可控超分子自组装及超分子纤维原位增强聚合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学是研究基于分子间的非共价键相互作用的化学。一般来说自组装的驱动力来源于分子间的相互作用,所以通常的自组装行为都是自发的,是不可控的。目前,通过外加声、光、电、磁、热、阴阳离子、氧化还原等手段,对于自组装行为的调控已经引起了广泛的关注。另外,将超分子聚集体引入高分子基体中可以原位增强聚合物材料的性能,相对于传统的纤维增强复合材料,分子复合材料已经显示出独特的优势。
     本文利用一种水性凝胶因子将三嵌段聚合物的水溶液凝胶化,通过调节温度使三嵌段聚合物的水溶液体系在特定的温度范围内转变为层状结构,诱导水性凝胶因子在其中发生三维向二维结构转变的自组装行为,从而达到了通过温度调控自组装行为的目的。通过将有机的凝胶因子聚集体和金属-有机复合物的聚集体引入聚氨酯基体中,制备了一系列分子复合材料,研究了超分子纤维分子增强的效果,探讨了凝胶因子聚集体分子增强聚合物的机理。
     本论文包括以下主要内容:
     1、本工作利用PEO-PPO-PEO三嵌段共聚物(PE6200)水溶液在特定温度下发生从各向同性的胶束相到各向异性的层状相转变的性质,以一种均苯四甲酸和对羟基吡啶(1:2)的双组份水性凝胶因子(简称为HB21)将体系凝胶化,研究了凝胶因子在PE6200水体系中的自组装行为。小角X射线散射(SAXS)结果表明,在低于50℃的温度范围,PE6200水体系为各向同性液体状态,凝胶因子在此体系中自组装形成稳定的三维网络结构。而在50-60℃时,由于PE6200转变为层状相结构,凝胶因子在亲水性和体系熵稳定性的共同作用下,在PE6200极化区域的富水层中转变成为二维自组装结构。差示量热扫描(DSC)、变温拉曼光谱和电化学循环伏安法的表征,进一步证实了在这个温度范围下的相转变行为。这些研究表明,凝胶因子从三维到二维自组装的转变是一种热力学控制的过程,由此提出了一种利用嵌段共聚物相行为的热力学可控自组装的新策略。
     2、在常规聚合物前体树脂(改性聚氨酯齐聚物SM6202)中引入凝胶因子1,3;2,4-二亚苄叉山梨醇(DBS)自组装形成的纳米纤维状聚集体,利用分子复合的原理,首先使聚合物前体树脂凝胶化,随后通过光引发聚合,制备了分子复合聚合物,实现对聚合物的增强。研究结果表明DBS在齐聚物基体树脂中有良好的凝胶性能,并且通过SEM表征证实DBS自组装形成了纳米纤维状超分子聚集体。通过测定不同浓度的DBS聚集体与改性聚氨酯形成的分子复合材料的应力应变曲线,发现由于DBS的加入,使树脂的断裂伸长率以及拉伸断裂强度都显著提高,其中断裂伸长率由31%增加到45%,增幅为50%,拉伸断裂强度由1.4MPa增加到4.2MPa,增幅为200%。即当DBS加入,基体树脂在宏观上表现为既增韧又增强的性质。同时通过动态力学热分析(DMA)研究,表征了凝胶因子DBS分子聚集体的加入对于复合材料内在模量以及体系玻璃化温度的影响。另外通过比重与透明性测试表明,DBS聚集体原位增强的复合材料在增强力学性能的同时,仍然能够保持高分子材料比重轻与透明度高的特性,体现了分子复合材料相比传统的宏观纤维增强材料的优势。
     3、利用Fe(Ⅲ)与癸二酸形成的复合物(简称为Fe(SA)),并将其引入改性聚氨酯齐聚物(SM6202)中使其凝胶化,随后通过光引发聚合,制备了分子复合聚合物,实现对聚合物的增强。SEM测试结果表明Fe(SA)可以形成内含卷曲薄片状的球状聚集体结构,并且通过拉伸断裂测试得到含有Fe(SA)的聚氨酯复合材料的断裂伸长率以及拉伸断裂强度都显著提高,其中拉伸断裂强度由1.4MPa增加到4.3MPa,增幅为207%;断裂伸长率由31%增加到53%,增幅为71%。即当Fe(SA)加入,基体树脂在宏观上表现为既增韧又增强的性质。同时同时通过动态力学热分析(DMA)研究,表明Fe(SA)聚集体的加入可以增加聚合物的储能模量,并且使玻璃化温度上升。另外通过比重和透明度的分析,也证实了Fe(SA)聚集体分子增强材料在增加力学性能的同时仍能保持高分子材料比重轻和透明度高的特性,相对于无机的纳米颗粒填料,体现了分子复合材料的优势。
Supramolecular chemistry is the chemistry that focus on intermolecular non-covalentinteractions. The driving force of self-assembly generally comes from intermolecularnon-covalent interactions. So usually self-assembly behaviors are all spontaneous anduncontrollable. Stable supramolecular gels can be formed through solvent moleculeswhich bound in the network. Nowadays, the regulation of self-assembly behavior byapplying sound, light, electricity, magnetism, heat, ions, redox and other means has causedwidespread concern. In addition, the performance of the polymer material can be enhancedin situ by introducing supramolecular aggregates into the polymer matrix. Molecularcomposite has shown a unique advantage which has been compared with traditionalfiber-reinforced composites.
     The aqueous solution of the triblock polymer can be gelled by taking advantage ofhydrogelator. The hydrogelator aggregates phase behaviour can be turned from3D to2Dwhile the aqueous solution of the triblock polymer bacome lamellar structure within aspecific temperature range. So the self-assembly behaviour of hydrogelator can becontrolled by tuning the temperature. A series of molecular composites were prepared byintroducing organic gelator and organic-metal aggregates into polyurethane matrix. Themolecular reinforce effect and the mechanism of gelator aggregates enhance polymer wasstudied.
     This thesis is consisted of several sections as the following:
     1. This work took advantage of the PEO-PPO-PEO three block copolymer aqueoussolution (PE6200) which had phase transition properties that from isotropy micellar phaseto anisotropic lamellar at specific temperatures. The self-assembly behavior of gelator inPE6200water system was studied by introducing the hydrogelator (HB21) that contains1,2,4,5-benzenetetracarboxylic acid and4-hydroxypyridine (1:2) into the aqueous system. Small Angle X-ray scattering (SAXS) results showed that PE6200water system becameisotropic liquid, gelator self-assembled to form stable three-dimensional network structure,in the temperature range less than50℃. While warned up to50~60℃, gelatoraggregates transformed into two-dimensional self-assembly structures in PE6200polarized area rich in water, beause the hydrophilic factor and the stability of the systementropy PE6200into lamellar structure. Scanning differential calorimeter (DSC), variabletemperature Raman spectroscopy and electrochemical cyclic voltammetry characterization,further confirmed the phase transition behavior in the temperature range. These resultssuggest that gelator from3D to2D self-assembly is a process of thermodynamiccontrolled. Thus put forward a way to tune self-assembly behaviour by taking advantageof thermodynamics controllable block copolymer.
     2. Nanometer fibrous aggregates which formed by organic gelator1,3:2,4-Dibenzylidene sorbitol (DBS) were introduced into a conventional modifiedpolyurethane resin (SM6202). Through the principle of molecular composite, organicgelator DBS gelled the precursor polymer resin first and then the gel polymerized by UVinitiate to prepare molecular composite polymer. The results showed that DBS in theoligomer matrix resin had excellent gelation performance, DBS supramolecularaggregates formed nano fibrous confirmed by SEM. The elongation at break and tensilefracture strength of composites increased significantly, which was demonstrated bystress-strain curve of composite material that contained DBS aggregate and modifiedpolyurethane. The elongation at break increased from31%to45%with a growth of50%,the tensile breaking strength increased from1.4MPa to4.2MPa with a growth of200%.The composites material with DBS became toughening and strengthening on themacroscopic. The influence of inherent modulus of the composite material and glasstransition temperature of the system with DBS aggregates were characterized by dynamicmechanical thermal analysis (DMA). In addition, the specific gravity and transparency testshowed that DBS composites in situ not only enhanced mechanical properties but also maintained the characteristics of light weight and high transparency of polymer materials.The results demonstrated the unique advantages which compared to the traditionalmacro-fiber composites.
     3. Polyurethane oligomer (SM6202) was gelled by Fe(Ⅲ) and sebacic acid whichformed compounds Fe(SA). The preparation of molecular composite polymer was carriedout by UV-light initiate. The SEM results showed that the Fe(SA) became sphericalaggregates which formed by curly lamellar. The elongation at break and tensile fracturestrength of polyurethane composites were improved significantly. The elongation at breakincreased from31%to53%with a growth of71%, the tensile breaking strength increasedfrom1.4MPa to4.3MPa with a growth of207%. The composite material bacametoughening and strengthening on the macroscopic. The storage modulus and glasstransition temperature of Fe(SA) composites increaseed which was confirmed by dynamicmechanical thermal analysis (DMA). In addition, the specific gravity and transparency testshowed that Fe(SA) composites in situ not only enhanced mechanical properties but alsomaintained the characteristics of light weight and high transparency of polymer materials.The results demonstrated the unique advantages which compared to the nano-particulatefiller.
引文
[1] Lehn J. M. and Sanders J. K. Supramolecular chemistry: Concepts andperspectives, New York: Vch1995.
    [2] Ringsdorf H., Schlarb B., and Venzmer J. Molecular architecture and function ofpolymeric oriented systems: Models for the study of organization, surfacerecognition, and dynamics of biomembranes, Angew. Chem. Int. Ed.1988,27:113-158.
    [3] Zhang X. and Shen J. Self-assembled ultrathin films: From layerednanoarchitectures to functional assemblies, Adv. Mater.1999,11:1139-1143.
    [4] Cheng Q. Y., Zhou D., Gao Y., et al. Supramolecular self-assembly inducedgraphene oxide based hydrogels and organogels, Langmuir2012,28:3005-3010.
    [5] Naota T. and Koori H. Molecules that assemble by sound: An application to theinstant gelation of stable organic fluids, J. Am. Chem. Soc.2005,127:9324-9325.
    [6] Lloyd G. O. and Steed J. W. Anion-tuning of supramolecular gel properties, Nat.Chem.2009,1:437-442.
    [7] Cravotto G. and Cintas P. Molecular self-assembly and patterning induced bysound waves. The case of gelation, Chem. Soc. Rev.2009,38:2684-2697.
    [8] Qiao Y., Lin Y., Yang Z., et al. Unique temperature-dependent supramolecularself-assembly: From hierarchical1D nanostructures to super hydrogel, J. Phys.Chem. B2010,114:11725-11730.
    [9] Danyadi L., Janecska T., Szabo Z., et al. Wood flour filled PP composites:Compatibilization and adhesion, Compos. Sci. Technol.2007,67:2838-2846.
    [10] Rusu G. and Rusu E. Nylon6/copper composites by in situ polymerization, J.Optoelectron. Adv. M.2009,11:673-680.
    [11] Arencon D. and Velasco J. I. The influence of injection-molding variables andnucleating additives on thermal and mechanical properties of short glass fiber/PETcomposites, J. Thermoplast. Compos. Mater.2002,15:317-336.
    [12] Own C. S., Seader D., D'Souza N. A., et al. Cowoven polypropylene/glasscomposites with polypropylene plus polymer liquid crystal interlayers: Dynamicmechanical and thermal analysis, Polym. Compos.1998,19:107-115.
    [13] Samanta S. K., Subrahmanyam K. S., Bhattacharya S., et al. Composites ofgraphene and other nanocarbons with organogelators assembled throughsupramolecular interactions, Chem.-Eur. J.2012,18:2890-2901.
    [14] Lai W. C. The effect of self-assembled nanofibrils on the morphology andmicrostructure of poly(L-lactic acid), Soft Matter2011,7:3844-3851.
    [15] Lai W. C. and Tseng S. C. Novel polymeric nanocomposites and porous materialsprepared using organogels, Nanotechnology2009,20:475606.
    [16] Isare B., Petit L., Bugnet E., et al. The weak help the strong: Low-molar-massorganogelators harden bitumen, Langmuir2009,25:8400-8403.
    [17] Stone D. A., Hsu L., Wheeler N. R., et al. Mechanical enhancement viaself-assembled nanostructures in polymer nanocomposites, Soft Matter2011,7:2449-2455.
    [18] Merschky M., Wyszogrodzka M., Haag R., et al. pH-triggered self-assembly ofzwitterionic polyglycerol dendrons into discrete and highly stable supramoleculardendrimers in water, Chem.-Eur. J.2010,16:14242-14246.
    [19] Wang T., Jiang J., Liu Y., et al. Hierarchical self-assembly of bolaamphiphiles witha hybrid spacer and L-glutamic acid headgroup: pH-and surface-triggeredhydrogels, vesicles, nanofibers, and nanotubes, Langmuir2010,26:18694-18700.
    [20] Zhang X., Zou J., Tamhane K., et al. Self-assembly of pH-switchable spiral tubes:Supramolecular chemical springs, Small2010,6:217-220.
    [21] Kumaraswamy P., Lakshmanan R., Sethuraman S., et al. Self-assembly of peptides:Influence of substrate, pH and medium on the formation of supramolecularassemblies, Soft Matter2011,7:2744-2754.
    [22] von Groning M., de Feijter I., Stuart M. C. A., et al. Tuning the aqueousself-assembly of multistimuli-responsive polyanionic peptide nanorods, J. Mater.Chem. B2013,1:2008-2012.
    [23] Tsuda A., Sakamoto S., Yamaguchi K., et al. A novel supramolecular multicolorthermometer by self-assembly of a π-extended zinc porphyrin complex, J. Am.Chem. Soc.2003,125:15722-15723.
    [24] Yagai S., Yamauchi M., Kobayashi A., et al. Control over hierarchy levels in theself-assembly of stackable nanotoroids, J. Am. Chem. Soc.2012,134:18205-18208.
    [25] Fages F. Metal coordination to assist molecular gelation, Angew. Chem. Int. Ed.2006,45:1680-1682.
    [26] Trivedi D. R. and Dastidar P. Instant gelation of various organic fluids includingpetrol at room temperature by a new class of supramolecular gelators, Chem.Mater.2006,18:1470-1478.
    [27] Li Y., Wang T., and Liu M. Ultrasound induced formation of organogel from aglutamic dendron, Tetrahedron2007,63:7468-7473.
    [28] Shinkai S., Yoshida T., Miyazaki K., et al. Photoresponsive crown ethers.19.Photocontrol of reversible association-dissociation phenomena in"tail(ammonium)-biting" crown ethers, Bull. Chem. Soc. Jpn.1987,60:1819-1824.
    [29] Li L., Jiang H., Messmore B. W., et al. A torsional strain mechanism to tune pitchin supramolecular helices, Angew. Chem. Int. Ed.2007,46:5873-5876.
    [30] Iwaura R. and Shimizu T. Reversible photochemical conversion of helicity inself-assembled nanofibers from a1,ω-thymidylic acid appended bolaamphiphile,Angew. Chem. Int. Ed.2006,45:4601-4604.
    [31] Moon K., Grindstaff J., Sobransingh D., et al. Cucurbit[8]uril-mediatedredox-controlled self-assembly of viologen-containing dendrimers, Angew. Chem.Int. Ed.2004,43:5496-5499.
    [32] Li Y., Park T., Quansah J. K., et al. Synthesis of a redox-responsive quadruplehydrogen-bonding unit for applications in supramolecular chemistry, J. Am. Chem.Soc.2011,133:17118-17121.
    [33] Yan Q., Feng A., Zhang H., et al. Redox-switchable supramolecular polymers forresponsive self-healing nanofibers in water, Polym. Chem.2013,4:1216-1220.
    [34] Webb J. E. A., Crossley M. J., Turner P., et al. Pyromellitamide aggregates andtheir response to anion stimuli, J. Am. Chem. Soc.2007,129:7155-7162.
    [35] Yamanaka M., Nakamura T., Nakagawa T., et al. Reversible sol-gel transition of atris-urea gelator that responds to chemical stimuli, Tetrahedron Lett.2007,48:8990-8993.
    [36]胡保全,牛晋川.先进复合材料,北京:国防工业出版社2006.
    [37] Li L. P., Li B., and Tang F. Influence of maleic anhydride-grafted EPDM and flameretardant on interfacial interaction of glass fiber reinforced PA-66, Eur. Polym. J.2007,43:2604-2611.
    [38] Brack N., Rider A. N., Halstead B., et al. Surface modification of boron fibres forimproved strength in composite materials, J. Adhes. Sci. Technol.2005,19:857-877.
    [39] Ng H. Y., Lu X. H., and Lau S. K. Thermal conductivity, electrical resistivity,mechanical, and rheological properties of thermoplastic composites filled withboron nitride and carbon fiber, Polym. Compos.2005,26:66-73.
    [40] Bekyarova E., Thostenson E. T., Yu A., et al. Multiscale carbon nanotube-carbonfiber reinforcement for advanced epoxy composites, Langmuir2007,23:3970-3974.
    [41] Ma H. M., Zeng J. J., Realff M. L., et al. Processing, structure, and properties offibers from polyester/carbon nanofiber composites, Compos. Sci. Technol.2003,63:1617-1628.
    [42] Zhao J. L., Fu T., Han Y., et al. Reinforcing hydroxyapatite/thenno setting epoxycomposite with3-D carbon fiber fabric through RTM processing, Mater. Lett.2004,58:163-168.
    [43] Odeshi A. G., Mucha H., and Wielage B. Manufacture and characterisation of alow cost carbon fibre reinforced C/SiC dual matrix composite, Carbon2006,44:1994-2001.
    [44] Ogasawara T., Aizawa S., Ogawa T., et al. Sensitive strain monitoring of SiCfiber/epoxy composite using electrical resistance changes, Compos. Sci. Technol.2007,67:955-962.
    [45] Arroyo M., Zitzumbo R., and Avalos F. Composites based on PP/EPDM blendsand aramid short fibres. Morphology/behaviour relationship, Polymer2000,41:6351-6359.
    [46] Tarantili P. A. and Andreopoulos A. G. Mechanical properties of epoxies reinforcedwith chloride-treated aramid fibers, J. Appl. Polym. Sci.1997,65:267-276.
    [47] Bishop J. P. and Register R. A. Thermoplastic elastomers with compositecrystalline-glassy hard domains and single-phase melts, Macromolecules2010,43:4954-4960.
    [48] Mahanthappa M. K., Hillmyer M. A., and Bates F. S. Mechanical consequences ofmolecular composition on failure in polyolefin composites containing glassy,elastomeric, and semicrystalline components, Macromolecules2008,41:1341-1351.
    [49] Zuo F., Alfonzo C. G., and Bates F. S. Structure and mechanical behavior ofelastomeric multiblock terpolymers containing glassy, rubbery, and semicrystallineblocks, Macromolecules2011,44:8143-8153.
    [50] George M. and Weiss R. G. Molecular organogels. Soft matter comprised oflow-molecular-mass organic gelators and organic liquids, Acc. Chem. Res.2006,39:489-497.
    [51] Hirst A. R., Escuder B., Miravet J. F., et al. High-tech applications ofself-assembling supramolecular nanostructured gel-phase materials: Fromregenerative medicine to electronic devices, Angew. Chem. Int. Ed.2008,47:8002-8018.
    [52] Xiong Y., Yang X., Yang Y., et al. Self-assembly of gelators confined within thenano-scale interlayer space of organo-montmorillonite, PCCP2008,10:6479-6482.
    [53] Chen W., Yang Y., Lee C. H., et al. Confinement effects on the self-assembly of1,3:2,4-di-p-methylbenzylidene sorbitol based organogel, Langmuir2008,24:10432-10436.
    [54] Xiong Y., Wang H., Yang Y., et al. Self-assembly of a dialkylurea gelator in organicsolvents in the presence of centrifugal and shearing forces, J. Colloid Interface Sci.2008,318:496-500.
    [55] Beijer F. H., Sijbesma R. P., Kooijman H., et al. Strong dimerization ofureidopyrimidones via quadruple hydrogen bonding, J. Am. Chem. Soc.1998,120:6761-6769.
    [56]邱义鹏,唐黎明,王宇.具有四重氢键识别基元的超支化聚合物,高分子学报2007,11:1092-1096.
    [57] Elkins C. L., Viswanathan K., and Long T. E. Synthesis and characterization ofstar-shaped poly(ethylene-co-propylene) polymers bearing terminalself-complementary multiple hydrogen-bonding sites, Macromolecules2006,39:3132-3139.
    [58] St.Pourcain C. B. and Griffin A. C. Thermoreversible supramolecular networkswith polymeric properties, Macromolecules1995,28:4116-4121.
    [59] Hofmeier H., Hoogenboom R., Wouters M. E. L., et al. High molecular weightsupramolecular polymers containing both terpyridine metal complexes andureidopyrimidinone quadruple hydrogen-bonding units in the main chain, J. Am.Chem. Soc.2005,127:2913-2921.
    [60] Wilder E. A., Hall C. K., Khan S. A., et al. Effects of composition and matrixpolarity on network development in organogels of poly(ethylene glycol) anddibenzylidene sorbitol, Langmuir2003,19:6004-6013.
    [61] Kishida T., Fujita N., Sada K., et al. Porphyrin gels reinforced by sol-gel reactionvia the organogel phase, Langmuir2005,21:9432-9439.
    [62] Kishida T., Fujita N., Sada K., et al. Sol-gel reaction of porphyrin-basedsuperstructures in the organogel phase: Creation of mechanically reinforcedporphyrin hybrids, J. Am. Chem. Soc.2005,127:7298-7299.
    [63] Bairi P., Roy B., and Nandi A. K. pH and anion sensitive silver(I) coordinatedmelamine hydrogel with dye absorbing properties: Metastability at low melamineconcentration, J. Mater. Chem.2011,21:11747-11749.
    [64] Chen K., Tang L., Xia Y., et al. Silver(I)-coordinated organogel-templatedfabrication of3D networks of polymer nanotubes, Langmuir2008,24:13838-13841.
    [65] He Y., Bian Z., Kang C., et al. Stereoselective and hierarchical self-assembly fromnanotubular homochiral helical coordination polymers to supramolecular gels,Chem. Commun.2010,46:5695-5697.
    [66] He Y., Bian Z., Kang C., et al. Self-discriminating and hierarchical assembly ofracemic binaphthyl-bisbipyridines and silver ions: From metallocycles to gelnanofibers, Chem. Commun.2011,47:1589-1591.
    [67] Kawano S., Fujita N., Bommel K. J., et al. Pyridine-containing cholesterols asversatile gelators of organic solvents and the subtle influence of Ag(I) on the gelstability, Chem. Lett.2003,32:12-13.
    [68] Kim H. J., Lee J. H., and Lee M. Stimuli-responsive gels from reversiblecoordination polymers, Angew. Chem. Int. Ed.2005,44:5810-5814.
    [69] Kim H. J., Zin W. C., and Lee M. Anion-directed self-assembly of coordinationpolymer into tunable secondary structure, J. Am. Chem. Soc.2004,126:7009-7014.
    [70] Lam S. T. and Yam W. W. Synthesis, characterisation and photophysical study ofalkynylrhenium(I) tricarbonyl diimine complexes and their metal-ioncoordination-assisted metallogelation properties, Chem.-Eur. J.2010,16:11588-11593.
    [71] Liu Q., Wang Y., Li W., et al. Structural characterization and chemical response ofa Ag-coordinated supramolecular gel, Langmuir2007,23:8217-8223.
    [72] Zhang S., Yang S., Lan J., et al. Helical nonracemic tubular coordination polymergelators from simple achiral molecules, Chem. Commun.2008,44:6170-6172.
    [73] Applegarth L., Clark N., Richardson A. C., et al. Modular nanometer-scalestructuring of gel fibres by sequential self-organization, Chem. Commun.2005,41:5423-5425.
    [74] Constable E. C. A new twist to self-assembly, Nature1990,346:314-315.
    [75] Hanabusa K., Maesaka Y., Suzuki M., et al. Low molecular weight gelatorcontaining diketonato ligands: Stabilization of gels by metal coordination, Chem.Lett.2000,29:1168-1169.
    [76] He Y., Bian Z., Kang C., et al. Chiral binaphthylbisbipyridine-based copper(I)coordination polymer gels as supramolecular catalysts, Chem. Commun.2010,46:3532-3534.
    [77] Joshi S. A. and Kulkarni N. D. A new trinuclear Cu(II) complex of inositol as ahydrogelator, Chem. Commun.2009,45:2341-2343.
    [78] Kawano S., Fujita N., and Shinkai S. A coordination gelator that shows a reversiblechromatic change and sol-gel phase-transition behavior upon oxidative/reductivestimuli, J. Am. Chem. Soc.2004,126:8592-8593.
    [79] Koert U., Harding M. M., and Lehn J. M. DNH deoxyribonucleohelicates: Selfassembly of oligonucleosidic double-helical metal complexes, Nature1990,346:339-342.
    [80] Piepenbrock M. M., Clarke N., and Steed J. W. Metal ion and anion-based “tuning”of a supramolecular metallogel, Langmuir2009,25:8451-8456.
    [81] Westcott A., Sumby C. J., Walshaw R. D., et al. Metallo-gels and organo-gels withtripodal cyclotriveratrylene-type and1,3,5-substituted benzene-type ligands, New J.Chem.2009,33:902-912.
    [82] Ye B. H., Tong M. L., and Chen X. M. Metal-organic molecular architectures with2,2′-bipyridyl-like and carboxylate ligands, Coordin. Chem. Rev.2005,249:545-565.
    [83] Cho Y., Lee J. H., Jaworski J., et al. The influence of ultrasound onporphyrin-based metallogel formation: Efficient control of H-and J-typeaggregations, New J. Chem.2012,36:32-35.
    [84] Liu Y. R., He L. S., Zhang J. Y., et al. Evolution of spherical assemblies to fibrousnetworked Pd(II) metallogels from a pyridine-based tripodal ligand and theircatalytic property, Chem. Mater.2009,21:557-563.
    [85] Miravet J. F. and Escuder B. Pyridine-functionalised ambidextrous gelators:Towards catalytic gels, Chem. Commun.2005,41:5796-5798.
    [86] Xing B., Choi M. F., and Xu B. A stable metal coordination polymer gel based on acalix[4]arene and its "uptake" of non-ionic organic molecules from the aqueousphase, Chem. Commun.2002,38:362-363.
    [87] Xing B., Choi M. F., and Xu B. Design of coordination polymer gels as stablecatalytic systems, Chem.-Eur. J.2002,8:5028-5032.
    [88] Xing B., Choi M. F., Zhou Z., et al. Spontaneous enrichment of organic moleculesfrom aqueous and gas phases into a stable metallogel, Langmuir2002,18:9654-9658.
    [89] Yamada Y., Maeda Y., and Uozumi Y. Novel3D coordination palladium-networkcomplex: A recyclable catalyst for Suzuki-Miyaura reaction, Org. Lett.2006,8:4259-4262.
    [90] Yan X., Xu D., Chi X., et al. A multiresponsive, shape-persistent, and elasticsupramolecular polymer network gel constructed by orthogonal self-assembly, Adv.Mater.2012,24:362-369.
    [91] George M., Funkhouser G. P., Terech P., et al. Organogels with Fe(III) complexesof phosphorus-containing amphiphiles as two-component isothermal gelators,Langmuir2006,22:7885-7893.
    [92] Peng F., Li G., Liu X., et al. Redox-responsive gel-sol/sol-gel transition inpoly(acrylic acid) aqueous solution containing Fe(III) ions switched by light, J. Am.Chem. Soc.2008,130:16166-16167.
    [93] Wei Q. and James S. L. A metal-organic gel used as a template for a porous organicpolymer, Chem. Commun.2005,41:1555-1556.
    [94] Zhang J. Y., Wang X. B., He L. S., et al. Metal-organic gels as functionalisablesupports for catalysis, New J. Chem.2009,33:1070-1075.
    [95] Lee H., Jung S. H., Han W. S., et al. A chromo-fluorogenic tetrazole-based CoBr2coordination polymer gel as a highly sensitive and selective chemosensor forvolatile gases containing chloride, Chem.-Eur. J.2011,17:2823-2827.
    [96] Beck J. B. and Rowan S. J. Multistimuli, multiresponsive metallo-supramolecularpolymers, J. Am. Chem. Soc.2003,125:13922-13923.
    [97] Weng W., Beck J. B., Jamieson A. M., et al. Understanding the mechanism ofgelation and stimuli-responsive nature of a class of metallo-supramolecular gels, J.Am. Chem. Soc.2006,128:11663-11672.
    [98] Weng W., Jamieson A. M., and Rowan S. J. Structural origin of the thixotropicbehavior of a class of metallosupramolecular gels, Tetrahedron2007,63:7419-7431.
    [99] Zhao Y., Beck J. B., Rowan S. J., et al. Rheological behavior of shear-responsivemetallo-supramolecular gels, Macromolecules2004,37:3529-3531.
    [100] Hsu T. H. T., Naidu J. J., Yang B. J., et al. Self-assembly of silver(I) and gold(I)N-heterocyclic carbene complexes in solid state, mesophase, and solution, Inorg.Chem.2011,51:98-108.
    [101] Kishimura A., Yamashita T., and Aida T. Phosphorescent organogels via“metallophilic” interactions for reversible RGB-color switching, J. Am. Chem. Soc.2004,127:179-183.
    [102] Odriozola I., Loinaz I., Pomposo J. A., et al. Gold-glutathione supramolecularhydrogels, J. Mater. Chem.2007,17:4843-4845.
    [103] Wong M. C., Hung L. L., Lam W. H., et al. A class of luminescent cyclometalatedalkynylgold(III) complexes: Synthesis, characterization, and electrochemical,photophysical, and computational studies of [Au(C^N^C)(C≡C-R)](C^N^C=κ3C,N,C bis-cyclometalated2,6-diphenylpyridyl), J. Am. Chem. Soc.2007,129:4350-4365.
    [104] Yam W. W., Wong M. C., Hung L. L., et al. Luminescent gold(III) alkynylcomplexes: Synthesis, structural characterization, and luminescence properties,Angew. Chem. Int. Ed.2005,44:3107-3110.
    [105] Zhang J. J., Lu W., Sun W. Y., et al. Organogold(III) supramolecular polymers foranticancer treatment, Angew. Chem. Int. Ed.2012,51:4882-4886.
    [106] Camerel F., Ziessel R., Donnio B., et al. Formation of gels and liquid crystalsinduced by Pt---Pt and π-π*interactions in luminescent σ-alkynyl platinum(II)terpyridine complexes, Angew. Chem. Int. Ed.2007,46:2659-2662.
    [107] Cardolaccia T., Li Y., and Schanze K. S. Phosphorescent platinum acetylideorganogelators, J. Am. Chem. Soc.2008,130:2535-2545.
    [108] Chang K. C., Lin J. L., Shen Y. T., et al. Synthesis and photophysical properties ofself-assembled metallogels of platinum(II) acetylide complexes with elaboratelong-chain pyridine-2,6-dicarboxamides, Chem.-Eur. J.2012,18:1312-1321.
    [109] Chen L. J., Zhang J., He J. M., et al. Synthesis of platinum acetylide derivativeswith different shapes and their gel formation behavior, Organometallics2011,30:5590-5594.
    [110] Lu W., Law Y. C., Han J., et al. A dicationic organoplatinum(II) complexcontaining a bridging2,5-bis-(4-ethynylphenyl)-[1,3,4]oxadiazole ligand behavesas a phosphorescent gelator for organic solvents, Chem.-Asian J.2008,3:59-69.
    [111] Shirakawa M., Fujita N., Tani T., et al. Organogels of8-quinolinol/metal(II)-chelate derivatives that show electron-and light-emittingproperties, Chem.-Eur. J.2007,13:4155-4162.
    [112] Shirakawa M., Fujita N., Tani T., et al. Organogel of an8-quinolinol platinum(II)chelate derivative and its efficient phosphorescence emission effected by inhibitionof dioxygen quenching, Chem. Commun.2005,41:4149-4151.
    [113] Strassert C. A., Chien C. H., Galvez Lopez M. D., et al. Switching onluminescence by the self-assembly of a platinum(II) complex into gelatingnanofibers and electroluminescent films, Angew. Chem. Int. Ed.2011,50:946-950.
    [114] Tam Y. Y., Wong M. C., Zhu N. Y., et al. Luminescent alkynylplatinum(II)terpyridyl metallogels stabilized by Pt---Pt, π-π, and hydrophobic-hydrophobicinteractions, Langmuir2009,25:8685-8695.
    [115] Tam Y. Y., Wong M. C., Wang G. X., et al. Luminescent metallogels of platinum(II)terpyridyl complexes: Interplay of metalmetal, π-π and hydrophobic-hydrophobicinteractions on gel formation, Chem. Commun.2007,43:2028-2030.
    [116] Tam Y. Y., Wong M. C., and Yam W. W. Influence of counteranion on the chiralsupramolecular assembly of alkynylplatinum(II) terpyridyl metallogels that arestabilised by Pt---Pt and π-π interactions, Chem.-Eur. J.2009,15:4775-4778.
    [117] Tam Y. Y., Wong M. C., and Yam W. W. Unusual luminescence enhancement ofmetallogels of alkynylplatinum(II)2,6-bis(N-alkylbenzimidazol-2′-yl)pyridinecomplexes upon a gel-to-sol phase transition at elevated temperatures, J. Am.Chem. Soc.2009,131:6253-6260.
    [118] Wang J., Chen Y., Law Y. C., et al. Organo-and hydrogelators based onluminescent monocationic terpyridyl platinum(II) complexes withbiphenylacetylide ligands, Chem.-Asian J.2011,6:3011-3019.
    [119] Wong M. C. and Yam W. W. Self-assembly of luminescent alkynylplatinum(II)terpyridyl complexes: Modulation of photophysical properties through aggregationbehavior, Acc. Chem. Res.2011,44:424-434.
    [120] Zhang J., Xu X. D., Chen L. J., et al. Platinum acetylide complexes containingiptycene as cores: A new family of unexpected efficient organometallic gelators,Organometallics2011,30:4032-4038.
    [121] Bousseksou A., Molnar G., Salmon L., et al. Molecular spin crossoverphenomenon: Recent achievements and prospects, Chem. Soc. Rev.2011,40:3313-3335.
    [122] Piepenbrock M. M., Lloyd G. O., Clarke N., et al. Metal-and anion-bindingsupramolecular gels, Chem. Rev.2009,110:1960-2004.
    [123] Li C., Deng K., Tang Z., et al. Twisted metal-amino acid nanobelts: Chiralitytranscription from molecules to frameworks, J. Am. Chem. Soc.2010,132:8202-8209.
    [124] Zhang J. Y. and Su C. Y. Metal-organic gels: From discrete metallogelators tocoordination polymers, Coordin. Chem. Rev.2013,257:1373-1408.
    [125] Jin Q., Zhang L., Cao H., et al. Self-assembly of copper(II) ion-mediated nanotubeand its supramolecular chiral catalytic behavior, Langmuir2011,27:13847-13853.
    [126] Marpu S., Hu Z., and Omary M. A. Brightly phosphorescent, environmentallyresponsive hydrogels containing a water-soluble three-coordinate gold(I) complex,Langmuir2010,26:15523-15531.
    [127] Gasnier A. l., Royal G., and Terech P. Metallo-supramolecular gels based on amultitopic cyclam bis-terpyridine platform, Langmuir2009,25:8751-8762.
    [128] Liu J., Yan J., Yuan X., et al. A novel low-molecular-mass gelator with a redoxactive ferrocenyl group: Tuning gel formation by oxidation, J. Colloid Interface Sci.2008,318:397-404.
    [129] Liao Y., He L., Huang J., et al. Magnetite nanoparticle-supported coordinationpolymer nanofibers: Synthesis and catalytic application in Suzuki-Miyauracoupling, ACS Appl. Mater. Interfaces2010,2:2333-2338.
    [130] Roubeau O., Colin A., Schmitt V., et al. Thermoreversible gels as magneto-opticalswitches, Angew. Chem. Int. Ed.2004,43:3283-3286.
    [131] Samai S. and Biradha K. Chemical and mechano responsive metal-organic gels ofbis(benzimidazole)-based ligands with Cd(II) and Cu(II) halide salts: Selfsustainability and gas and dye sorptions, Chem. Mater.2012,24:1165-1173.
    [132] Amanokura N., Kanekiyo Y., Shinkai S., et al. New sugar-based gelators with anamino group, the gelation ability of which is remarkably reinforced by thehydrogen bond and the metal coordination, J. Chem. Soc., Perkin Trans.21999:1995-2000.
    [133] Escuder B., Rodriguez-Llansola F., and Miravet J. F. Supramolecular gels as activemedia for organic reactions and catalysis, New J. Chem.2010,34:1044-1054.
    [134] Bühler G., Feiters M. C., Nolte R. J. M., et al. A metal-carbene carbohydrateamphiphile as a low-molecular-mass organometallic gelator, Angew. Chem. Int. Ed.2003,42:2494-2497.
    [135] Shi N., Yin G., Han M., et al. Anions bonded on the supramolecular hydrogelsurface as the growth center of biominerals, Colloids Surface B.2008,66:84-89.
    [136] Yin J., Yang G., Wang H., et al. Macroporous polymer monoliths fabricated byusing a metal-organic coordination gel template, Chem. Commun.2007,43:4614-4616.
    [137] Basit H., Pal A., Sen S., et al. Two-component hydrogels comprising fatty acidsand amines: Structure, properties, and application as a template for the synthesis ofmetal nanoparticles, Chem.-Eur. J.2008,14:6534-6545.
    [138] Tu T., Fang W., Bao X., et al. Visual chiral recognition through enantioselectivemetallogel collapsing: Synthesis, characterization, and application ofplatinum-steroid low-molecular-mass gelators, Angew. Chem. Int. Ed.2011,123:6731-6735.
    [139] Miao W., Zhang L., Wang X., et al. A dual-functional metallogel of amphiphiliccopper(II) quinolinol: Redox responsiveness and enantioselectivity, Chem.-Eur. J.2013,19:3029-3036.
    [140] Sarkar S., Pradhan M., Sinha A. K., et al. Selective and sensitive recognition ofCu2+in an aqueous medium: A surface-enhanced raman scattering (sers)-basedanalysis with a low-cost raman reporter, Chem.-Eur. J.2012,18:6335-6342.
    [141] Tu T., Sun Z., Fang W., et al. Robust acenaphthoimidazolylidene palladiumcomplexes: Highly efficient catalysts for Suzuki-Miyaura couplings with stericallyhindered substrates, Org. Lett.2012,14:4250-4253.
    [142] Steed J. W. Anion-tuned supramolecular gels: A natural evolution from ureasupramolecular chemistry, Chem. Soc. Rev.2010,39:3686-3699.
    [143] Lee J. H., Kang S., Lee J. Y., et al. A tetrazole-based metallogel induced with Ag+ion and its silver nanoparticle in catalysis, Soft Matter2012,8:6557-6563.
    [144] Miao W., Zhang L., Wang X., et al. Gelation-induced visible supramolecular chiralrecognition by fluorescent metal complexes of quinolinol-glutamide, Langmuir2013: ASAP.
    [145] Liu K., Meng L., Mo S., et al. Colour change and luminescence enhancement in acholesterol-based terpyridyl platinum metallogel via sonication, J. Mater. Chem. C2013,1:1753-1762.
    [146] Chifotides H. T., Schottel B. L., and Dunbar K. R. The π-accepting areneHAT(CN)6as a halide receptor through charge transfer: Multisite anioninteractions and self-assembly in solution and the solid state, Angew. Chem. Int.Ed.2010,49:7202-7207.
    [147] Petkau-Milroy K. and Brunsveld L. Self-assembling multivalency-supramolecularpolymers assembled from monovalent mannose-labelled discotic molecules, Eur. J.Org. Chem.2013: Eerly View.
    [148] Shao C., Grüne M., Stolte M., et al. Perylene bisimide dimer aggregates:Fundamental insights into self-assembly by NMR and UV/vis spectroscopy,Chem.-Eur. J.2012,18:13665-13677.
    [149] Priimagi A., Cavallo G., Forni A., et al. Halogen bonding versus hydrogen bondingin driving self-assembly and performance of light-responsive supramolecularpolymers, Adv. Funct. Mater.2012,22:2572-2579.
    [150] Cui H., Webber M. J., and Stupp S. I. Self-assembly of peptide amphiphiles: Frommolecules to nanostructures to biomaterials, J. Pept. Sci.2010,94:1-18.
    [151] Liu Z., Li M., Turyanska L., et al. Self-assembly of electrically conductingbiopolymer thin films by cellulose regeneration in gold nanoparticle aqueousdispersions, Chem. Mater.2010,22:2675-2680.
    [152] Rodríguez-Llansola F., Hermida-Merino D., Nieto-Ortega B., et al. Self-assemblystudies of a chiral bisurea-based superhydrogelator, Chem.-Eur. J.2012,18:14725-14731.
    [153] Gee W. J. and Batten S. R. Instantaneous gelation of a new copper(II) metallogelamenable to encapsulation of a luminescent lanthanide cluster, Chem. Commun.2012,48:4830-4832.
    [154] Cheng G., Castelletto V., Moulton C., et al. Hydrogelation and self-assembly ofFmoc-tripeptides: Unexpected influence of sequence on self-assembled fibrilstructure, and hydrogel modulus and anisotropy, Langmuir2010,26:4990-4998.
    [155] Kim J. U., Kim K. H., Haberkorn N., et al. Two-dimensional self-assembly ofdisulfide functionalized bis-acylurea: A nanosheet template for gold nanoparticlearrays, Chem. Commun.2010,46:5343-5345.
    [156] Nayak M. K., Kim B. H., Kwon J. E., et al. Gelation-induced enhancedfluorescence emission from organogels of salicylanilide-containing compoundsexhibiting excited-state intramolecular proton transfer: Synthesis and self-assembly,Chem.-Eur. J.2010,16:7437-7447.
    [157] An B. K., Gierschner J., and Park S. Y. Π-conjugated cyanostilbene derivatives: Aunique self-assembly motif for molecular nanostructures with enhanced emissionand transport, Acc. Chem. Res.2011,45:544-554.
    [158] Srinivasan S., Babu P. A., Mahesh S., et al. Reversible self-assembly of entrappedfluorescent gelators in polymerized styrene gel matrix: Erasable thermal imagingvia recreation of supramolecular architectures, J. Am. Chem. Soc.2009,131:15122-15123.
    [159] Edwards W., Lagadec C. A., and Smith D. K. Solvent-gelator interactions—usingempirical solvent parameters to better understand the self-assembly of gel-phasematerials, Soft Matter2011,7:110-117.
    [160] Sun Y., Wang H., Xiao X., et al. Chiral self-assembly/disassembly transition ofsupramolecular aggregates characterized by variable temperature circulardichroism spectroscopy, Appl. Spectrosc.2011,65:1068-1072.
    [161] Hirst A. R., Miravet J. F., Escuder B., et al. Self-assembly of two-component gels:Stoichiometric control and component selection, Chem.-Eur. J.2009,15:372-379.
    [162] Feng C. L., Dou X., Zhang D., et al. A highly efficient self-assembly of responsiveC2-cyclohexane-derived gelators, Macromol. Rapid Commun.2012,33:1535-1541.
    [163] Frkanec L. and ini M. Chiral bis(amino acid)-and bis(amino alcohol)-oxalamidegelators. Gelation properties, self-assembly motifs and chirality effects, Chem.Commun.2010,46:522-537.
    [164] Prasanthkumar S., Saeki A., Seki S., et al. Solution phase epitaxial self-assemblyand high charge-carrier mobility nanofibers of semiconducting molecular gelators,J. Am. Chem. Soc.2010,132:8866-8867.
    [165] Smith M. M., Edwards W., and Smith D. K. Self-organisation effects in dynamicnanoscale gels self-assembled from simple mixtures of commercially availablemolecular-scale components, Chem. Sci.2013,4:671-676.
    [166] Babu S. S., Prasanthkumar S., and Ajayaghosh A. Self-assembled gelators fororganic electronics, Angew. Chem. Int. Ed.2012,51:1766-1776.
    [167] Prasanthkumar S., Gopal A., and Ajayaghosh A. Self-assembly ofthienylenevinylene molecular wires to semiconducting gels with doped metallicconductivity, J. Am. Chem. Soc.2010,132:13206-13207.
    [168] Dong X., Wang H., Yang Y., et al. Effect of gelator structures on electrochemicalproperties of ionic-liquid supramolecular gel electrolytes, Electrochim. Acta2010,55:2275-2279.
    [169] Tan L., Dong X., Yang Y., et al. Gels of ionic liquid [C4mim]PF6formed byself-assembly of gelators and their electrochemical properties, Electrochem.Commun.2009,11:933-936.
    [170] Cao X., Zhou J., Zou Y., et al. Fluorescence and morphology modulation in aphotochromic diarylethene self-assembly system, Langmuir2011,27:5090-5097.
    [171] Kartha K. K., Babu S. S., Srinivasan S., et al. Attogram sensing of trinitrotoluenewith a self-assembled molecular gelator, J. Am. Chem. Soc.2012,134:4834-4841.
    [172] Zhu P., Yan X., Su Y., et al. Solvent-induced structural transition of self-assembleddipeptide: From organogels to microcrystals, Chem.-Eur. J.2010,16:3176-3183.
    [173] Minakuchi N., Hoe K., Yamaki D., et al. Versatile supramolecular gelators that canharden water, organic solvents and ionic liquids, Langmuir2012,28:9259-9266.
    [174] Banerjee S., Das R. K., Terech P., et al. Hybrid organogels and aerogels fromco-assembly of structurally different low molecular weight gelators, J. Mater.Chem. C2013: Early View.
    [175] Wan J. H., Mao L. Y., Li Y. B., et al. Self-assembly of novel fluorescent silolederivatives into different supramolecular aggregates: Fibre, liquid crystal andmonolayer, Soft Matter2010,6:3195-3201.
    [176] Ihara H., Sakurai T., Yamada T., et al. Chirality control of self-assemblingorganogels from a lipophilic L-glutamide derivative with metal chlorides,Langmuir2002,18:7120-7123.
    [177] Yamasaki S. and Tsutsumi H. Microscopic studies of1,3:2,4-di-o-benzylidene-D-sorbitol in ethylene glycol, Bull. Chem. Soc. Jpn.1994,67:906-911.
    [178] Kato T., Okazaki A., and Hayase S. Latent gel electrolyte precursors for quasi-soliddye sensitized solar cells: The comparison of nano-particle cross-linkers withpolymer cross-linkers, J. Photochem. Photobiol., A2006,179:42-48.
    [179] Vuji i N.., epelj M., Lesac A., et al. Controlled self-assembly of chiral gelatormolecules into aligned fibers induced by nematic to smectic B phase transitions,Tetrahedron Lett.2009,50:4430-4434.
    [180] Ash B., Schadler L., and Siegel R. Glass transition behavior ofalumina/polymethylmethacrylate nanocomposites, Mater. Lett.2002,55:83-87.
    [181] Wooley K., Hawker C., Pochan J., et al. Physical properties of dendriticmacromolecules: A study of glass transition temperature, Macromolecules1993,26:1514-1519.
    [182] Yuen S. M., Ma C. C., Lin Y. Y., et al. Preparation, morphology and properties ofacid and amine modified multiwalled carbon nanotube/polyimide composite,Compos. Sci. Technol.2007,67:2564-2573.
    [183] Yang B., Huang W., Li C., et al. Qualitative separation of the effects of carbonnano-powder and moisture on the glass transition temperature of polyurethaneshape memory polymer, Scripta Mater.2005,53:105-107.
    [184] Chen S. A. and Fang W. G. Electrically conductive polyaniline-poly (vinyl alcohol)composite films: Physical properties and morphological structures,Macromolecules1991,24:1242-1248.
    [185] Bag B. G., Majumdar R., Dinda S. K., et al. Self-assembly of ketals of arjunolicacid into vesicles and fibers yielding gel-like dispersions, Langmuir2013:1766-1778.
    [186] Pérez A., Serrano J. L., Sierra T., et al. Control of self-assembly of a3-hexen-1,5-diyne derivative: Toward soft materials with an aggregation-inducedenhancement in emission, J. Am. Chem. Soc.2011,133:8110-8113.
    [187] Geiger C., Stanescu M., Chen L., et al. Organogels resulting from competingself-assembly units in the gelator: Structure, dynamics, and photophysical behaviorof gels formed from cholesterol-stilbene and cholesterol-squaraine gelators,Langmuir1999,15:2241-2245.
    [188] Elemans J. A., van Hameren R., Nolte R. J., et al. Molecular materials byself-assembly of porphyrins, phthalocyanines, and perylenes, Adv. Mater.2006,18:1251-1266.
    [189] Zang L., Che Y., and Moore J. S. One-dimensional self-assembly of planarπ-conjugated molecules: Adaptable building blocks for organic nanodevices, Acc.Chem. Res.2008,41:1596-1608.
    [190] Velázquez D. G. and Luque R. Spontaneous orthogonal self-assembly of asynergetic gelator system, Chem.-Eur. J.2011,17:3847-3849.
    [191] Toledano M., Osorio R., De Leonardi G., et al. Influence of self-etching primer onthe resin adhesion to enamel and dentin, Am. J. Dent.2001,14:205.
    [192] Chen Z., Ren W., Gao L., et al. Three-dimensional flexible and conductiveinterconnected graphene networks grown by chemical vapour deposition, Nat.Mater.2011,10:424-428.
    [193] Qi B., Zhang Q. X., Bannister M., et al. Investigation of the mechanical propertiesof DGEBA-based epoxy resin with nanoclay additives, Compos. Struct.2006,75:514-519.
    [194] Ellakwa A., Shortall A., Shehata M., et al. Influence of veneering compositecomposition on the efficacy of fiber-reinforced restorations (FRR), Oper. Dent.2001,26:467-475.
    [195] Tajvidi M. Static and dynamic mechanical properties of a kenaf fiber-woodflour/polypropylene hybrid composite, J. Appl. Polym. Sci.2005,98:665-672.
    [196] Ni J. and Wang M. In vitro evaluation of hydroxyapatite reinforcedpolyhydroxybutyrate composite, Mater. Sci. Eng. C2002,20:101-109.
    [197] Xiao P., Xiao M., and Gong K. Preparation of exfoliated graphite/polystyrenecomposite by polymerization-filling technique, Polymer2001,42:4813-4816.
    [198] Chung C. M., Kim J. G., Kim M. S., et al. Development of a new photocurablecomposite resin with reduced curing shrinkage, Dent. Mater.2002,18:174-178.
    [1] Terech P. and Weiss R. G. Low molecular mass gelators of organic liquids and theproperties of their gels, Chem. Rev.1997,97:3133-3160.
    [2] George M. and Weiss R. G. Molecular organogels. Soft matter comprised oflow-molecular-mass organic gelators and organic liquids, Acc. Chem. Res.2006,39:489-497.
    [3] de Loos M., Feringa B. L., and van Esch J. H. Design and application ofself-assembled low molecular weight hydrogels, Eur. J. Org. Chem.2005:3615-3631.
    [4] Sangeetha N. M. and Maitra U. Supramolecular gels: Functions and uses, Chem.Soc. Rev.2005,34:821-836.
    [5] Khanna S., Khan M. K., and Sundararajan P. Influence of double hydrogen bondsand alkyl chains on the gelation of nonchiral polyurethane model compounds:Sheets, eaves trough, tubes and oriented fibers, Langmuir2009,25:13183-13193.
    [6] Fu X., Wang N., Zhang S., et al. Formation mechanism of supramolecularhydrogels in the presence of L-phenylalanine derivative as a hydrogelator, J.Colloid Interf. Sci.2007,315:376-381.
    [7] Patra T., Pal A., and Dey J. A smart supramolecular hydrogel ofN-(4-n-alkyloxybenzoyl)-L-histidine exhibiting pH-modulated properties,Langmuir2010,26:7761-7767.
    [8] Shi N. E., Dong H., Yin G., et al. A smart supramolecular hydrogel exhibitingpH-modulated viscoelastic properties, Adv. Funct. Mater.2007,17:1837-1843.
    [9] Shundo A., Mizuguchi K., Miyamoto M., et al. Controllable heterogeneity in asupramolecular hydrogel, Chem. Commun.2011,47:8844-8846.
    [10] Isozaki K., Takaya H., and Naota T. Ultrasound-induced gelation of organic fluidswith metalated peptides, Angew. Chem. Int. Ed.2007,46:2855-2857.
    [11] Kawano S., Fujita N., and Shinkai S. Quater-, quinque-, and sexithiopheneorganogelators: Unique thermochromism and heating-free sol-gel phase transition,Chem.-Eur. J.2005,11:4735-4742.
    [12] Lloyd G. O. and Steed J. W. Anion-tuning of supramolecular gel properties, Nat.Chem.2009,1:437-442.
    [13] Kim J. H., Seo M., Kim Y. J., et al. Rapid and reversible gel-sol transition ofself-assembled gels induced by photoisomerization of dendritic azobenzenes,Langmuir2009,25:1761-1766.
    [14] Lu W., Law Y. C., Han J., et al. A dicationic organoplatinum(II) complexcontaining a bridging2,5-bis-(4-ethynylphenyl)-1,3,4oxadiazole ligand behaves asa phosphorescent gelator for organic solvents, Chem.-Asian J.2008,3:59-69.
    [15] Trivedi D. R., Ballabh A., Dastidar P., et al. Structure-property correlation of anew family of organogelators based on organic salts and their selective gelation ofoil from oil/water mixtures, Chem.-Eur. J.2004,10:5311-5322.
    [16] Pasc A., Akong F. O., Cosgun S., et al. Differences between beta-Ala and Gly-Glyin the design of amino acids-based hydrogels, Beilstein J. Org. Chem.2010,6:973-977.
    [17] Meziane R., Brehmer M., Maschke U., et al. Gelling and the collective dynamicsin ferroelectric liquid crystals, Soft Matter2008,4:1237-1241.
    [18] Alexandridis P., Holzwarth J. F., and Hatton T. A. Micellization of poly(ethyleneoxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueoussolutions: Thermodynamics of copolymer association, Macromolecules1994,27:2414-2425.
    [19] Beezer A. E., Loh W., Mitchell J. C., et al. An investigation of dilute aqueoussolution behavior of poly(oxyethylene)+poly(oxypropylene)+poly(oxyethylene)block copolymers, Langmuir1994,10:4001-4005.
    [20] da Silva R. C., Olofsson G., Schillen K., et al. Influence of ionic surfactants on theaggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)block copolymers studied by differential scanning and isothermal titrationcalorimetry, J. Phys. Chem. B2002,106:1239-1246.
    [21] Ganguly R., Aswal V. K., Hassan P. A., et al. Effect of SDS on the self-assemblybehavior of the PEO-PPO-PEO triblock copolymer (EO)20(PO)70(EO)20, J. Phys.Chem. B2006,110:9843-9849.
    [22] Brinker C. J., Lu Y. F., Sellinger A., et al. Evaporation-induced self-assembly:Nanostructures made easy, Adv. Mater.1999,11:579-585.
    [23] Alberius P. C. A., Frindell K. L., Hayward R. C., et al. General predictivesyntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thinfilms, Chem. Mat.2002,14:3284-3294.
    [24] Kim T. W., Kleitz F., Paul B., et al. MCM-48-like large mesoporous silicas withtailored pore structure: Facile synthesis domain in a ternary triblockcopolymer-butanol-water system, J. Am. Chem. Soc.2005,127:7601-7610.
    [25] Wanka G., Hoffmann H., and Ulbricht W. Phase diagrams and aggregationbehavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblockcopolymers in aqueous solutions, Macromolecules1994,27:4145-4159.
    [26] Doe C., Jang H. S., Kim T. H., et al. Thermally switchable one-andtwo-dimensional arrays of single-walled carbon nanotubes in a polymeric system, J.Am. Chem. Soc.2009,131:16568-16572.
    [27] Wang Y., Tang L., and Wang Y. New hydrogen-bonded supramolecular hydrogelsand fibers derived from1,2,4,5-benzenetetracarboxylic acid and4-hydroxypyridine, Chem. Lett.2006,35:548-549.
    [28] Edens M. W. Nonionic surfactants: Polyoxyalkylene block copolymers. inApplication of polyoxyalkylene block copolymer surfactants, Nace V. M., Editor.1996, Marcel Dekker Inc.
    [29] Vladimir P T. Structure and design of polymeric surfactant-based drug deliverysystems, J. Control. Release2001,73:137-172.
    [30] Moore T., Croy S., Mallapragada S., et al. Experimental investigation andmathematical modeling of Pluronic F127gel dissolution: Drug release in stirredsystems, J. Control. Release2000,67:191-202.
    [31] F rster S. and Antonietti M. Amphiphilic block copolymers in structure-controllednanomaterial hybrids, Adv. Mater.1998,10:195-217.
    [32]王毓江,唐黎明,陈亮.均苯四甲酸与对羟基吡啶超分子聚合物的制备,高分子学报2006,4:363-366.
    [33] Lu L., Cocker T. M., Bachman R. E., et al. Gelation of organic liquids by some5-cholestan-3β-yl N-(2-aryl)carbamates and3β-cholesteryl4-(2-anthrylamino)butanoates. How important are H-bonding interactions in thegel and neat assemblies of aza aromatic-linker-steroid gelators?, Langmuir2000,16:20-34.
    [34] Porod G. General theory. in Small angle x-ray scattering, Glatter O. and Kratky O.,Editors.1982, Academic Press.: London.4-5.
    [35] Zhou Z. and Chu B. Light-scattering study on the association behavior of triblockpolymers of ethylene oxide and propylene oxide in aqueous solution, J. ColloidInterface Sci.1988,126:171-180.
    [1] Arencon D. and Velasco J. I. The influence of injection-molding variables andnucleating additives on thermal and mechanical properties of short glass fiber/PETcomposites, J. Thermoplast. Compos.2002,15:317-336.
    [2] Li L. P., Li B., and Tang F. Influence of maleic anhydride-grafted EPDM andflame retardant on interfacial interaction of glass fiber reinforced PA-66, Eur.Polym. J.2007,43:2604-2611.
    [3] Own C. S., Seader D., D'Souza N. A., et al. Cowoven polypropylene/glasscomposites with polypropylene plus polymer liquid crystal interlayers: Dynamicmechanical and thermal analysis, Polym. Compos.1998,19:107-115.
    [4] Brack N., Rider A. N., Halstead B., et al. Surface modification of boron fibres forimproved strength in composite materials, J. Adhes. Sci. Technol.2005,19:857-877.
    [5] Ng H. Y., Lu X. H., and Lau S. K. Thermal conductivity, electrical resistivity,mechanical, and rheological properties of thermoplastic composites filled withboron nitride and carbon fiber, Polym. Compos.2005,26:66-73.
    [6] Bekyarova E., Thostenson E. T., Yu A., et al. Multiscale carbon nanotube-carbonfiber reinforcement for advanced epoxy composites, Langmuir2007,23:3970-3974.
    [7] Ma H. M., Zeng J. J., Realff M. L., et al. Processing, structure, and properties offibers from polyester/carbon nanofiber composites, Compos. Sci. Technol.2003,63:1617-1628.
    [8] Zhao J. L., Fu T., Han Y., et al. Reinforcing hydroxyapatite/thenno setting epoxycomposite with3-D carbon fiber fabric through RTM processing, Mater. Lett.2004,58:163-168.
    [9] Odeshi A. G., Mucha H., and Wielage B. Manufacture and characterisation of alow cost carbon fibre reinforced C/SiC dual matrix composite, Carbon2006,44:1994-2001.
    [10] Ogasawara T., Aizawa S., Ogawa T., et al. Sensitive strain monitoring of SiCfiber/epoxy composite using electrical resistance changes, Compos. Sci. Technol.2007,67:955-962.
    [11] Arroyo M., Zitzumbo R., and Avalos F. Composites based on PP/EPDM blendsand aramid short fibres. Morphology/behaviour relationship, Polymer2000,41:6351-6359.
    [12] Tarantili P. A. and Andreopoulos A. G. Mechanical properties of epoxiesreinforced with chloride-treated aramid fibers, J. Appl. Polym. Sci.1997,65:267-276.
    [13] Yamasaki S., Ohashi Y., Tsutsumi H., et al. The aggregated higher-structure of1,3:2,4-di-o-benzylidene-D-sorbitol in organic gels, Bull. Chem. Soc. Jpn.1995,68:146-151.
    [14] Watase M. and Itagaki H. Thermal and rheological properties of physical gelsformed from benzylidene-D-sorbitol derivatives, Bull. Chem. Soc. Jpn.1998,71:1457-1466.
    [15] Schamper T., Jablon M., Randhawa M. H., et al. Acid stable dibenzylidene sorbitolgelled clear solid antiperspirant formulations: I, J. Soc. Cosmetic Chemists1986,37:225-231.
    [16] Smith J. M. and Katsoulis D. E. Gelation of silicone fluids using1,3:2,4-dibenzylidene sorbitol, J. Mater. Chem.1995,5:1899-1903.
    [17] Ilzhoefer J. R., Broom B. C., Nepa S. M., et al. Evidence of hierarchical order inan amphiphilic graft terpolymer gel, J. Phys. Chem.1995,99:12069-12071.
    [18] Ilzhoefer J. R. and Spontak R. J. Effect of polymer composition on the morphologyof self-assembled dibenzylidene sorbitol, Langmuir1995,11:3288-3291.
    [19] Wilder E. A., Braunfeld M. B., Jinnai H., et al. Nanofibrillar networks inpoly(ethyl methacrylate) and its silica nanocomposites, J. Phys. Chem. B2003,107:11633-11642.
    [20] Wilder E. A., Hall C. K., Khan S. A., et al. Effects of composition and matrixpolarity on network development in organogels of poly(ethylene glycol) anddibenzylidene sorbitol, Langmuir2003,19:6004-6013.
    [21] Wilder E. A., Hall C. K., and Spontak R. J. Physical organogels composed ofamphiphilic block copolymers and1,3:2,4-dibenzylidene-D-sorbitol, J. ColloidInterface Sci.2003,267:509-518.
    [22] Lu L., Cocker T. M., Bachman R. E., et al. Gelation of organic liquids by some5-cholestan-3β-yl N-(2-aryl)carbamates and3β-cholesteryl4-(2-anthrylamino)butanoates. How important are H-bonding interactions in thegel and neat assemblies of aza aromatic-linker-steroid gelators?, Langmuir1999,16:20-34.
    [23] Shepard T. A., Delsorbo C. R., Louth R. M., et al. Self-organization and polyolefinnucleation efficacy of1,3:2,4-di-p-methylbenzylidene sorbitol, J. Polym. Sci. Pt.B-Polym. Phys.1997,35:2617-2628.
    [24] Saha A. K., Das S., Bhatta D., et al. Study of jute fiber reinforced polyestercomposites by dynamic mechanical analysis, J. Appl. Polym. Sci.1999,71:1505-1513.
    [25] Tay G. S., Nanbo T., Hatakeyama H., et al. Polyurethane composites derived fromglycerol and molasses polyols filled with oil palm empty fruit bunches studied byTG and DMA, Thermochim. Acta2011,525:190-196.
    [26] Harris B., Braddell O., Almond D., et al. Study of carbon fibre surface treatmentsby dynamic mechanical analysis, J. Mater. Sci.1993,28:3353-3366.
    [27] Thomason J. L. Investigation of composite interphase using dynamic mechanicalanalysis: Artifacts and reality, Polym. Compos.1990,11:105-113.
    [28] Jung Y. C., Shimamoto D., Muramatsu H., et al. Robust, conducting, andtransparent polymer composites using surface-modified and individualizeddouble-walled carbon nanotubes, Adv. Mater.2008,20:4509-4512.
    [29] O’Connor I., De S., Coleman J. N., et al. Development of transparent, conductingcomposites by surface infiltration of nanotubes into commercial polymer films,Carbon2009,47:1983-1988.
    [1] Terech P. and Weiss R. G. Low molecular mass gelators of organic liquids and theproperties of their gels, Chem. Rev.1997,97:3133-3160.
    [2] Jin Q., Zhang L., Cao H., et al. Self-assembly of copper(II) ion-mediated nanotubeand its supramolecular chiral catalytic behavior, Langmuir2011,27:13847-13853.
    [3] Xing B., Choi M. F., and Xu B. Design of coordination polymer gels as stablecatalytic systems, Chem.-Eur. J.2002,8:5028-5032.
    [4] Miravet J. F. and Escuder B. Pyridine-functionalised ambidextrous gelators:Towards catalytic gels, Chem. Commun.2005:5796-5798.
    [5] Marpu S., Hu Z., and Omary M. A. Brightly phosphorescent, environmentallyresponsive hydrogels containing a water-soluble three-coordinate gold(I) complex,Langmuir2010,26:15523-15531.
    [6] Kishimura A., Yamashita T., and Aida T. Phosphorescent organogels via“metallophilic” interactions for reversible RGB-color switching, J. Am. Chem. Soc.2005,127:179-183.
    [7] Shirakawa M., Fujita N., Tani T., et al. Organogel of an8-quinolinol platinum (II)chelate derivative and its efficient phosphorescence emission effected by inhibitionof dioxygen quenching, Chem. Commun.2005:4149-4151.
    [8] Kawano S., Fujita N., and Shinkai S. A coordination gelator that shows areversible chromatic change and sol-gel phase-transition behavior uponoxidative/reductive stimuli, J. Am. Chem. Soc.2004,126:8592-8593.
    [9] Liu J., Yan J., Yuan X., et al. A novel low-molecular-mass gelator with a redoxactive ferrocenyl group: Tuning gel formation by oxidation, J. Colloid InterfaceSci.2008,318:397-404.
    [10] Amanokura N., Kanekiyo Y., Shinkai S., et al. New sugar-based gelators with anamino group, the gelation ability of which is remarkably reinforced by thehydrogen bond and the metal coordination, J. Chem. Soc., Perkin Trans.21999:1995-2000.
    [11] Samai S. and Biradha K. Chemical and mechano responsive metal-organic gels ofbis(benzimidazole)-based ligands with Cd(II) and Cu(II) halide salts: Selfsustainability and gas and dye sorptions, Chem. Mater.2012,24:1165-1173.
    [12] George M., Funkhouser G. P., Terech P., et al. Organogels with Fe(III) complexesof phosphorus-containing amphiphiles as two-component isothermal gelators,Langmuir2006,22:7885-7893.
    [13] Hofmeier H., Hoogenboom R., Wouters M. E. L., et al. High molecular weightsupramolecular polymers containing both terpyridine metal complexes andureidopyrimidinone quadruple hydrogen-bonding units in the main chain, J. Am.Chem. Soc.2005,127:2913-2921.
    [14] Peng F., Li G., Liu X., et al. Redox-responsive gel-sol/sol-gel transition inpoly(acrylic acid) aqueous solution containing Fe(III) ions switched by light, J.Am. Chem. Soc.2008,130:16166-16167.
    [15] Wei Q. and James S. L. A metal-organic gel used as a template for a porousorganic polymer, Chem. Commun.2005,41:1555-1556.
    [16] Zhang J. Y., Wang X. B., He L. S., et al. Metal-organic gels as functionalisablesupports for catalysis, New J. Chem.2009,33:1070-1075.
    [17] Dziobkowski C. T., Wrobleski J. T., and Brown D. B. Magnetic properties andmoessbauer spectra of several iron(III)-dicarboxylic acid complexes, Inorg. Chem.1981,20:671-678.
    [18] Saha A. K., Das S., Bhatta D., et al. Study of jute fiber reinforced polyestercomposites by dynamic mechanical analysis, J. Appl. Polym. Sci.1999,71:1505-1513.
    [19] Xiang S., Li L., Zhang J., et al. Porous organic–inorganic hybrid aerogels based onCr3+/Fe3+and rigid bridging carboxylates, J. Mater. Chem.2012,22:1862-1867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700