖楚林,李少谦,认知无线电中的一种协作式频谱礼仪,电子科技大学学报(自然科学版),2006,35(4):645-648。
    [51] Chen, J., Zhao M., Zhou, Q. and Li, S., A cross-layer design approach on spectrum allocation and resource scheduling in cognitive PMP networks, Jounal of Zhejiang University Science(A), Vol. 9, No. 4, 2008, pp. 435-444.
    [52]裴雪兵,朱光喜,刘干,基于信道统计相关性的OFDM系统资源分配算法,华中科技大学学报(自然科学版),2008,36(4):9-12。
    [53] Gao, Z., Li, B. and Huang, X., Channel cognitive multi-channel MAC protocol in wireless mesh network, in: Proceedings of International Conference on Communications, Circuits and Systems Proceedings, May, 2008, China, pp. 89-93.
    [54] -, IEEE 802.22 working group on wireless regional area networks, Available from: .
    [55] Chen, J., Liao, C., Han, C. and Li, S., Extending available spectrum in cognitive radio: hierarchical spectrum sharing network, Computer Networks, Vol. 52, No. 4, 2008, pp. 850-863.
    [56] Kanodia, V., Sabharwal, A. and Knightly, E., MOAR: a multichannel opportunistic auto-rate media access protocol for ad hoc networks, in: Proceedings of IEEE BROADNETS 2004, October 2004, pp. 600–610.
    [57] Sardana, A. and Joshi, R., An auto-responsive honeypot architecture for dynamicresource allocation and QoS adaptation in DDoS attacked networks, Computer Communications, Vol. 32, No. 12, 2009, pp. 1384-1399.
    [58] Montemanni, R., Leggieri, V. and Triki, C., Mixed integer formulations for the probabilistic minimum energy broadcast problem in wireless networks, European Journal of Operational Research, Vol. 190, No. 2, 2008, pp. 578-585.
    [59] Kim, H. S. and Kang, G., Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks, IEEE Transactions on Mobile Computing, Vol. 7, No. 5, 2008, pp. 533-545.
    [60] Plummer, A. and Biswas, S., Distributed spectrum assignment for cognitive networks with heterogeneous spectrum opportunities, Wireless Communications and Mobile Computing, DOI: 10.1002/wcm.923.
    [61] Trappey, A.J.C., Trappey, C.V. and Wu, C-R., Genetic algorithm dynamic performance evaluation for RFID reverse logistic management, Expert Systems with Applications (2010), doi: 1.1016/j.eswa. 2010.04.026.
    [62] Haas, Z. and Deng, J., Dual busy tone multiple access (DBTMA) - a multiple access control for ad hoc networks, IEEE Transactions on Wireless Communications, Vol. 50, No. 6, 2002, pp. 975-985.
    [63] Zhai, H., Wang, J. and Fang, Y., DUCHA: A new dual-channel MAC protocol for multihop ad hoc networks, IEEE Transactions on Wireless Communications, Vol. 5, No. 11, 2006, pp. 3224-3233.
    [64] Wu, S., Tseng, Y. and Sheu, J., Intelligent medium access for mobile ad hoc networks with busy tones and power control, IEEE journal on selected areas in communications, Vol. 18, No. 9, 2009, pp. 1647-1657.
    [65] Jeon, W. S.,Jeong, D. G., Han, J. A., Ko, G. and Song, M. S., An efficient quiet period management scheme for cognitive radio systems, IEEE Transactions on Wireless Communications, Vol. 7, No. 2, 2008, pp. 505-509.
    [66] Luo, L., Liu, H., Wu, M. and Li, D. K., End-to-end performance aware association mechanism for wireless municipal mesh networks, Computer Communications, Vol. 31, No. 8, 2008, pp. 1602-1614.
    [67] Srinivasa, S. and Jafar, S. A., The throughput potential of cognitive radio: a theoretical perspective, IEEE Communications Magazine, Vol. 45, No. 5, 2007, pp. 73-79.
    [68] Yoo, S., Nan, H. and Hyon, T., DCR-MAC: Distributed cognitive radio MAC protocol for wireless ad hoc networks, Wireless Communication Mobile Compute, Vol. 9, No. 5, 2008, pp. 631-653.
    [69] Krishnamurthy, S., Thoppian, M., Kuppa, Chandrasekaran, R., Mittal, N., Venkatesana, S. and Prakash, R., Time-efficient distributed layer-2 auto-configuration for cognitive radio networks, Computer Networks, Vol. 52, No. 4, 2008, pp. 831-849.
    [70] Anggraeni, P. N., Mahmood, N. H., Berthod, J., Chaussonniere, N., My, L. and Yomo, H., Dynamic channel selection for cognitive radios with heterogeneous primary bands, Wireless Personal Communications, Vol.45, No. 3, 2008, pp. 369-384.
    [71] Zeger, L., Capacity in wireless systems with random access and delay constraints, in: Proceedings of Military Communications Conference (MILCOM), 2007, pp. 1-7.
    [72] Chen, Y., Zhao, Q. and Swami, A. Distributed spectrum sensing and access in cognitive radio networks with energy Cconstraint, IEEE Transactions on Signal Processing, Vol. 57, No. 2, 2009, pp. 783-797.
    [73] Ren, W., Zhao, Q. and Swami, A., Power control in cognitive radio networks: how to cross a multi-lane highway, IEEE Journal on Selected Areas in Communications (JSAC): Special Issue on Stochastic Geometry and Random Graphs for Wireless Networks, Vol. 27, No. 7, September, 2009, pp. 1283-1296,
    [74] Niyato, D. and Hossain, E., Competitive pricing for spectrum sharing in cognitive radio networks: dynamic game, inefficiency of nash equilibrium, and collusion,IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 192-202.
    [75] Simeone, O., Stanojev, I., Savazzi, S., Bar-Ness, Y., Spagnolini, U., and Pickholtz,R., Spectrum leasing to cooperating secondary ad hoc networks,IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 203-213.
    [76] Hou, Y. T., Shi, Y. and Sherali,H. D., Spectrum sharing for multi-hop networking with cognitive radios, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 146-155.
    [77] Yuan, Y., Bahl, P., Chandra, R., Moscibroda, T. and Wu, Y., Allocating dynamic time-spectrum blocks in cognitive radio networks,in: Proceedings of the 8th ACM international symposium on Mobile ad hoc networking and computing, 2007, pp. 130-139.
    [78] Pursley,M. B. and Royster IV, T. C., Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks,IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 83-94.
    [79] Jiang, H., Lai, L., Fan, R. and Poor, H. V., Optimal selection of channel sensing order in cognitive radio, IEEE Transactions on Wireless Communications, Vol.8, No. 1, January 2009, pp.297-307.
    [80] Ghozzi, M., Dohler, M., Marx, F. and Palicot, J., Cognitive radio: methods for the detection of free bands, Comptes Rendus Physique, Vol. 7, No. 7, September 2006, pp. 794–804.
    [81] Alicherry, M., Bhatia, R. and Li, L., Joint channel assignment and routing forthroughput optimization in multi-radio wireless mesh networks, in: Proceedings of ACM Annual International Conference of MOBICOM, 2005, pp. 58–72.
    [82]高友军,田辉,孙雷,一种基于OFDMA技术的MAC协议,北京邮电大学学报,2007,30(3):113-116。
    [83]王朝翔,苗建松,丁炜,模糊逻辑控制的MAC协议,北京邮电大学学报,2007,30(6):131-134。
    [84] Lien, S. Y., Tseng, C. C. and Chen, K. C., Carrier sensing based multiple access protocols for cognitive radio networks, in: Proceedings of IEEE International Conference on Communications (ICC), May 2008, pp. 3208–3214.
    [85] Zheng, G., Han, N., Huang, X., Sohn, S. H. and Kim, J. M., Enhanced energy detector for IEEE 802.22 WRAN systems using maximal-to-mean power ratio, in: Proceedings of International Symposium on Wireless Communication Systems, 2007, pp. 370-374.
    [86] Zhou, C. and Chigan, C., A game theoretic DSA-driven MAC framework for cognitive radio networks, in: Proceedings of IEEE International Conference on Communications (ICC), May 2008, pp. 4165–4169.
    [87] Cordeiro, C., Challapali, K. and Ghosh, M., Cognitive PHY and MAC layers for dynamic spectrum access and sharing of TV bands, ACM International Conference Proceeding Series, Vol. 222, No. 3, August 2006, pp. 25-32.
    [88] Cordeiro, C., Challapali, K., Birru, D. and Shankar, S., IEEE 802.22: The first world-wide wireless standard based on cognitive radios, in: Proceedings of IEEE DySPAN, November 2005, pp. 328–337.
    [89] Ma, L., Han, X. and Shen, C. C., Dynamic open spectrum sharing for wireless ad hoc networks, in: Proceedings of IEEE DySPAN, November 2005, pp. 203–213.
    [90] Pawelczak, P., Prasad, R. V., Xia, L. and Niemegeers, I. G.M.M., Cognitive radio emergency networks - requirements and design, in: Proceedings of IEEE DySPAN, November 2005, pp. 601–606.
    [91] Su, H. and Zhang, X., CREAM-MAC: An efficient cognitive radio-enabled multi-channel MAC protocol for wireless networks, in: Proceedings of IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM), June 2008, pp. 1–8.
    [92] Ma, L., Shen, C. C., Ryu, B., Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks, in: Proceedings of IEEE DySPAN, April 2007, pp. 547–558.
    [93] Jia, J., Zhang, Q. and Shen, X., HC-MAC: a hardware-constrained cognitive MAC for efficient spectrum management, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 106–117.
    [94] Cordeiro, C. and Challapali, K., C-MAC: A cognitive MAC protocol for multichannel wireless networks, in: Proceedings of IEEE DySPAN, April 2007, pp. 147–157.
    [95] Zhao, J., Zheng, H. and Yang, G.-H., Spectrum sharing through distributed coordination in dynamic spectrum access networks, Wireless Communication and Mobile Computing, Vol. 7, No. 9, 2007, pp. 1061–1075.
    [96] Hamdaoui, B. and Shin, K.G., OS-MAC: an efficient MAC protocol for spectrum-agile wireless networks, IEEE Transaction on Mobile Computing, Vol. 7, No. 8, 2008, pp. 915–930.
    [97] Zhao, Q., Tong, L., Swami, A. and Chen, Y., Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: a POMDP framework, IEEE Journal on Selected Areas in Communications, Vol. 25, No. 3, 2007, pp. 589–600.
    [98] Geirhofer, S., Tong, L. and Sadler, B. M., Cognitive medium access: constraining interference based on experimental models, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 95–105.
    [99] Kondareddy, Y. R. and Agrawal, P., Synchronized MAC protocol for multihop cognitive radio networks, in: Proceedings of IEEE International Conference on Communications (ICC), May 2008, pp. 3198–3202.
    [100] Su, H. and Zhang, X., Opportunistic MAC protocols for cognitive radio based wireless networks, in: Proceedings of Annual Conference on Information Sciences and Systems, March 2007, pp. 363–368.
    [101] Yu, M, Huang, L. and Chen, H., Multi-channel MAC protocol for cognitive wireless mesh network, in: Proceedings of the 2nd international conference on Anti-counterfeiting, security and identification, 2008, pp. 203-206.
    [102]马洪亮,徐惠民,Ad hoc网络中IEEE 802.11 DCF的改进,电子科技大学学报,2006,35(6):887-889。
    [103] Chowdhury, Kaushik R. and Akyildiz, Ian F., Cognitive wireless mesh networks with dynamic spectrum access, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, January 2008, pp. 168-181.
    [104]程赓,李峋照,刘威,程文青,杨宗凯,认知无线电网络路由及频谱分配联合策略研究电子与信息学报,2005,30(1):695-698。
    [105] Song, Q. and Jamalipour, A., A quality of service negotiation-based vertical handoff decision scheme in heterogeneous wireless systems, European Journal of Operational Research, Vol. 191, No. 3, 2008, pp. 1059–1074.
    [106] Jing, X. and Raychaudhuri, D., Global control plane architecture for cognitive radio networks, in: Proceedings of ICC 2007, June 2007, pp.6466-6470.
    [107] Raychaudhuri, D. N., Mandayam, B., Evans, J. B., Ewy, B. J., Seshan, S. and Steenkiste, P., CogNet - an architectural foundation for experimental cognitive radio networks within the future internet, in: Proceedings of MobiArch’06, 2006, pp.11-16.
    [108] Zou, C., Jin, T., Chigan, C. and Tian, Z., QoS-aware distributed spectrum sharing for heterogeneous wireless cognitive networks, Computer Networks Vol. 52, No. 4, 2008, pp. 864–878.
    [109] Gambini, J., Simeone, O., Bar-Ness, Y. and Spagnolini, U., Packet-wise vertical handover for unlicensed multi-standard spectrum access with cognitive radios, IEEE Transactions on Wireless Communications, Vol. 7, No. 12, December 2008, pp. 5172-5176.
    [110] Fitzpatrick, J., Murphy, S., Atiquzzaman, M. and Murphy, J., Using cross-layer metrics to improve the performance of end-to-end handover mechanisms, Computer Communications, Vol. 32, No. 15, 15 September 2009, pp. 1600-1612.
    [111] Cavalcantia, D., Nandirajub, N., Nandiraju, D., Agrawalb, D. P. and Kumar, A., Connectivity opportunity selection in heterogeneous wireless multi-hop networks, Pervasive and Mobile Computing Vol. 4, No. 3, 2008, pp. 390–420.
    [112] Bazerque, J. A. and Giannakis, G. B., Distributed scheduling and resource allocation for cognitive OFDMA radios, Mobile Network Application, Vol. 13, No.5, 2008, pp. 452–462.
    [113] Chowdhury, K. R., Nandiraju, N., Chanda, P., Agrawal, D. P. and Zeng, Q. A., Channel allocation and medium access control for wireless sensor networks. Ad Hoc Networks, Vol. 7, No. 2, 2009, pp. 307-321.
    [114]陈东,李建东,李维英,认知无线电环境下MIMO-OFDM系统的无线资源管理,电子学报,2007,25(6A):60-63。
    [115] Ahmed, W., Gao, J., Suraweera, H. A. and Faulkner, M., Comments on analysis of cognitive radio spectrum access with optimal channel reservation, IEEE Transactions on Wireless Communications, Vol. 8, No. 9, 2009, pp. 4488–4491.
    [116] Zhao, Y., Raymond, da Silva, C. R. C., M., Reed, J. H. and Midkiff, S. F., Performance evaluation of radio environment map-enabled cognitive spectrum-sharing networks, in: Proceedings of IEEE Military Communication Conference, Orlando, FL, 2007, pp. 1-7.
    [117] Wang, L.-C., Chen, A. and Wei, D. S. L., A cognitive MAC protocol for QoS provisioning in ad hoc networks, Physical Communication (2010), doi:10.1016/j.phycom.2010.01.001.
    [118] Hillenbrand, J., Weiss, T. A. and Jondral, F. K., Calculation of detection and false alarm probabilities in spectrum pooling systems, IEEE Communications Letters, Vol. 9, No. 4, 2005, pp. 349-351.
    [119] Chen, R. and Park, J.-M., Ensuring trustworthy spectrum sensing in cognitive radio networks, in: Proc. IEEE Wksp. Networking Technologies for Software Defined Radio Networks, Sept. 2006, pp. 110–19.
    [120] Burbank, J.L., Security in cognitive radio networks - the required evolution in approaches to wireless network security, in: Proceedings of 3rd International Conference on Cognitive Radio Oriented Wireless Networks andCommunications (CrownCom), 2008, pp. 1-7.
    [121] Bai, L. and Zou, X., A proactive secret sharing scheme in matrix projection method, International Journal of Security and Networks, Vol. 4, No. 4, 2009, pp. 201-209.
    [122] Zou, X. and Karandikar, Y., A novel conference key management solution for secure dynamic conferencing, International Journal of Security and Networks, Vol. 3, No. 1, 2008, pp.47–53.
    [123] Asadpour, M., Sattarzadeh, B. and Movaghar, A., Anonymous authentication protocol for GSM networks, International Journal of Security and Networks, Vol. 3, No. 1, 2008, pp. 54–62.
    [124] Kotzanikolaou, P., Vergados, D. D., Stergiou, G. and Magkos, E., Multilayer key establishment for large-scale sensor networks, International Journal of Security and Networks, Vol. 3, No. 1, 2008, pp. 1–9.
    [125] Djenouri, D., Bouamama, M. and Mahmoudi, O., Black-hole-resistant ENADAIR-based routing protocol for mobile ad hoc networks, International Journal of Security and Networks, Vol. 4, No. 4, 2009, pp. 246 - 262.
    [126] Sutton, P. D., Nolan, K. E. and Doyle, L. E., Cyclostationary signatures in practical cognitive radio applications, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 13-24.
    [127] Sethi, A. and Brown, T. X, Hammer Model Threat assessment of cognitive radio denial of service attacks, in: Proceedings of IEEE Dynamic Spectrum Access Networks (DySpAN), Chicago, Oct. 14–17, 2008, pp. 1-12.
    [128] William Krenik and Anuj Batra, Cognitive radio techniques for wide area networks, in: Proceedings of 42nd Design Automation Conference, Anaheim, CA, June 13–17, 2005, pp. 409-412.
    [129] Krenik, B. and Panasik, C., The potential for unlicensed wide area networks, wireless advanced architectures group, Texas Instruments White Paper, October 2004.
    [130] Zhang, X. and Li, C., Constructing secured cognitive wireless networks: experiences and challenges, Wireless Communications and Mobile Computing, DOI: 10.1002/wcm.878.
    [131] Hanif, M. F., Smith, P. J. and Shafi, M., Performance of cognitive radio systems with imperfect radio environment map information, CoRR abs/0905.3030: 2009.
    [132] Zhao, Y., Morales, L., Gaeddert, J., Bae, K. K., Um, J. S. and Reed, J. H., Applying radio environment maps to cognitive wireless regional area networks, in: Proceedings of IEEE Iiternational Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), April 2007, pp. 115-118.
    [133] Zhao, Y., Gaeddert, J., Morales, L., Bae, K., Um, J. S. and Reed, J. H., Development of radio environment map enabled case- and knowledge-based learning algorithms for IEEE 802.22 WRAN cognitive engines, in: Proceedingsof 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Aug. 2007, pp. 44– 49.
    [134] Kim, K. C., Spooner, M., Akbar, I. and Reed, J. H., Specific emitter identification for cognitive radio with application to IEEE 802.11, in: Proceedings of IEEE GLOBECOM, 2008, pp. 1-5.
    [135] Li, X., Chen, J. and Ng, F., Secure transmission power of cognitive radios for dynamic spectrum access applications, in: Proceedings of 42nd Annual Conference on Information Sciences and Systems, March 2008, pp. 213– 218.
    [136] Gelabert, X, Sallent, O., Pérez-Romer, J. and Agustí, R., Spectrum sharing in cognitive radio networks with imperfect sensing: a discrete-time markov model, Computer Networks (2010), doi:10.1016/j.comnet.2010.04.005.
    [137] Ji, Z. and Ray Liu K. J., Multi-stage pricing game for collusion-resistant dynamic spectrum allocation, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, January 2008, pp. 182-191.
    [138] Mishra, A., Shrivastava, V., Agrawal, D., Banerjee, S. and Ganguly, S., Distributed channel management in uncoordinated wireless environments, in: Proceeding of the 12th annual international conference on Mobile computing and networking 2006, pp. 170 - 181.
    [139] Yuan, Y., Bahl, P., Chandra, R., Chou, P. A., Ferrell, J. I., Moscibroda, T., Narlanka, S. and Wu, Y., KNOWS: kognitive networking over white spaces. in: Proceedings of IEEE DySPAN 2007, pp. 416-427.
    [140] Scheibe, K. P. and Ragsdale, C. T., A model for the capacitated, hop-constrained, per-packet wireless mesh network design problem, European Journal of Operational Research, Vol. 197, No. 2, 2009, pp. 773-784.
    [141] Yang, B., Shen, Y., Feng, G., Long C., Jiang, Z. P. and Guan, X., Distributed power control and random access for spectrum sharing with QoS constraint, Computer Communications, Vol. 31, No. 17, 2008, pp. 4089-4097.
    [142] Srinivasa, S. and Jafar, S.A., Cognitive radio networks: how much spectrum sharing is optimal?, in: Proceedings of IEEE GLOBECOM 2007, Vol. 2, pp. 3149–3153.
    [143] Srinivasa, S. and Jafar, S.A., Soft sensing and optimal power control for cognitive radio global telecommunications conference, in: Proceeding of IEEE GLOBECOM '07, 2007, pp. 1380-1384.
    [144] Jondral, F. K., Software-defined radio-basics and evolution to cognitive radio, EURASIP Journal on Wireless Communications and Networking, Vol. 2005, No. 3, 2005, pp. 275–283.
    [145] Hwang, I.S. and Wu, J.H., Performance assessment of service differentiation in IEEE 802.11e wireless LANs, International Journal of Ad Hoc and Ubiquitous Computing, Vol. 3, No. 1, 2008, pp. 21–32.
    [146] Zhao, Q., Chen, Y. and Swami, A., Cognitive wireless communication networks,Springer US, 2007, Springer, New York, pp. 271–301.
    [147] Krishna, P.V. and Iyengar, N. Ch. S.N., Sequencing technique: an enhancement to 802.11 medium access control to improve the performance of wireless networks, International Journal of Communication Networks and Distributed Systems, Vol. 1, No. 1, 2008, pp. 52–70.
    [148] Akyildiz, I.F. and Wang, X., Cross-layer design in wireless mesh networks, IEEE Transactions on Vehicular Technology, Vol. 57, No. 2, March 2008, pp. 1061–1076.
    [149] Quan, Z., Cui, S., Sayed, A. H. and Poor, H. V., Optimal multiband joint detection for spectrum sensing in cognitive radio networks, IEEE Transactions on Signal Processing, Vol. 57, No. 3, March 2009, pp. 1128-1140.
    [150] Cao, L. and Zheng, H., Understanding the power of distributed coordination for dynamic spectrum management, Mobile Networks and Applications, Vol. 13, No. 5, 2008, pp. 477-497.
    [151] Audhya, G. K., Sinha, K., Ghosh, S.C. and Sinha, B. P., A survey on the channel assignment problem in wireless networks, Wireless Communications and Mobile Computing, DOI: 10. 1002/wcm.898.
    [152] McCanne, S. and Floyd, S., Network simulator, URL: http://www.isi.edu/nsnam/ns/, May 2009.
    [153] Gao, Y., Tian, H. and Sun, L., A MAC protocol based on OFDMA technique, Journal of Beijing University of Posts and Telecommunications, Vol. 30, No. 3, 2007, pp. 113-116.
    [154] Wang, Z., Miao, J. and Ding, W., A fuzzy logic MAC protocol, Journal of Beijing University of Posts and Telecommunications, Vol. 30, No. 6, 2007, pp. 131-134.
    [155] Cormio, C. and Chowdhury, K. R., A survey on MAC protocols for cognitive radio networks, Ad Hoc Networks, Vol. 7, No. 7, 2009, pp. 1315–1329.
    [156] Cormio, C. and Chowdhury, K. R., Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping, Ad Hoc Networks, Vol. 8, No. 4, June 2010, pp. 430-438.
    [157] Unnikrishnan, J. V., and Veeravalli, V., Cooperative spectrum sensing and detection for cognitive radio, in: Proceedings of IEEE Global Telecommunications Conference, Washington, DC, USA, 2007, pp. 2972-2976.
    [158] Ma H. and Xu H.-M., Performance improvement of IEEE 802.11 DCF in Ad hoc network, Journal of University of Electronic Science and Technology of China, Vol.35, No.6, 2006, pp. 887-889.
    [159] Baldo, N. and Zorzi, M., Fuzzy logic for cross-layer optimization in cognitive radio networks, IEEE Communications Magazine, Vol.4 8, No. 4, April 2008, pp. 64-71.
    [160] Gandetto, M. and Regazzoni, C., Spectrum sensing: a distributed approach for cognitive terminals, IEEE Journal on Selected Areas in Communications, Vol. 25, No. 3, April 2007, pp. 546-557.
    [161] Ma, Y, Zhang, H., Yuan, D. and Chen, H.-H., Adaptive power allocation with quality-of-service guarantee in cognitive radio networks, Computer Communications, Vol. 32, No. 18, 15 December 2009, pp. 1975-1982 .
    [162] Wang, B., Wu, Y. and Ray Liu, K.J., Game theory for cognitive radio networks: A tutorial survey, Computer Networks (2010), doi:10.1016/j.comnet.2010.04.004.
    [163] Dressler, F. and Akan, O. B., A survey on bio-inspired networking, Computer Networks, Vol. 54, No. 6, 2010, pp. 881-900.
    [164] Xing, Y., Chandramouli, R., Mangold, S. and Shankar N, S., Dynamic spectrum access in open spectrum wireless networks, IEEE Journal on Selected Areas in Communications, Vol. 24, No. 3, March 2006, pp. 626-637.
    [165] Cao L. and Zheng, H., Distributed rule-regulated spectrum sharing, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, January 2008, pp. 130-145.
    [166] Jafar, S. A. and Srinivasa, S., Capacity limits of cognitive radio with distributed and dynamic spectral activity, IEEE Journal on Selected Areas in Communications, Vol.25, No. 3, April 2007, pp. 529-537.
    [167] Yue, W. and Zheng, B., Spectrum sensing algorithms for primary detection based on reliability in cognitive radio systems, Computers & Electrical Engineering, Vol. 36, No. 3, May 2010, pp. 469-479.
    [168] Katidiotis, A., Tsagkaris, K. and Demestichas, P., Performance evaluation of artificial neural network-based learning schemes for cognitive radio systems, Computers and Electrical Engineering, Vol. 36, No. 3, May 2010, pp. 518-535.
    [169] Alptekin, G. I. and Bener, A. B., Customer oriented resource allocation framework in cognitive radio, Computers & Industrial Engineering, Vol. 58, No. 3, April 2010, pp. 401-410.
    [170] Ganesan, G. and Li, Y., Cooperative spectrum sensing in cognitive radio, part I: Two user networks, IEEE Transactions on Wireless Communications, Vol. 6, No. 6, June 2007, pp. 2204-2213
    [171] Ganesan, G. and Li, Y., Cooperative spectrum sensing in cognitive radio, part II: Mmultiuser networks, IEEE Transactions on Wireless Communications, Vol.6, No. 6, June 2007, pp. 2214-2222.
    [172] Komali, R. S., Thomas, R. W., DaSilva, L. A. and MacKenzie, A. B., The price of ignorance: distributed topology control in cognitive networks, IEEE Transactions on Wireless Communications, Vol. 9, No. 4, April 2010, pp. 1434-1445.
    [173] Khadivi, P., Todd, T. D., Samavi, S., Saidi, H. and Zhao, D., Mobile ad hocrelaying for upward vertical handoff in hybrid WLAN/cellular systems, Ad Hoc Networks, Vol. 6, No. 2, 2008, pp. 307–324.
    [174] Blumenthal, J., Timmermann, D., Buschmann, C., Fischer, S., Koberstein, J. and Luttenberger, N., Minimal transmission power as distance estimation for precise localization in sensor networks, in: Proceedings of IWCMC 2006, 2006, pp. 1331-1336.
    [175] Shenoy, N., Hartpence, B. and Montalvo, R. M., A mobility model for cost analysis in integrated cellular/WLANs, in: Proceedings of IEEE ICCCN, 2004, pp. 275-280.
    [176] Boufidis, Z., Alonistioti, N. and Merakos, L., Architecture and signaling protocol for migration to cognitive reconfigurable post-3G mobile systems, Mobile Computing and Communications Review, Vol. 12, No. 4, 2008, pp. 15-31.
    [177] Li J. L., Zhu, P. and Wang, X. F., Chain store game based channel allocation in cognitive radio system, The Journal of China Universities of Posts and Telecommunications, Vol. 17, No. 1, February 2010, pp. 1-8.
    [178] Zhao, Y., Gaeddert, J., Bae, K.K., and Reed, J.H., Radio environment map-enabled situation-aware cognitive radio learning algorithms, in: proceedings of Software Defined Radio (SDR) Technical Conference, Nov. 13-17, 2006, Orlando, FL.
    [179] Zhao, Y., Reed, J.H., Mao, S. and Bae, K.K., Overhead analysis for radio environment map-enabled cognitive radio networks, in: Proceedings of the IEEE Workshop on Networking Technologies for Software Defined Radio Networks, Reston, VA, September, 2006, pp. 18-25.
    [180] Zhao, Y., Le, B., and Reed J.H., Network support–the radio environment map, Cognitive radio technology, B. Fette, ed., Elsevier, 2006.
    [181] Riihij?rvi, J., M?h?nen, P., Wellens M. and Gordziel, M., Characterization and modelling of spectrum for dynamic spectrum access with spatial statistics and random fields, in: Proceeding of the 1st International Workshop on Cognitive Radios and Networks, in conjunction with IEEE PIMRC 2008, pp. 1-6.
    [182] Chen, R., Park, J.M. and Reed, J.H., Defense against primary user emulation attacks in cognitive radio networks, IEEE Journal on Selected Areas in Communications, Vol. 26, No. 1, 2008, pp. 25-37.
    [183] Vaidya, U.G., Banavar, R.N. and Singh, N.M., A chaotic phenomenon in the damped power swing equation, in: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 5, 1999, pp. 4650-4655.
    [184] Chen, Z., Zhang, Z. and Jiang, N., A session key generator based on chaotic sequence, in: Proceedings of International Conference on Computer Science and Software Engineering, Vol. 3, No. 3, 2008, pp. 635-637.
    [185] Zhang, F. and Zhang, X., The Influence of Channel Coding on Information Hiding Bounds and Detection Error Rate, Lecture Notes in Control andInformation Sciences, 2006, pp. 538-546.
    [186]孙圣和,陆哲明,数字水印处理技术,电子学报,2000,28(8):85-90。
    [187]王炳锡彭天强,信息隐藏技术,国防工业出版社,2007年9月,pp. 215-243。
    [188]柳葆芳,数据伪装与数据隐藏算法研究,解放军信息工程大学博士论文,2002年9月。
    [189] Morelos-Zaragoza, R. H., The art of error correcting coding, John Wiley and Sons, 2006, pp. 87-116.
    [190] Gao, T., Gu, Q., and Emmanuel, S., A novel image authentication scheme based on hyper-chaotic cell neutral network, Chaos, Solitons & Fractals , Vol.42, No.1, 2009, pp.548-553.
    [191] Kim, S. K. and Chung, M. G., More secure remote user authentication scheme, Computer Communications, Vol. 32, No. 6, 2009, pp. 1018-1021.
    [192] Chang, C. C., Lee, C. Y. and Chiu, Y. C., Enhanced authentication scheme with anonymity for roaming service in global mobility networks, Computer Communications, Vol. 32, No. 4, 2009, pp. 611-618.
    [193] Pei,Y., Liang, Y. C., Zhang, L., Teh, K. C. and Li, K. H., Secure communication over MISO cognitive radio channels, IEEE Transactions on Wireless Communications, Vol. 9, No. 4, April 2010, pp. 1494-1502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700