LRP16基因对3T3-L1脂肪细胞胰岛素抵抗的影响及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究人白血病相关蛋白16(Leukemia Related Protein16, LRP16)基因与核因子-κB (Nuclear Factor-κB,NF-κB)炎症通路的关系以及对3T3-L1脂肪细胞葡萄糖代谢和胰岛素信号转导通路的影响,探讨LRP16基因对3T3-L1脂肪细胞胰岛素敏感性的影响及其可能的分子机制。
     方法:(1)利用脂质体转染技术构建过表达LRP16基因的3T3-L1前脂肪细胞系3T3-L1-LRP16及其对照细胞系3T3-L1-3.1,按常规方法培养并诱导分化成熟,干预组加100gM的NF-κB抑制剂吡咯烷二硫氨基甲酸(Pyrrolidine Dithiocarbamate, PDTC)孵育24小时(对照组加DMSO),用100nM胰岛素刺激30分钟。2-脱氧-[3H]-D-葡萄糖法检测过表达LRP16对3T3-L1脂肪细胞胰岛素刺激状态下葡萄糖摄取率的影响;Western Blot法检测上述细胞中过表达LRP16基因对胰岛素受体底物-1(Insulin Receptor Substrate, IRS-1)信号通路中的关键蛋白pIRS-1(Ser307)、pIRS-1(Tyr1179)、 PI3-K(p85)、pAkt(Ser473)、pAkt(Thr308)表达的影响。(2)分别提取成熟的3T3-L1-LRP16及3T3-L1-3.1脂肪细胞的总蛋白和核蛋白,应用Western Blot法检测NF-κB p65的表达,给予上述PDTC干预和胰岛素刺激,免疫荧光法检测其NF-κB p65蛋白的细胞内分布以了解核转位情况。凝胶电泳迁移率实验(Electrophoretic mobility shift assay,EMSA)结合Supershift实验检测3T3-L1-LRP16及3T3-L1-3.1脂肪细胞的NF-κB p65的DNA结合活性。将pNF-KB-Luc、pcDNA-3.1、pcDNA-3.1-LRP16、pRL-TK质粒共转染Hela细胞,双荧光素酶报告检测系统检测NF-κB-Luc相对荧光素酶活性以反映NF-κB的转录活性;用PDTC预孵育细胞24小时作为干预,重复共转染实验。(3)实时荧光定量PCR法检测成熟3T3-L1-LRP16及3T3-L1-3.1脂肪细胞炎症细胞因子肿瘤坏死因子α(Tumor Necrosis Factor-alpha, TNF-α)、白介素-6(Interleukin-6, IL-6)、白介素-1β(Interleukin-1β,IL-1β)的mRNA表达、ELISA法检测细胞培养上清中TNF-α、IL-6、IL-1β蛋白的水平。
     结果:(1)过表达LRP16抑制3T3-L1脂肪细胞胰岛素刺激的葡萄糖摄取,上调pIRS-1(Ser307)蛋白的表达,下调pIRS-1(Tyr1179)、PI3-K(p85)、 pAkt(Ser473)、pAkt(Thr308)蛋白的表达,PDTC干预处理可改善上述LRP16对葡萄糖摄取及IRS-1信号通路的抑制性效应。(2)过表达LRP16增强3T3-L1脂肪细胞NF-κB p65核蛋白的DNA结合活性,促进NF-κB p65蛋白的核转位,增加NF-κB p65的核蛋白表达。LRP16剂量依赖性地增加Hela细胞NF-κB的转录活性,PDTC干预处理可以抑制LRP16对NF-κB p65的核蛋白水平、核转位、DNA结合活性和转录活性的增强效应。(3)过表达LRP16基因显著增加了脂肪细胞炎症因子的表达:3T3-L1-LRP16细胞中IL-6、IL-1p和TNF-αmRNA的表达水平分别是对照3T3-L1-3.1细胞的4.53、7.17、9.58倍(P<0.05),3T3-L1-LRP16细胞培养上清中的TNF-α、IL-6、IL-1β的蛋白浓度分别是对照3T3-L1-3.1细胞的1.54、1.78、2.13倍(P<0.05)。
     结论:LRP16通过增强NF-κB转录、增加NF-κBp65的DNA结合活性、促进NF-κB核转位激活了NF-κB炎症通路,促进了脂肪细胞炎症因子的表达,干扰了IRS-1信号通路,导致3T3-L1脂肪细胞胰岛素抵抗。
Objective:To investigate the effects and possible molecular mechanisms of LRP16gene on insulin resistance in murine3T3-L1adipocytes.
     Methods:(1) The LRP16gene over-expressing adipocyte cell line3T3-L1-LRP16and its control cell line3T3-L1-3.1were constructed using lipidosome transfection technology. They were cultured and induced for differentiating into adipocytes by regular method. Before the following experiments, the adipocytes were pretreated with or without100μM NF-κB inhibitor PDTC for24hours, then were incubated with100nM insulin for30minutes at37℃. The insulin-stimulated glucose uptake rates were determined by2-deoxy-[3H]-D-glucose assay. Expressions of key proteins in IRS-1signaling pathway such as pIRS-1Ser307), pIRS-1(Tyr1179), PI3-K(p85), pAkt(Ser473) and pAkt(Thr308), were detected by Western blot respectively.(2) Full-differentiated3T3-L1-LRP16and3T3-L1-3.1adipocytes, with or without pretreatment of100μM PDTC for24hours, were incubated with100nM insulin for30minutes. The protein contents of both nuclear NF-κB p65and total NF-κB p65were determined by Western blot assay. The intracellular distributions of NF-κB p65proteins in3T3-L1-3.1and3T3-L1-LRP16adipocytes were detected by immunofluorescence analysis. The contents of active NF-κB in the nuclear extracts prepared from3T3-L1-LRP16and3T3-L1-3.1adipocytes were determined by non-radioactive electrophoretic mobility shift assay (EMSA) and supershift assay to evaluate the DNA binding activity of NF-κB p65protein. Hela cells were transiently co-transfected with the structural expression vectors including pNF-icB-Luc, pcDNA-3.1-LRP16, pcDNA-3.1, and the internal control vector pRL-TK, followed by treatment of100μM PDTC. Then the NF-κB relative luciferase activity which reflected the transcriptional activity of NF-κB was detected using a Dual-luciferase Reporter Gene Assay system.(3) The mRNA expressions of inflammatory cytokines in3T3-L1-3.1and3T3-L1-LRP16adipocytes such as TNF-α, IL-6, IL-1β were measured by real-time quantitative PCR. The concentrations of TNF-α, IL-6, and IL-1β in the supernatants of cultured3T3-L1-3.1and3T3-L1-LRP16adipocytes were measured using ELISA kits.
     Results:(1) Over-expression of LRP16gene significantly inhibited the insulin-stimulated glucose uptake in3T3-L1adipocytes:the levels of glucose uptake in3T3-L1-LRP16adipocytes were significantly reduced to45.7%of that in3T3-L1-3.1adipocytes (P<0.05). LRP16over-expression in3T3-L1adipocytes also increased the protein expression of pIRS-1(Ser307), but decreased the expressions of pIRS-1(Tyr1179), PI3-K(p85), pAkt(Ser473) and pAkt(Thr308). PDTC treatment abolished the above inhibitory effects of LRP16on insulin-stimulated glucose uptake and IRS-1signaling.(2) Over-expression of LRP16gene enhanced the DNA binding activity of NF-κB p65, EMS A showed the DNA binding activity of NF-κB p65in3T3-L1-LRP16adipocytes was2.6-fold of that in3T3-L1-3.1adipocytes. LRP16also promoted the nuclear translocation of NF-κB p65,and increased the expression of nuclear NF-κB p65protein in3T3-L1adipocytes. LRP16enhanced the transcriptional activity of NF-κB in a dose-dependent manner in Hela cells, which could be abolished by treatment with a NF-κB inhibitor of PDTC.(3) LRP16gene enhanced the expressions of inflammatory cytokines:the relative levels of IL-6, IL-1β and TNF-a mRNA transcripts in3T3-L1-LRP16adipocytes were4.53,7.17and9.58-fold of that in3T3-L1-3.1adipocytes, respectively (P<0.05). The concentrations of IL-6, IL-1β and TNF-α in the supernatants of cultured3T3-L1-LRP16adipocytes were1.54,1.78and2.13-fold of that in3T3-L1-3.1adipocytes, respectively (P<0.05).
     Conclusions:LRP16gene enhanced the transcription of NF-κ, promoted the nuclear translocation and DNA binding of NF-κBp65, upregulated the expressions of inflammatory cytokines, subsequently impaired the IRS-1signaling pathway and induced insulin resistance in3T3-L1adipocytes.
引文
1.潘长玉,陆菊明.糖尿病及相关疾病研究进展.解放军医学杂志.2006,31(9):925-926
    2. Cockram CS. The epidemiology of diabetes mellitus in the Asia-pacific region. HKMJ.2000,6:43-52
    3.潘长玉.糖尿病经济负担.中华内科杂志.2001,81:1-2
    4. Bruno G, Landi A. Epidemiology and costs of diabetes. Transplant Proc.2011, 43(1):327-329
    5. Iamilnd J. The double puzzle of diabetes. Nature.2003,423:599-602
    6. Pan CY, Shang SH, Kirch W, et al. Burden of diabetes in the adult Chinese population:A systematic literature review and future projections. Int J Gen Med.2010,3:173-179
    7. Jia WP, Pang C, Chen L, et al. Epidemiological characteristics of diabetes mellitus and impaired glucose regulation in a Chinese adult population:the Shanghai Diabetes Studies, a cross-sectional 3-year follow-up study in Shanghai urban communities. Diabetologia.2007,50(2):286-292
    8. Quinn L. Type 2 diabetes:epidemiology, pathophysiology, and diagnosis. Natrs Clin North Am.2001,36:175-192
    9. Ginsberg H. Insulin resistance and cardiovascular disease. J Clin Invest 2000, 106:453-458
    10. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signaling pathways: insights into insulin action. Nat Rev Mol Cell Biol.2006,7:85-96
    11. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004,27(3):813-823
    12. Le Roith D, Zick Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 2001,24(3):588-597
    13. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J diabetes 2010,1(3):68-75
    14. Shepherd PR, Withers DJ, Siddle K, et al. Phosphoinositide 3-kinase:the key switch mechanism in insulin signaling. Biochem J.1998,333:471-490.
    15.陈家伦.胰岛素信号转导及临床意义(上).国外医学内分泌学分册.2002,22(1):1-4
    16. Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signaling in insulin-sensitive tissues. Acta Physiol Scand.2005,183(1):3-12
    17. Fayard E, Xue G, Parcellier A, et al. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr Top Microbiol Immunol.2010, 346:31-56
    18. Esposito DL, Li Y, Cama A, et al. Tyr(612) and Tyr(632)in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinoditol 3-kinase activity and translocation of GLUT-4 in adipose cells. Endocrinology.2001,142:2833-2840
    19. Kaburagi Y, Yamauchi T, Yamamoto-Honda R, et al. The mechanism of insulin-induced signal transduction mediated by the insulin receptor substrate family. Endocr J.1999,46 Suppl:S25-34
    20. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol.2011,11(2):98-107
    21. Lee YH, Pratley RE. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep.2005,5(1):70-75
    22. Wisse BE. The inflammatory syndrome:the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol.2004,15(11): 2792-2800
    23. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha:a key component of the obesity-diabetes link. Diabetes 1994,43:1271-1278
    24. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science 1993,259:87-91
    25. Visser M, Bouter LM, McQuillan GM, et al. Elevated C-reactive protein levels in overweight and obese adults. JAMA 1999,282:2131-2135
    26. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA.2001,286:327-334
    27. Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes:results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003,52:812-817
    28. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986,46:705-716
    29. Balwin AS. The NF-κB and IκB proteins:new discoveries and insights. Annu Rev Immunol,1996,14:649-683
    30. Tak PP, Firestein GS. NF-κB:a key role in inflammatory diseases. J Clin Invest.2001,107(1):7-11
    31. Sanz AB, Sanchez-Nino MD, Ramos AM, et al. NF-kappaB in renal inflammation. Am Soc Nephrol.2010,21(8):1254-1262
    32. Rahman I, Gilmour PS, Jimenez LA, et al. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells:potential mechanism in gene. Mol Cell Biochem.2002, 234-235 (1-2):239-248
    33. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 1996,271:665-668
    34. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006,17(1):4-12
    35.于力,韩为东,楼方定,等.新的白血病相关基因LRP16的克隆.军医进修学院学报.2000,21:81-84
    36.韩为东,于力,楼方定,等.RACE技术在钓取白血病相关基因LRP16全长cDNA中的应用.中国实验血液学杂志.2001,9:14-17
    37.韩为东,于力,楼方定,等.一个新的白血病相关基因—全长cDNA的克隆、序列分析及表达特征.中国生物化学与分子生物学报.2001,17:58-63
    38.韩为东,楼方定,于力,等.LRP16编码蛋白质的信息学分析及其细胞内定位的实验研究.军医进修学院学报.2002,23:14-17
    39.韩为东,孟元光,廖代祥,等.LRP16通过调控E-钙黏着蛋白的表达促进MCF-7细胞的侵袭生长.中国生物化学与分子生物学报.2006,22:724-732
    40. Han WD, Mu YM, Lu XC, et al. Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report. Endocr Relat Cancer.2003,10:217-224
    41. Han WD, Zhao YL, Meng YG, et al. Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor's transcriptional activity. Endocr Relat Cancer.2007,14:741-753
    42. Hollingsworth DR. Alterations of maternal metabolism in normal and diabetic pregnancies:differences in insulin-dependent, non insulin-dependent and gestational diabetes. Am J Obst Gynecol.1983,146:417-429
    43. Tomazic M, Janez A, Sketelj A, et al. Comparison of alterations in insulin signaling pathway in adipocytes from Type Ⅱ diabetic pregnant women and women with gestational diabetes mellitus. Diabetologia.2002,45:502-508
    44. Polderman KH, Gooren LJ, Asscheman H, et al. Induction of Insulin Resistance by Androgens and Estrogens. J Clin Endocrinol Metab.1994,79: 265-271
    45. Livingstone C, Collison M. Sex steroids and insulin resistance. Clin Sci.2002, 102:151-166
    46. Nagira K, Saito S, Wada T, et al. Altered subcellular distribution of estrogen receptor alpha is implicated in estradiol-induced dual regulation of insulin signaling in 3T3-L1 adipocytes. Endocrinology.2006,147(2):1020-1028
    47. Muraki K, Okuya S, Tanizawa Y, et al. Estrogen receptor alpha regulates sensitivity through IRS-1 tyrosine phosphrylation in mature 3T3-L1 adipocytes. Endocrine J.2006,53(6):841-851
    1. Quinn L. Type 2 diabetes:epidemiology, pathophysiology, and diagnosis. Natrs Clin North Am.2001,36:175-192
    2. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004,27(3):813-823
    3. Le Roith D, Zick Y. Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 2001,24(3):588-597
    4. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J diabetes 2010,1(3):68-75
    5. Wisse BE. The inflammatory syndrome:the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol.2004,15(11): 2792-2800
    6. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 1996,271:665-668
    7. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol.2011,11(2):98-107
    8. Polderman KH, Gooren LJ, Asscheman H, et al. Induction of Insulin Resistance by Androgens and Estrogens. J Clin Endocrinol Metab.1994,79: 265-271
    9. Livingstone C, Collison M. Sex steroids and insulin resistance. Clin Sci.2002, 102:151-166
    10. Nagira K, Saito S, Wada T, et al. Altered subcellular distribution of estrogen receptor alpha is implicated in estradiol-induced dual regulation of insulin signaling in 3T3-L1 adipocytes. Endocrinology.2006,147(2):1020-1028
    11. Muraki K, Okuya S, Tanizawa Y, et al. Estrogen receptor alpha regulates sensitivity through IRS-1 tyrosine phosphrylation in mature 3T3-L1 adipocytes. Endocrine J.2006,53(6):841-851
    12. Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signaling in insulin-sensitive tissues. Acta Physiol Scand.2005,183(1):3-12
    13. Kaburagi Y, Yamauchi T, Yamamoto-Honda R, et al. The mechanism of insulin-induced signal transduction mediated by the insulin receptor substrate family. Endocr J.1999,46 Suppl:S25-34
    14.陈家伦.胰岛素信号转导及临床意义(上).国外医学内分泌学分册.2002,22(1):1-4
    15. Solow BT, Harada S, Goldstein BJ, et al. Differential modulation of the tyrosine phosphorylation state of the insulin receptor by IRS protein. Mol Endocrinol.1999,13:1784-1798.
    16. De Fea K, Roth RA. Modulation on insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. Biol Chem. 1997,272:31400-31406.
    17. Esposito DL, Li Y, Cama A, et al. Tyr(612) and Tyr(632)in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinoditol 3-kinase activity and translocation of GLUT-4 in adipose cells. Endocrinology.2001,142:2833-2840
    18. Shepherd PR, Withers DJ, Siddle K, et al. Phosphoinositide 3-kinase:the key switch mechanism in insulin signaling. Biochem J.1998,333:471-490.
    19. Fayard E, Xue G, Parcellier A, et al. Protein kinase B (PKB/Akt), a key mediator of the PI3K signaling pathway. Curr Top Microbiol Immunol.2010, 346:31-56
    20. Crespo CJ, Smit E, Snelling A, et al. Hormone replacement therapy and its relationship to lipid and glucose metabolism in diabetic and nondiabetic postmenopausal women:results from the Third National Health and Nutrition Examination Survey (NHANES Ⅲ). Diabetes Care 2002,25:1675-1680
    21. Aguirre V, Werner ED, Giraud J, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem.2002,277:1531-1537
    22. Tamura Y, Ogihara T, Uchida T, et al. Amelioration of glucose tolerance by hepatic inhibition of nuclear factor kappaB in db/db mice. Diabetologia 2007, 50(1):131-141
    23. Ogihara T, Asano T, Katagiri H, et al. Oxidative stress induces insulin resistance by activating the nuclear factor kappa B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia 2004,47(5):794-805
    24. Cat D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK--beta and NF-kappaB. Nat Med. 2005,11(2):183-190
    25. Ping Yi, Fu-Er Lu, Li-Jun Xu, et al. Berberine reverses free fatty acid induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ. World J Gastroenterol.2008,14(6):876-883
    1. Tilg H, Moschen AR. Inflammatory mechanisms in the regulation of insulin resistance Mol Med.2008,14(3-4):222-231
    2. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006,444: 860-867
    3. Tamura Y, Ogihara T, Uchida T, et al. Amelioration of glucose tolerance by hepatic inhibition of nuclear factor kappaB in db/db mice. Diabetologia 2007, 50(1):131-141
    4. Ogihara T, Asano T, Katagiri H, et al. Oxidative stress induces insulin resistance by activating the nuclear factor kappa B pathway and disrupting normal subcellular distribution of phosphatidylinositol 3-kinase. Diabetologia 2004,47(5):794-805
    5. Cat D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK--beta and NF-kappaB. Nat Med. 2005,11(2):183-190
    6. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol.2011,11(2):98-107
    7. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science 1993,259:87-91
    8. Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes:results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003,52:812-817
    9. Balwin AS. The NF-κB and IκB proteins:new discoveries and insights. Annu Rev Immunol,1996,14:649-683
    10. Tak PP, Firestein GS. NF-κB:a key role in inflammatory diseases. J Clin Invest.2001,107(1):7-11
    11. Gilmore TD. Introduction to NF-kappaB:players, pathways, perspectives. Oncogene.2006,25(51):6680-6684
    12. Sanz AB, Sanchez-Nino MD, Ramos AM, et al. NF-kappaB in renal inflammation. Am Soc Nephrol.2010,21(8):1254-1262
    13. Rahman I, Gilmour PS, Jimenez LA, et al. Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells:potential mechanism in gene. Mol Cell Biochem.2002, 234-235 (1-2):239-248
    14. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005,115(5):1111-1119
    15.卢圣栋主编.《现代分子生物学实验技术》第二版.中国协和医科大学出版社.563页
    16. Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 1996,271:665-668
    1. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol.2011,11(2):98-107
    2. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest.2006,116:1793-1801
    3. Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006,444: 860-867
    4. Lee YH, Pratley RE. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diab Rep.2005,5(1):70-75
    5. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol.2010,316(2):129-139
    6. Rosen ED, Spiegelman BM. Adipocyte as regulators of energy balance and glucose homeostasis. Nature.2006,444:847-853
    7. Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol.2005,115:911-919
    8. Wisse BE. The inflammatory syndrome:the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol.2004,15(11): 2792-2800
    9. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science 1993,259:87-91
    10. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA.2001,286:327-334
    11. Spranger J, Kroke A, Mohlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes:results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 2003,52:812-817
    12. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha:a key component of the obesity-diabetes link. Diabetes 1994,43:1271-1278
    13. Hotamisligil GS, Murray DL, Choy LN, et al. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci USA.1994, 91:4854-4858
    14. Jager J, Gremeaux T, Cormont M, et al. Interleukin-1 beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology.2007,148(1):245-251
    15. Tak PP, Firestein GS. NF-κB:a key role in inflammatory diseases. J Clin Invest.2001,107(1):7-11
    16. Uysal KT, Wiesbrock SM, Marino MW, et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature.1997,389:610-614
    17. Ishizuka K, Usui I, Kanatani Y, et al. Chronic tumor necrosis factor-alpha treatment causes insulin resistance via insulin receptor substrate-1 serine phosphorylation and suppressor of cytokine signaling-3 induction in 3T3-L1 adipocytes. Endocrinology.2007,148(6):2994-3003
    18. Paz K, Hemi R, LeRoith D, et al. A molecular basis for insulin resistance: elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997,272:29911-29918
    19. Aguirre V, Uchida T, Yenush L, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem.2000,275: 9047-9054
    20. Ruan H, Hacohen N, Golub TR, et al. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes:nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes.2002,51(5):1319-1336
    21. Kern PA, Saghizadeh M, Ong JM, et al. The expression of tumor necrosis factor in human adipose tissue:regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest.1995,95:2111-2119
    22. Fernander-Real JM, Broch M, Verdrell J, et al. Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes.2000,49:517-520
    23. Rotter V, Nagaev I, Smith U. IL-6 induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, over-expression in human fat cells from insulin resistant subjects. J Biol Chem.2003,278: 45777-45784
    24. Kopp HP, Kopp CW, Festa A, et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol.2003,23(6): 1042-1047
    25. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS):A potential mediator of IL-6 dependent insulin resistance hepatocytes. J Biol Chem.2003,178:13740-13746
    26. Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam Horm.2009,80:613-633
    27. Klover PJ, Clementi AH, Mooney RA. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology.2005,146(8): 3417-3427
    28. Mandrup-Poulsen T. Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol.2003,66(8):1433-1440
    1. Sen R, Baltimore D. Multiple nuclear factor interact with the immunoglobulin enhancer sequence. Cell.1986,46:705-716
    2. Balwin AS. The NF-κB and IκB proteins:new discoveries and insights. Annu Rev Immunol.1996,14:649-683
    3. Li J, Peet GW, Pullen SS, et al. Recombinant IkappaB kinase alpha and beta are direct kinases of I-kappaB alpha. J Biol Chem.1998,273 (46): 30736-30741
    4. Rothwarf DM, Karin M. The NF-κB activation pathway:a paradigm in information transfer from membrane to nucleus. Sci STKE,1999(5):RE1
    5. Baeuerle PA, Baltimore D. NF-κB:ten years after. Cell.1996,87:13-20
    6. Tak PP, Firestein GS. NF-κB:a key role in inflammatory diseases. J Clin Invest.2001,107(1):7-11
    7. Boden G, She P, Mozzoli M, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes.2005,54(12):3458-3465
    8. 崔丽娟,都健,王娟,等.高脂喂养大鼠肝脏的NF-κBP65表达与胰岛素抵抗的相关性.中国实验动物学报.2008,16(6):417-420
    9. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med.2005, 11(2):183-190
    10. Ajuwon KM, Spurlock ME. Palmitate activates the NF-κB transcription factor and induces IL-6 and TNF-a expression in 3T3-L1 adipocytes. J Nutr. 2005,135(8):1841-1846
    11. Kim JK, Kim YJ, Fillmore JJ, et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest.2001,108(3):437-446
    12. Yi P, Lu FE, Xu LJ, et al. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKbeta. World J Gastroenterol.2008,14 (6):876-883
    13. Lappas M, Yee K, Permezel M, et al. Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-kappaB and IkappaB kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology.2005,146(3):1491-1497
    14. Ruan H, Pownall HJ, Lodish HF. Troglitazone antagonizes tumor necrosis factor-alpha induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kappaB. J Biol Chem. 2003,278:28181-28192
    15. Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol.2005,288:1220-1225
    16. Berg AH, Lin Y, Lisanti MP, et al. Adipocyte differentiation induces dynamic changes in NF-kappaB expression and activity. Am J Physiol Endocrinol Metab.2004,287:1178-1188
    17. Sinha S, Perdomo G, Brown NF, et al. Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappaB. J Biol Chem.2004,279 (40):41294-41301
    18. Sriwijitkamol A, Christ-Roberts C, Berria R, et al. Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes:reversal by exercise training. Diabetes.2006, 55:760-767
    19. Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity-and diet-induced insulin resistance. Int J Obes Relat Metab Disord.2003,27(suppl3):s49-52
    20. Aljada A, Chanim H, Saadeh R, et al. Insulin inhibits NF-κB and MCP-1 expression in human aortic endothelial cells. J Clin Endocrinol Metal.2001, 86(1):450-453
    21. Dandona P,Aljada A,Mohanty P, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates I kappa B in mononuclear cells in obese subjects:evidence for an anti-inflammatory effect? J Clin Endocrinol Metab. 2001,86(7):3257-3265
    22. Gao Z,Hwang D, Bataille F, et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem.2002,277(50): 48115-48121
    23. Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity and diet induced insulin resistance with salicylates or targeted disruption of IKK. Science.2001,293(5535):1673-1677
    24. Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest.2002,109 (10):1321-1326
    25. Ohga S, Shikata K, Yozai K, et al. Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol.2007,292 (4):1141-1150
    26. Ha T, Li Y, Gao X, et al. Attenuation of cardiac hypertrophy by inhibiting both mTOR and NF-kappaB activation in vivo. Free Radic Biol Med.2005, 39 (12):1570-1580
    27. Mohanty P, Aljada A, Ghanim H, et al. Evidence for a potent anti-inflammatory effect of rosiglitazone. J Clin Endocrinol Metab.2004,89 (6):2728-2735
    28. Isoda K, Young JL, Zirlik A, et al. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol.2006,26 (3):611-617
    29. Ferder L, Inserra F, Martinez-Maldonado M. Inflammation and the metabolic syndrome:role of angiotensin Ⅱ and oxidative stress. Curr Hypertens Rep. 2006,8 (3):191-198
    30. Lee FT, Cao Z, Long DM, et al. Interactions between angiotensin Ⅱ and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. J Am Soc Nephrol.2004,15 (8):2139-2151
    31. Blanco-Colio LM, Martin-Ventura JL, de Teresa E, et al. Elevated ICAM-1 and MCP-1 plasma levels in subjects at high cardiovascular risk are diminished by atorvastatin treatment. Atorvastatin on Inflammatory Markers study:a substudy of Achieve Cholesterol Targets Fast with Atorvastatin Stratified Titration. Am Heart J.2007,153 (5):881-888
    32. Ortego M, Gomez-Hemandez A, Vidal C, et al. HMG-CoA reductase inhibitors reduce I kappaB kinase activity induced by oxidative stress in monocytes and vascular smooth muscle cells. J Cardiovasc Pharmacol.2005, 45:468-475
    33.崔丽娟,都健,朱丹,等.辛伐他汀对胰岛素抵抗大鼠肝脏NF-κB p65表达的影响.中国糖尿病杂志.2008,16(7):432-437
    34. Kim YS, Ahn Y, Hong MH, et al. Rosuvastatin suppresses the inflammatory responses through inhibition of c-Jun N-terminal kinase and Nuclear Factor-kappaB in endothelial cells. J Cardiovasc Pharmacol.2007,49 (6): 376-383
    35.郭颖,高毅,苏磊,等.小白菊内酯逆转胰岛素抵抗的研究.中国糖尿病杂志.2008,16(8):481-484
    36. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the Nuclear factor-KB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001,107(2):135-142
    37. Kim SJ, Park JH, Kim KH, et al. Effect of NF-κB decoy oligodeoxynucleotide on LPS/high-fat diet-induced atherosclerosis in an animal model. Basic Clin Pharmacol Toxicol.2010,107(6):925-930

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700