番茄光合作用对低夜温及其恢复的响应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施蔬菜的生产已成为我国现代农业重要的组成部分,“十二五期间”还将继续加大设施农业的发展力度,确保百姓“菜篮子”安全、充足,而发展“冬季菜篮子”工程成为保障全国冬季蔬菜的供给,满足老百姓需求的重大举措。然而,在我国北方的早春季节栽培中,番茄的设施栽培极易遭受到低夜温,导致光合作用下降,严重影响其产量与品质。因此,探究低夜温对设施番茄光合作用的限制部位,有助于我们及时进行大工调控,消除光合作用的限制因素,减轻低温对植物造成的伤害,达到高产优质栽培的目的,是现阶段可持续设施农业亟待解决的重要问题。
     本文以番茄品种“辽园多丽”为试材,研究了番茄光合作用对低夜温及其恢复的响应机理,全面系统的分析了低夜温限制番茄叶片光合作用的因素。在此基础上,研究了番茄叶片光合作用和水-水循环对低夜温响应的钙素调控,为化学调控植物代谢,缓解低夜温逆境障碍提供理论依据。主要研究结果如下:
     1.明确了不同低夜温显著降低番茄叶片光合作用的气孔因素。在9d的9℃和6℃低夜温条件下,伴随着净光合速率(Pn)不可逆的降低,气孔导度(Gs)、胞间C02浓度(Ci)和蒸腾速率(Tr)将同步大幅度降低,气孔限制值(Ls)显著的高于对照;且导致有转录水平调控的Rubisco活性的降低;以上说明气孔限制和Rubisco活性的下降是9℃和6℃低夜温导致番茄叶片净光合速率降低的因素;在恢复阶段,主要是气孔因素影响了番茄光合作用的恢复速度和程度。
     2.明确了不同低夜温导致番茄叶片光合产物反馈抑制。9℃和6℃低夜温处理9d导致番茄叶片蔗糖的大量积累,且降低蔗糖磷酸合成酶(SPS)活性;通过RT-PCR分析,发现低夜温对番茄叶片中蔗糖代谢合成酶活性的影响是通过:mRNA转录水平上进行的调控。从蔗糖和淀粉含量分别与净光合速率(Pn)和SPS活性呈极显著负相关关系的结果看,低夜温导致的番茄光合效率的降低可以用光合产物反馈抑制假说来解释;在恢复阶段,9℃和6℃低夜温胁迫后光合作用的后继影响并不是碳水化合物反馈抑制的结果。
     3.明确了不同低夜温对番茄叶片中PSⅡ光抑制及光化学活性的影响。9℃和6℃低夜温处理9d内导致叶片PSⅡ最大光化学量子产量(Fv/Fm)的可逆性降低、PSⅡ潜在的活性(Fv/F。)、实际光化学量子效率(ΦPSⅡ)、PSⅡ的电子传递速率(ETR)、光化学猝灭系数(qP)均下降、非光化学猝灭系数(NpQ)提高;15℃适温恢复9d时,叶绿素荧光参数均能恢复到对照的85%以上。上述结果说明:低夜温导致番茄叶片PSII的可逆光抑制的发生和光化学活性的下调。过剩光能的耗散主要是通过增加类囊体膜两侧的质子动力势;天线色素上的能量耗散(D)和经色素去激发过程的能量耗散(Ex),其中天线色素耗散的形式占主要地位;及状态转换等措施来保护光合机构。
     4.明确了不同低夜温对番茄叶片中PSⅠ光抑制的影响。9℃和6℃低夜温降低了番茄叶片由供体侧限制引起的PSⅠ处非光化学能量耗散的量子产量Y(ND),增加了P700-还原态、由受体侧限制引起的PSⅠ处非光化学能量耗散的量子产量Y(NA)和PSI有效的光化学效率Y(I)。表明低夜温导致PSⅠ受体测受到限制,光抑制发生,其影响是可逆的。
     5.明确了不同低夜温对番茄叶片活性氧代谢机制的影响。9℃和6℃低夜温导致用于碳同化的电子流[Je(PCR)]的比例减少主要伴随着用于依赖于氧的电子流[Ja(O2-dependent)]的比例增加;诱导了番茄叶片中活性氧(02-和H202)的积累,同时抗氧化酶(SOD、APX、DHAR和GR)的活性及抗氧化剂(AsA和GSH)的含量高于对照;适温恢复过程中,我们发现活性氧(02-和H202)降低达到对照水平,同时抗氧化酶活性及抗氧化剂含量都能恢复到对照。低夜温条件下通过活性氧的积累看出,说明增加的番茄叶片中SOD活性和AsA-GSH循环清除活性氧的能力并未与氧还原的速率一致;活性氧的清除需要抗氧化酶及抗氧化剂整个防御系统的协调作用。
     6.明确了短时低夜温对番茄叶片光合作用的影响。6℃低夜温胁迫1h导致番茄叶片Pn。降低9.8%;同时Gs、Ci和Tr分别同步下降19%、8.9%和12%;我们通过扫描电子显微镜观察,6℃低夜温胁迫1h导致气孔的开张度和开张率都大幅度降低,其气孔的开张率仅为44.31%,而对照植物的气孔开张率为65.16%;胁迫3h后引起羧化效率(CE)的降低。由此可见,气孔的开闭对低夜温非常敏感。6℃低夜温处理11 h导致叶绿体的形状变的稍圆,淀粉粒的数量增多,所占叶绿体的比例增大,基粒片层结构变少,嗜锇颗粒降低。
     7.明确了短时低夜温对番茄叶片蔗糖代谢内源规律性的变化。短时6℃低夜温处理1h就导致蔗糖(31.2%)的大量积累,且3h后的积累是打破了原有的规律性变化导致的;同时AI、NI和SPS活性出现节律性滞后2h的现象,且这种节律性变化并不是在转录水平上发生的。说明短时低夜温11 h内并不存在着光合产物的反馈抑制的表面机制。
     8.明确了短时低夜温对番茄叶片PSⅡ和PSⅠ的影响。短时6℃低夜温处理11 h内Fv/Fm轻微下降,差异不显著,且一直保持在正常植株所具有的范围之内(0.8-0.83);同时Y(NPQ)和Y(NO)一直低于对照,伴随着它们的下降,Y(I)高于对照水平,表明低夜温11h内并没有引起PSⅡ的光能过剩及光损伤,未导致PSⅡ光抑制的发生;同时,我们发现6℃低夜温处理11h内导致PSⅠ的Y(ND)和Y(NA)下降及Y(I)升高,说明单纯的低夜温胁迫11h内并未引起PSI供体侧和受体侧的限制。
     9.明确了短时低夜温对番茄叶片叶绿体中水-水循环的影响。短时6℃低夜温处理3h后导致叶绿体中O2·-和H202的积累,但在整个处理时间内并未引起MDA含量的增加。伴随着活性氧的积累,叶绿体中SOD和DR活性及AsA和GSH含量增加。因此,叶绿体中水-水循环的启动对于匹配氧的还原速率至关重要。而且叶绿体中活性氧的累积滞后于碳同化的降低。
     10.明确了钙素对低夜温下番茄叶片光合作用的调控。Ca2+通过增加6℃低夜温下番茄叶片气孔的宽度和开张度,提高了低夜温下番茄叶片的Gs,进而增加其Ci,提高了低夜温下番茄叶片的Pn;同时增加了低夜温下叶绿体宽度和面积,降低了淀粉粒的数量,导致淀粉粒所占叶绿体内的比例大幅度降低,促进光能吸收,有利于光合作用的顺利进行。因此,Ca2+预处理调控了气孔的状态及叶绿体的面积来缓解低夜温对番茄叶片光合作用的不利影响。
     11.明确了钙素对低夜温下番茄叶片叶绿体中水-水循环的调控。Ca2+预处理后通过进一步激活了低夜温下叶绿体中抗氧化酶(SOD、APX、DHAR和GR)活性及抗氧化剂(AsA和GSH)含量,参与了AsA-GSH循环的调控,增强了植株对活性氧的清除能力,降低了低夜温下叶绿体中活性氧(O2·-和H202)的积累及MDA的含量。说明Ca2+在逆境中通过激活叶绿体中保护酶的活性及抗氧化剂的含量以清除低夜温胁迫过程中所产生的氧自由基,从而达到使植物免受伤害的目的。
Facilities vegetables have become an important part in China's modern agricultural production, and china will continue to increase agricultural facilities, ensure people "basket " safe and adequate. " winter basket" project has become the important drives that guarantees the supply of national winter vegetables and meets people the demand in" 12 5"period. However, early spring cultivation in China, tomato cultivation under glasshourse easily suffers low night temperature, which resulting in drop of photosynthesis and the serious influence on its yield and quality.Therefore, It is important to study how the low night temperature affect on photosynthetic function of tomato leaves, which help us artificial regulation to eliminate the limiting factor of photosynthesis, reduce the harm on plants caused by low night temperature, and achieve high yield and high quality cultivation purposes.
     The effects of low night temperature at 9℃and 6℃then recover for 9 d at optional temperature 15℃simulated by climate chambers on the mechanism of photosynthesis and regulation of calcium in tomato leaves were studied. It is important both in scientific and practical fields. The main research results are as follows:
     1.It was clear that different low night temperature (LNT, i.e.,9℃and 6℃) stress led to the decrease of photosynthesis. LNT led to irreversible inhibition of photosynthesis mainly accompanying by the decrease in Gs, Ci and the increase in Ls, and the lower Rubisco activity occurred in transcription level.So stomatal limitation and the lower Rubisco activity were factors causing the net photosynthetic rate reduce under LNT at 9℃and 6℃for 9 d.In recovery process at 15℃for 9 d after LNT, stomatal limitation was mainly the reason that affected recovery speed and degree of photosynthesis.
     2.It was clear that different LNT at 9℃and 6℃caused carbohydrates feedback inhibition phenomenon in tomato leaves.There were abundant accumulations of sucroses; LNT inhibited the activities of sucrose phosphate synthase (SPS),which occurred in mRNA transcription level by analyzing RT-PCR.There were significantly negative linear correlations between sucrose and starch content and Pn, as well as sucrose content and SPS activity. Reduced photosynthesis under LNT could be explained by the hypothesis of carbohydrates feedback inhibition; the following influence of photosynthesis was not the result of feedback inhibition in recovery process after LNT.
     3. Effects of different LNT on photoinhibition and photochemical activity of PSⅡin tomato leaves were studied.It was shown that the maximum photochemical efficiency(Fv/Fm), potential activities of PSII(Fv/Fo), the actual photochemical efficiency of PSⅡreaction center (ΦPSⅡ), rate of electronic transmission of photosynthesis (ETR), photochemical quenching coefficient (qP) of leaves deceased at 9℃and 6℃for 9 d, while the non-photochemical quenching coefficient (NpQ) increased. During recovery, Fv/Fm could completely come back to control, other chlorophyll fluorescence parameters could reached more than 85% of control. LNT caused the reversible of PSII photoinhibition, the reduce in PSII photochemical activity played the major role to protect photosynthetic institutions.Excessive light energy consumed by the increase in protons power potential of both sides on thylakoid membranes, the allocation of absorbed light to thermal dissipation (D), excessive energy (Ex) and the state conversion to protect photosynthetic institutions. D was predominant among.
     4.Effects of different LNT on PSI photoinhibition in tomato leaves were studied.LNT increased the photochemical yield of PSI Y(I), quantum yield of non-photochemical energy dissipation in PS I due to acceptor side limitationY(NA) and the reduced of P700. LNT led to the limitation of the acceptor side of PSI,which caused PSI photoinhibition.
     5.The effects of different LNT on the active oxygen metabolism and Ascorbate-Glutathione cycle of tomato leaves were studied.The results showed that LNT caused the reduce in the rate of [Je(PCR)] mainly accompanying by the increase in [Ja(O2-dependent)].We found that LNT increased the active oxygen (O2- and H2O2) and MDA contents; improved the activities of antioxidant enzymes (SOD, APX, DHAR, GR) and the contents of antioxidant (AsA,GSH). In addition, the decrease in O2- production rate and H2O2 and MDA under recover condition at 15℃for 9 d after LNT for 9 d; at the same time, SOD, APX, DHAR and GR activities as well as AsA contents,AsA/DHA and GSH/GSSG were all decline. It indicated that the increase in SOD activitie and scavenging activity of Ascorbate-Glutathione cycle did not keep pace with the rate of oxygen reduction since the increase in O2-, H2O2 and MDA levels were observed,especially in 6℃treated plants.Reactive oxygen removal needed the coordination function between antioxidant enzymes and the whole antioxidant defense system.
     6.It was clear that short-term LNT at 6℃led to the decrease of photosynthesis in tomato leaves. Pn declined by 9.8% when plants were treated 1 h at 6℃, with the synchronical decline in Gs,Ci and Tr (up to 19%,8.9% and 12%). We found that there was a drastical reduce in the area and the stomatal open percentage through the scanning electron microscope (SEM) at 1 h of 6℃.The stomatal open percentage reached 44.31%,while the ratio of that control plants was 65.16%. The reduce in CE after 3 h at 6℃. Stomatal was very sensitive to LNT. LNT at 6℃for 11 h caused chloroplasts shape became relatively slightly rounded,the increase in the number of starch grains and the ratio between chloroplast and starch grains, and the reduce in eosinophilic granular osmium tetroxide.So the primary factors of the decline in Pn caused by short-term LNT was stomatal close.
     7. The effect of short-term LNT at 6℃on the sucrose metabolis internal regularity of tomato leaves. There were abundant accumulations of sucrose(31.2%) at 6℃for 1h, and sucrose accumulation caused by sucrose internal regularity beening broke after 3 h. And LNT at 6℃for 11h caused rhythmic lag phenomenon in AI, NI and SPS, which were 2 h behind compared with controls and did not occur in mRNA transcription level by analyzing RT-PCR.
     8.The effects of short-term LNT at 6℃on photosystemsⅠandⅡof tomato leaves were studied. We investigated direct information on PSI and PSII in vivo tomato plants using the Dual-PAM-100 fluorometer. The results showed that LNT led to the slight decrease in Fv/Fm,and the ratio of Fv/Fm maintained the normal the scope(0.79-0.83) under 6℃for 11h. The Y(NPQ)and Y(NO) was always lower than that of control plants, and the photochemical yield Y(II) of PSII was higher, Which indicated that 11 h of LNT did not cause photoinhibition and photo-damage of PSII. At the same time, LNT increased the photochemical yield of PSI Y(I) and decreased the donor side limitation of PSI Y(ND) and acceptor side limitation of PSI Y(NA).
     9. The effects of short-term LNT at 6℃for 11h simulated by climate chambers on the Water-water cycle in chloroplasts of tomato leaves were studied.The results showed that LNT increased ROS(O2- and H2O2), but did not increased MDA contents; improved the activities of antioxidant enzymes (SOD,DHAR) and the contents of antioxidant (AsA, GSH) after 3 h.So, it was very important to start up water-water cycle in chloroplast as for matching oxygen reduction rate.ROS accumulation in the chloroplasts occured behind the decrease in carbon assimilation.
     10. Regulation of calcium on the photosynthesis parameters in tomato leaves under LNT at 6℃for 7d. Pretreatment with 0.3% CaCl2 increased widen and area of the stomata by SEM, alleviated the reduce of Gs, improved Ci and the Pn of tomato seedlings under LNT; Ca2+ increased widen and area of chloroplasts under LNT and the area of starch grains,but decreased the amount more, so led to the great decrease in the ratio between starch grains and chloroplast, which promoted the absorb of the light energy and photosynthesis.
     11. Regulation of calcium on the water-water cycle in chloroplasts of tomato leaves under LNT. Pretreatment with CaCl2 further improved the activities of antioxidant enzymes (SOD, APX, DHAR, GR) and the contents of antioxidant (AsA, GSH) in the chloroplasts, So Ca2+ improved scavenging ability to reactive oxygen species by regulating Ascorbate-Glutathione cycle and decreased the accumulation of reactive oxygen species (O2- and H2O2) in the chloroplasts.It indicated that Ca2+ mainly activated protective enzyme activity and antioxidants contents to eliminate the reactive oxygen species under LNT, so as to protect the plant from harm.
引文
1. 艾希珍,王秀峰,崔志峰.2006.钙对弱光亚适温下黄瓜光合作用的影响.中国农业科学,39(9):1865-1871.
    2. 蔡时青,许大全.2002.光系统II的可逆失活和不可逆破坏[D].上海:中国科学院研究生院.
    3. 蔡志全,曹坤芳,冯玉龙,等.2003.低夜温胁迫对两种生长光强下藤黄幼苗叶片荧光特征和活性氧代谢的影响闭.应用生态学报,14(3):326-331.
    4. 陈禅友,汪汇东,丁毅.2005.低温胁迫下长豇豆幼苗可溶性蛋白质和细胞保护酶活性的变化.园艺学报,32(5):911-913.
    5. 陈国祥,何兵,魏锦城.2000.低温下强光胁迫对小麦叶片光系统I结构与功能的影响.植物生理学报,26(4):337-342.
    6. 陈家松,刘显辉.1998.渗透胁迫下Ca2+对龙眼叶片中光合及膜质过氧化的影响[J].园艺学报,25(1):87-88.
    7. 陈屏昭,王磊,代勋.2005.缺磷强光下脐橙的过剩能量耗散机制.应用生态学报,16(6):1061-1066.
    8. 陈启林,山仑,程智慧.2001.低温下光照对黄瓜叶片光合特性的影响[J].中国农业科学,34(6)632-636.
    9. 陈青君,张福埙王永健,等.2003.临界低温弱光对黄瓜光合特性及其酶变化的影响[J].华北农学报,18(4):31-34.
    10.陈向明,郑国生,张圣旺.2001.钙对保护地栽培牡丹光合特性的影响.园艺学报,28(6):572-57.
    11.陈贻竹,帕特森.1988.低温对植物叶片中超氧物歧化酶、过氧化物酶和过氧化氢水平的影响.植物生理学报,14(4):323-328.
    12.崔彬彬,李云,冯大领,刘莹,符晓霞.2006.杨树叶绿体分离及叶绿体DNA提取方法的研究.保定师范专科学校学报,19(2):25-27.
    13.董彩霞,周健民,赵世杰,王火焰.2005.外源钙对不同钙敏感型番茄幼苗生理特性的影响.应用生态学报,16(2):267-272.
    14.董高峰,陈贻竹.1999.植物叶黄素与非辐射能量耗散.植物生理学通讯,35(2):141-144.
    15.杜秀敏,殷文璇,赵彦修,张慧.2001.植物中活性氧的产生与清除.生物工程学报,17(2):121-126.
    16.段伟,李新国,孟庆伟.2003.低温下的植物光抑制机理.西北植物学报,23(6):1017-1023.
    17.冯玉龙,曹坤芳,冯志立,等.2002低夜温对不同光强下生长的两种热带树苗光合作用的影响[J].植物生理与分子生物学学报,28(6):433-440.
    18.高洪波,陈贵林.2002.钙调素拮抗剂与Ca2+对茄子幼苗抗冷性的影响.园艺学报,29(3):243-246.
    19.高洪波.2002.Ca2+和钙调素拮抗剂对茄子幼苗抗冷性的影响:[硕士学位论文].河北农业大学.
    20.高俊杰,秦爱国,于贤昌.2009.低温胁迫下嫁接对黄瓜叶片SOD和CAT基因表达与活性变化的影响.应用生态学报,20(1):213-217
    21.高向阳,杨根平,许志强,等.1999.水分胁迫下钙对大豆膜脂过氧化保护酶系统的影响[J].华南农业大学学报,20(2):7-12.
    22.龚明,杨兴富.1994.钙对玉米幼苗耐盐性的效应.植物生理学通讯,30(6):429-432.
    23.郭丽红,陈善娜,龚明.2001钙对玉米种子活力和萌发过程中谷胱甘肽还原酶活性的影响.昆明师范 高等专科学校学报,23(4):37-39.
    24.郭丽红,陈善娜,龚明.2002.钙对玉米幼苗谷光甘肽还原酶活性的影响[J].植物生理学通讯,38(2):115-117.
    25.郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32(1):1-8.
    26.郭延平,周慧芬,曾光辉,张良诚.2003.高温胁迫对柑橘光合速率和光系统II活性的影响.应用生态学报,14:867-870.
    27.郭延平,苏吉虎,王宏炜,沈允钢,张良诚.2003.亚硫酸氢钠处理减轻低温对温州蜜柑光合作用的影响.园艺学报,30(2):195-197.
    28.郭延平,张良诚,沈允钢.1998.低温胁迫对温州蜜柑光合作用的影响闭.园艺学报,25:111-116.
    29.郭玉华,蔡志全,曹坤芳.2005.低夜温对两种咖啡光合作用的影响明.生态学杂志,24(5):478-482.
    30.何洁,刘鸿先,王以柔,等.1986.低温与植物的光合作用.植物生理学通讯,2:1-6.
    31.洪双松,许大全.1997.小麦和大豆叶片荧光参数对强光响应的差异[J].科学通报,42:753-756.
    32.胡春梅,朱月林,杨立飞,等.2006.低温条件下黄瓜嫁接株与自根株光合特性的比较明.西北植物学报,26(2):247-253.
    33.胡美君.2008.高温强光对温州蜜柑(Citrus unshiu Marc.)光合作用的影响及其机理研究.浙江大学博士学位论文.
    34.胡文海,黄黎锋,肖宜安,等.2005a.低夜温对2种光强下榕树叶绿素荧光的影响[J].浙江林学院学报,22(1):20-23.
    35.胡文海,李晓红.2003.低温弱光对番茄叶片和根系中抗氧化酶系统的影响[J].井冈山师范学院学报(自然科学),24(5):19-22.
    36.胡文海,肖宜安,龙婉婉.2005b.低夜温后日间光照对海桐和榕树叶片的光抑制以及光系统功能的影响.植物生理学通讯,41(40):467-470.
    37.胡莹莹,赵天宏,徐玲,孙加伟,付宇,马建,周密.2008.臭氧浓度升高对小麦光合作用和产量构成的影响.农业现代化研究,29(4):498-502.
    38.黄建昌,肖艳,周厚高.2004.Ca2+对水分胁迫下番木瓜若干生理指标的影响.广西植物,24(4):373-375.
    39.贾开志,2003.钙和钙调素拮抗剂对茄子幼苗耐热性调控,河北农业大学硕士论文.
    40.江元清,凌毅,赵武玲.2001.真核mRNA的3'非翻译区转录后水平调控作用研究进展.植物学通报,18(1):3-10.
    41.姜闯道,高辉远,邹琦.2002.缺铁使大豆叶片激发能的耗散增加.植物生理与分子生物学学报,28(4):287-291.
    42.姜闯道,高辉远,邹琦.2003.二硫苏糖醇处理导致大豆叶片两光系统间激发能分配失衡.植物生理与分子生物学学报.29(6):561-568
    43.雷江丽,杜永臣,朱德蔚,等.2000.低温胁迫下不同耐冷性番茄品种幼叶细胞Ca2+分布变化的差异[J].园艺学报,27(4):269-275.
    44.李国强,齐明芳,李天来,王丽娟,李伟,姜智威.2006.低夜温后恢复期番茄幼苗光合作用和生长发育的变化.沈阳农业大学学报,37(3):491-494.
    45.李美如,刘鸿先,王以柔,等.1996.钙对水稻幼苗抗冷性的影响[J].植物生理学报,22(4):379-384
    46.李美如,刘鸿先,王以柔,等.1994.水稻幼苗冷锻炼过程中钙的效应[J].植物学报,8(2):775-784.
    47.李美茹,刘鸿先,王以柔.1981.低温下水稻幼苗叶片细胞膜膜脂过氧化和膜磷脂脱酯化反应.广西 植物,18(2):173-176.
    48.李淼.2009.短期昼间亚高温胁迫下番茄叶片光合作用的变化及其对钙与水杨酸调控的响应:[硕士学位论文].沈阳农业大学.
    49.李平,李晓萍,陈贻竹.1995.光温对不同抗冷力的籼稻抽穗期剑叶叶绿素荧光的影响.中国水稻科学,9:97-102
    50.李平,王以柔,陈贻竹,等.1994.低温对杂交水稻乳熟期剑叶光合作用和光合产物运输的影响[J].植物学报,36(1):45-52.
    51.李天来,刘玉凤,宋礼毓.2008.夜间亚低温处理及其恢复对番茄叶片光抑制的影响.园艺学报.35(7):1003-1010.
    52.李卫,孙中海,章文才,等.1997.钙与钙调素对柑橘原生质体抗冷性的影响[J].植物生理学报,23(3):262-266.
    53.李卫东,吴本宏,李绍华,李连生.2006.去果对桃源叶碳水化合物含量及其相关酶活性日变化的影响.园艺学报,33(3):605-608.
    54.李晓萍,陈贻竹,李平,等.1992.黄瓜幼苗的冷锻炼与低温引起的光抑制.植物生理学报,2:101-104.
    55.李新国,段伟,孟庆伟,邹琦.2002.PSⅠ的光抑制[J].植物生理学通讯,38(4):375-381.
    56.李新国.2003.低温弱光条件下喜温植物PSⅠ和PSⅡ的光抑制及其相互关系:[博士学位论文].山东农业大学.
    57.李忠光,杜朝昆,龚明.2003.在单一提取系统中同时测定植物ASA/DHA和GSH/GSSG.云南师范大学学报,23(3):67-70
    58.李忠光,龚明.2005.植物中超氧阴离子自由基测定方法的改进.云南植物研究,27(2):211-216.
    59.梁颖,王三根.2001.Ca2+对低温下水稻幼苗膜的保护作用.作物学报,27(1):59-64.
    60.梁芳.2009.菊花对低温弱光胁迫的响应机理以及ASA和Ca2+的缓解效应的研究:[硕士学位论文].山东农业大学.
    61.梁文娟,艾希珍,王美玲,王洪涛.2009.钙对亚适温弱光下黄瓜幼苗Ca2+分布及叶绿素荧光参数的影响.西北植物学报,29(6):1226-1232.
    62.梁颖,王三根.1996.Ca2+对水稻种子活力和抗寒力的影响.西南农业大学学报,18(5):491-495.
    63.梁颖,王三根.1997.Ca2+对冷害水稻幼苗某些生理特性的影响.西南师范大学学报(自然科学版),22(4):411-415.
    64.梁颖,王三根.2001.Ca2+对低温下水稻幼苗膜的保护作用.作物学报,27(1):59-64.
    65.刘鸿先,曾韶西,王以柔,等.1985.低温对不同耐冷力的黄瓜幼苗子叶各细胞器中超氧物歧化酶的影响.植物生理学报,11:48-57.
    66.刘建,2008.两种按树对低温胁迫的响应机制研究:[博士学位论文].南京林业大学.
    67.刘鹏,孟庆伟,赵世杰.2001.冷敏感植物的低温光抑制及其生化保护机制.植物生理学通讯,37(1):76-82.
    68.刘玉梅.2006.亚适温较弱光照条件下调控黄瓜光合作用的原理与技术研究:[博士学位论文].山东农业大学.
    69.卢荣禾,唐崇钦,匡廷云,汤佩松.1997.光系统Ⅱ反应中心复合物中Cyt b559的光还原.植物学报,39(6):517-521.
    70.罗娅,汤浩茹,张勇.2007.低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响.园艺学报,34(6):1405-1410.
    71.马博英,金松恒,徐礼根,等.2006.低温对三种暖季型草坪草叶绿素荧光特性的影响[J].中国草地学报,28(1):58-62.
    72.马德华,庞金安,李淑菊,霍振荣.1998.短期强低温处理对黄瓜幼苗光合作用的影响[J].河北农业大学学报,21(2)39-42.
    73.牛森.1992.作物品质分析.北京:中国农业出版社,46.
    74.牛森.1994.作物品质分析.北京:中国农业出版社,224.
    75.彭长连,林桂珠.2003.拟南芥叶黄素缺失突变体叶绿素荧光碎灭的特性.生物化学与生物物理进展,30(2):251-260.
    76.齐红岩,李天来,刘海涛,张洁.2005.番茄不同部位中糖含量和相关酶活性的研究.园艺学报,32(2):239-243.
    77.秦爱国,高俊杰,于贤昌.2009.温度胁迫对马铃薯叶片抗坏血酸代谢系统的影响.应用生态学报,20(12):2964-2970.
    78.沈允刚,施教耐,许大全.1995.动态光合作用.北京:科学出版社,59-69.
    79.沈允钢,程建峰,胡美君.2010.循环光合磷酸化和光合作用.生命科学,5:471-474.
    80.宋广运,陈惠民.1986.钙对棉花胚根抗冷性的影响.中国农业科学,(2):23-27.
    81.宋丽丽,徐凯,等.2003.温州蜜柑叶片光合作用光抑制的保护机理.应用生态学报,14:47-50.
    82.孙大业.1984.钙调节蛋白及其在植物体内的功能[J].植物生理学通讯,6:13-19.
    83.孙大业等.1998.细胞信号转导.北京:科学出版社.
    84.孙宪芝,郭先锋,郑成淑,王文莉,梁芳.2008.高温胁迫下外源钙对菊花叶片光合机构与活性氧清除酶系统的影响.应用生态学报,19(9):1983-1988.
    85.孙学成,杨玲,胡承孝,甘巧巧,易长城.2006.低温胁迫下钼对冬小麦抗氧化酶活性的影响.中国农业科学,39(5):952-959.
    86.唐崇钦,彭德川,娄世庆,等.1994.Ca2+对叶绿体两个光系统间激发能分配调节的影响[J].植物学集刊,7:230-236.
    87.唐连顺,李广敏,商振清,池书敏.1992.水分胁迫对玉米幼苗膜脂过氧化及保护酶的影响[J].河北农业大学学报,12(1):35-40.
    88.王朝晖,孙大业.1997.植物钙调素研究进展[J].植物学通报,85:57-60.
    89.王国莉,郭振飞.2005.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响[J].中国水稻科学,19(4):381-383.
    90.王静,张成军,陈国样,等.2006.低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响[J].中国水稻科学,20(2):177-182.
    91.王丽娟,李天来,崔娜.2006b.夜间不同时段低温对番茄光合产物积累与分配的影响.沈阳农业大学学报,37(6):811-815.
    92.王丽娟,李天来,李国强,齐红岩.2006c.低夜温对番茄幼苗光合作用的影响.园艺学报,33(4):757-761.
    93.王丽娟,李天来,齐红岩,赵明兴,郝文辉.2006a.长期夜间亚低温对番茄生长发育及光合产物分配的影响.沈阳农业大学学报,37(3):300-303.
    94.王丽娟.2006.低夜温对设施番茄光合物质生产、分配及代谢影响的研究.沈阳农业大学博士学位论文.
    95.王丽萍,任良玉,王冉,陈贵林.2004.钙对黄瓜幼苗生长及抗氧化系统的影响,27(1):34-37.
    96.王利军,李家承,刘允芬,刘琪瑾,黄卫东,石玉林.2003.高温干旱胁迫下水杨酸和钙对柑橘光合作用和叶绿素荧光的影响.中国农学通报,19(6):185-189.
    97.王旭.2006.钙对根际低氧胁迫下黄瓜幼苗光合生理影响的研究:[硕士学位论文].南京农业大学.
    98.王毅,方秀娟,徐欣,等.1995.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响.园艺学报,22(3):299-300.
    99.王永健,张海英,张峰,等.2001.低温弱光对不同黄瓜品种幼苗光合作用的影响闭.园艺学报,28(3):230-234.
    100.王永章,张大鹏.2000.乙烯对成熟期新红星苹果果实碳水化合物代谢的调控.园艺学报,27(6):391-395.
    101.韦朝领,江昌俊,陶汉之,胡颖慧.2004.茶树鲜叶中叶黄素循环组分的高效液相色谱法测定研究及其光保护功能鉴定.茶叶科学.24(1):60-64.
    102.魏家绵,李德耀,任汇淼.1995.内源无机磷酸盐对叶绿体Mg2+-ATP酶功能的调节.植物生理学报,21(2):105-110.
    103.吴长艾.孟庆伟,邹琦.2001.叶黄素循环及其调控.植物生理学通讯,37(1):1-5.
    104.吴锦程,梁杰,陈建琴,戴巧斌,曹连黄,许鑫,许金榜,官玲.2009.GSH对低温胁迫下枇杷幼果叶绿体AsA-GSH循环代谢的影响.林业科学,45(11):15-19.
    105.谢亚军,王兵,梁新华,韩招迪.2008.干旱胁迫对甘草幼苗活性氧代谢及保护酶活性的影响.农业科学研究,29(4):19-22.
    106.徐宝基,李德耀,沈允钢.1989.低浓度硫酸甲酯吩嗪(PMS)对叶片光合放氧的促进作用.植物生理学报,15(3):307-12.
    107.徐凯,张上隆.2005.草莓的光抑制特性及光质对其生长结果的影响[D].浙江:杭州,浙江大学.
    108.徐志防,罗广华,王爱国,等.1999a.光合作用的光抑制与光合器官的活性氧代谢.植物生理学通讯,35(4):325-332.
    109.许大全,李德耀,邱国雄,等.1987.毛竹叶片光合作用的气孔限制研究[J].植物生理学报,13:154-160.
    110.许大全,沈允钢.1982.光合产物水平与光合机构运转关系的探讨.植物生理学报,8(2):173-186.
    111.许大全,沈允钢.1998.光合作用的限制因素.植物生理与分子生物学(第二版).余叔文,汤章城主编.北京:科学出版社,262-276.
    112.许大全,张玉忠,张荣铣.1992.植物光合作用的光抑制.植物生理学通讯,28(4):237-243.
    113.许大全.1986.光合产物水平与光合作用速率.植物生理学通讯,(6):1-8.
    114.许大全.2002.光合作用效率.上海科学技术.
    115.杨根平,高爱丽,荆家海.1993.钙调素和水分高缺对黄瓜叶片细胞质膜透性的影响[J].两北植物学报,13(2):89-95.
    116.杨兴洪,邹琦,王玮.2001.遮荫棉花转入强光后光合作用的光抑制及其恢复.植物学报,43(12):1255-1259.
    117.易建华,孙在军.2004.烟草光合作用对低温的响应[J].作物学报,30(6):582-588.
    118.由继红,陆静梅,杨文杰.2002.钙对低温胁迫下小麦幼苗光合作用及相关生理指标的影响.作物学报,28(5):693-696.
    119.於新建.1985.植物生理学实验手册.上海:上海科学技术出版社,148-149.
    120.曾光辉,郭延平,王法格等.2006.冬、春季节柑桔叶片光合机构运转的研究[J].浙江大学学报(农业与生命科学版),32(4):41-44.
    121.曾光辉.2004.杨梅光抑制的研究:[硕士学位论文].浙江大学.
    122.曾纪晴,刘鸿先,王以柔,陈贻竹.1997.黄瓜幼苗子叶在低温下的光抑制及其恢复.植物生理学报,23(1):15-20.
    123.张广华.2004.弱光、低温胁迫对草莓光合作用的影响:[博士学位论文].河北农业大学.
    124.张化生,郭晓冬,王萍,等.2008.低温胁迫下硝酸钙处理对辣椒幼苗抗冷性的影响.甘肃农业大学学报,43(2):66-69.
    125.张化生.2007.Ca2+和钙调素拮抗剂对辣椒幼苗抗冷性的影响:[硕士学位论文].甘肃农业大学.
    126.张往祥,曹福亮.2002.高温期间水分对银杏光合作用和光化学效率的影响[J].林业科学研究,15(6):672-679.
    127.张宪政.1989.植物生理学实验指导[M].沈阳:辽宁科学技术出版社.
    128.张银锁,宇振荣,Driessen P M.2002.环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究.作物学报,28(1):104-109.
    129.张宗申,利容千,王建波.2001.外源钙预处理对高温胁迫下辣椒叶片细胞膜透性GsH、AsA含量及钙离子分布的影响[J].植物生态学报,25(2):230—234
    130.赵世杰,邹琦,于振文.2000.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报.
    131.赵智中,张上隆,徐昌杰,陈昆松,刘拴桃.2001.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用.园艺学报,28(2):112-118.
    132.周睿,夏宁,束怀瑞.1995.苹果果实对叶片光合作用的调节.园艺学报,22(3):293-294.
    133.周睿.1995.新红星苹果叶果内碳水化合物运输和代谢的研究:[博士学位论文].杭州浙江农业大学.
    134.周艳虹,黄黎峰,喻景权.2004.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响.植物生理与分子生物学报,30(2):153-160.
    135.周艳虹.2004.低温对黄瓜光舍机构光能吸收、电子流分配和CO2同化的影响及其调控机制:[博士学位论文].浙江大学.
    136.朱隆静.2004.磷与钙对低温胁迫下番茄光合作用的影响及其机理研究:[硕士学位论文].浙江大学.
    137.朱晓军,杨劲松,梁永超等.2004.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响[J].中国农业科学,37:]497-1503.
    138. Allen D.J., Ratner K., Giller Y.E.,Gussakovsky E.E., Shahak Y., Ort D.R.,2000. An overnight chill induces a delayed inhibition of photosynthesis at midday in mango. Journal of Experimental Botany, 51:1893-1902.
    139. Allen D.J., Ort D.R.,2001.Impact of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci,6:36-42.
    140. Allen,2002.Chill-Induced Inhibition of Photosynthesis:Genotypic Variation within Cucumis sativus. Plant Cell Physiol,43(10):1182-1188.
    141. Anderson J.M., Aro E.M.,1994.Grana stacking and protection of photosystem Ⅱ in thylakoid membranes of higher plant leaves under sustained high irradiance:A hypothesis[J]. Photosynth Res, 41:315-326.
    142. Anderson J.V., Chevone B.I.,Hess J.L.,1992.Seasonal variation in the antioxidant system of eastern White Pine needles. Plant physiology 98:501-508.
    143. Angelo Artuso, Lucia Guidi, Gian Franco Soldatini, Alberto Pardossi and Franco Tognoni,2000. The influence of chilling on photosynthesis and activities of some enzymes of sucrose metabolism in Lycopersicon esculentum Mill. Acta Physiologiae Plantarum,22:95-101.
    144. Aravali N.,1996.Rajagopal Growth of Gram-negative bacteria in the presence of organic solvents. Enzyme and Microbial Technology,19(8):606-613.
    145. Arvidsson P.O.,Carlsson M.,Stefansson H.,etal.,1997.Violaxanthin accessibility and temperature dependency for de-epoxidation in spinach thylakoid membranes.Photosynth Res,52(1):39-48
    146. Aro E., M., Virgin V., Andersson B.,1993.Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta,1143:113-134.
    147. Asada K.,1999.The water-water cycle in chloroplast:scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol,50:601-639.
    148. Asada K.,1992. Production and scavenging of active oxygen in chloroplast. In:Scandalios J G ed. Molecular Biology of Free Radical Scavenging Systems. New York:CSHL Press,173-192
    149. Auer H., Wierer R., Hatheway W.H.,Larcher W.,1985.Photosyhthesis of Coffea arabica after chilling. Physiologia Plantarum,64:449-454.
    150. Baker N.R., Bradbury M., Farage PK etal,1989.Measurements of the quantum yield of carbon assimilation and chlorophyll fluorescence for assessment of crops in the field. Philos Trans R Soc,London Ser B,90:1609-1615.
    151. Baker, N.R., East, T.M., Long,S.P.,1983.Chilling damage to photosynthesis in young Zea mays leaves. J. Exp. Bot 139:189-197.
    152. Baker N.R., Farage P.K., Stirling C., Long S.P..1994.Photoinhibition of crop photosynthesis in the field at low temperature.In:Baker NR,JR Bowyer,eds.,Photoinhibition of crop photosynthesis:From Molecular Mechanisms to the Field.BiosScientific, Oxford, UK,pp.349-363
    153. Barber J., Nield E.P., Morris D.Z., etal,1997.The structure, function and dynamics of Photosystem, Physiol Plant,100:817-828.
    154. Barber J., De Las Rivas J.,1993.A functional model for the role of cytochrome b559 in the protection against donor and acceptor side photoinhibition[J]. Proc Natl Acad Sci.USA,90:10942-10946.
    155. Barber J.,1989.Molecular basis of the vulnerability of photosystem Ⅱ to damage by light.Aust and-resistant plants. Plant Physiol,90:1609-1615.
    156. Balestrasse K.B.,Gardey L.,Gallego S.M.,Tomaro M.L.,2001.Response of antioxidant defense system in soybean nodules and roots subjected to cadmium stress. Plant Physiol,28:497-503.
    157. Bendall D.S., Manasse R.S.,1995.Cyclic photophosphorylation and electron transport. Biochim Biophys Acta,12(29):23-38.
    158. Bagnall D.J., King R.W.,Farquhar G.D.,1988.Temperature dependent feed back inhibition of photosynthesis in peanut[J].planta,175:348-354.
    159. Bell M.J.,Michaels T.E.,McCullough D.E.,Tollennaar M.,1994.Photosynthesis response to chilling in peanut. Crop Science 34,1014-1023.
    160. Berry J, Bjorkman O.,1980.Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol,31:491-543.doi:10.1146/annurev.pp.31.060180.002423.
    161. Bertamini, M., Zulini, L., Muthuchelian, K., Nedunchezhian, N.,2007.Low night temperature effects on photosynthetic performanceon two grapevine genotypes. Biol. Plant,51:381-385.
    162. Bradford M.M.,1976.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,72:248-254.
    163. Bruggemann, W.,1992.Low temperature limitations of photosynthesis in three tropical Vigna species: a chlorophyll fluorescence study. Photosynth Res,34:301-310.
    164. Braun G., Malkin S.,1990.Regulation of the imbalancein light excitation between photosystem II and photosystem I by cations and by the energized state of the thylakoid membrance. B iochim ica et B iophysica Acta,1017:79-90
    165. Bruggemann W.,van der Kooij TAW,van Hasselt PR,1992a.Long-term chilling of young tomato plant under low light and subsequent recovery. I. Growth,development and photosynthesis. Planta,186:172-178.
    166. Bruggemann W.,van der Kooij TAW,van Hasselt P.R.,1992b.Long-term chilling of young tomato plant under low light and subsequent recovery.Ⅱ.Chlorophyll fluorescence,carbon metabolism and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta,186:179-187.
    167. Bianco V.V.,Pratt H.K.,1997.Compositional changes in muskmelons during development and in response to ethylene treatment. J. Amer. Soc.Hortic. Sci.,102:127-133.
    168. Bilger W., Bjokman 0.,1990.Role of the xanthoPhyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis.Photosynth Res,25:173-185.
    169. BjJrkan, O.,1981. Responses to different quantum flux densities. In:Lange OL, Nobel PS, Osmond, C.B., Ziegler, H(eds). Encyclopedia of plant Physiolgy, NS,V01.12A:Interaction With the physical Environment. New York:Springer-Verlag,57-107.
    170. Boese S.R., Wolfe D.W., Melkonian JJSO,1997.Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant, Cell and Environment,20:625-632.
    171.Bota J., Medrano H., Flexas J.,2004.Is Photosynthesis limited by decreased Rubisco activity and RuBP content under progressive waterstress?New Phytologist,162:671-681.
    172. Bowler C., van Montagu M.,1992.Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology,43:83-86.
    173. Bukhov N.G., Carpentier R.,2000.Heterogeneity of photosystem II reaction centers as influenced by heat treatment of barley leaves. Physiologia Plantarum,110:279-285.
    174. Bulder HAM., Speek E.J., Hasselt PR,van Kuiper PJC,van Hasselt PR,1991. Growth temperature and lipid composition of cucumber genotypes differing in adaptation to low energy conditions. Journal of Plant Physiology,138:655-660.
    175. Caemmerer S.,2000.Biochemical Models of Leaf Photosynthesis.Techniques in Plant Science No.2. collingwood,VA,Australia:CSIRO publishing.
    176. Cakmakl Marsehner H.,1992.Magnesium defieieney and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reduectase in bean leaves.Plant Physiology,98:1222-1227.
    177. Chavez Barcenas A. T.,Valdez Alarcon J.J., Martinez Trujillo M., et al.,2000. Tissue Specific and Developmental Pattern of Expression of the Rice spsl Gene. Plant Physiology,124(2):641-654.
    178. Chaparzadeh N., D'Amico M.L., Khavari Nejad R.A., Izzo R., Navari-lzzo F.,2004. Antioxidative responses of Calendula officinalis under salinity conditions, Plant Physiology and Biochemistry, 42:695-701.
    179. Chow W.S.,1994.Photoprotection and photoinhibitory damage[J].Advance in Molecular and Cell Biology,10:151-196.
    180. Coilatz G.D.,1977.Influence of certain environmental factors on photosynthesis and photorespiration in Simmondsia chinensis[J].Planta,134:127-132.
    181. Cooke A.,cookson A.,and Earnshaw M.J.,1986.The mechanism of action on calcium in the inhibition leakage of betacyanin from beet root descs[J].New Phytologist,102:491-497.
    182. David C.,Fork,1986.The control by state transitions of the distributions of excitation energy in photosynthesis.Annu Rev Plant Physiol,37:335-361.
    183. Davidson N.J.,Battaglia M.,Close D.C.,2004.Photosynthetic responses to overnight frost in Eucalyptus nitens and E.globulus[J].Tress,18:245-252.
    184. Deming-Adams B., Adams WW111.,1992.Photo protection and other responses of Plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol,43:599-626.
    185. Demmig-Adams B., Adams WW111.,1996.The role of xanthophyll cycle carotenoids in the protection of photosynthesis.Trends Plant Sei.,1 (l):21-26.
    186. Demmig-Adams B.,1990.Cartenoids and photoprotection in plant:a role for the xantllophyll zeazanthin.Biochim Biophys Acta,1020:1-24.
    187. Doehlert D.C.,Huber S.C.,1983. Regulation of spinach leaf sucrose phosphate synthase by glucose phosphate, inorganic phosphate, and pH. Plant Physiol,73 (4):989-994.
    188. Demmig-Adams B.,Adam IIIWW,Barker D.H.,etal.,1996.Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum,98:253-264.
    189. Delosme R.,Olive J.,Wollman F.A.,1996.Changes in light energy distribution upon state transitions:An in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii.Biochim Biophys Acta,1273:150-158
    190. Donald R.O.,2001.When there is too much light.Plant Physiol,125:29-32.
    191. Edwards G.E., Baker N.R.,1993.Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll analysis. Photosynth Res,37:89-102.
    192. Enod T., Shikanai T., Takabayashi A., Asada K., Sato F.,1999.The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett,457:5-8.
    193. Estruch J.J., Beltran J. P.,1991.Changes in invertase activities precede ovary growth induced by gibberellic acid in Pisum stivum. Physiol. Plant,81:319-326.
    194. Eskling M.,Arvidsson P.O.,Akerlind H.E.,1997.The xanthophyl cycle,its regulation and components. Physiol Plant,100:806-816.
    195. Farber A., Young A.J., Ruban A.V.,etal.1997.Dynamics of xanthophylls cycle activity in different recovery.Planta,168:253-257.
    196. Farquhar G.D., Sharker T.D.,1982.Stomatal conductance and photosynthesis. Annu Rev Plant Physiol, 33:317-345.
    197. FlexasJ, Ribas Carb M.,Bota J.,Galmes J.,Henkle M.,Martinez-Canellas S.,Medrano H.2006. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration.New phytologist,172:73-82.
    198. Flexas J.,Medrano H.,2002.Energy dissipation in C3 Plants under drought. Funct Plant Biol,29: 1209-1215.
    199. Foyer C.H., Noetor G.,2000a.Leaves in the dark see the light. Science,284:5414-5416.
    200. Foyer C.H., Lelandais M., Kunert K.T.,1994.Photooxidative stress in Plants.Physiol Plant,92:696-717.
    201. Foyer C., Rowell J., Walker D.,1983.The effect of sucrose on the rate of de novo sucrose biosynthesis in leaf p rotop lasts from sp inach, wheat and barley. Archives of Biochemistry and Biophysics,220: 232-238.
    202. Foyer C.H.,Noctor G.,2003.Redox sensing and signaling associated with reactive oxygen in chloroplasts,peroxisomes and mitochondria.physiologia plantarum,119:355-364.
    203. Foyer C.H.,Descourvieres P., Kunert K.J.,1994.Protection against oxygen radicals an important defense-mechanism studied in transgenic plants.Plant and Cell Environment,17:507-523.
    204. Foyer C.H.,Halliwell B.,1976.The Presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic acid metabolism.Planta,133:21-25.
    205. Fridman E., Zamir D.,2003. Functional divergence of a syntenic invertase gene family in tomato, potato, and arabidopsis.Plant Physiology,131(2):603-609.
    206. Fryer M.J.,Andrews J.R., Oxborough K., Blowers D.A.,Baker N.R.,1998.Relationship between CO2assimilation,photosynthetic electron transport,and active O2 metabolism in leaves of maize in the field during period of low temperature. Plant Physiology,116:571-580.
    207. Gao H.B.,Chen G.L.,2004.Calcium influence on chilling resistance of grafting eggplant seedlings. Journal of Plant Nutrition,27(8):110-123.
    208. Gao Z., Petreikov M., Zamski E.,1999.Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo L.). Physiol. Plant.,106:1-8.
    209. Gaudillere J.P.,Moing A.,1992.Photosynthesis of peach leaves:lihgt adaptation, limiting factors and sugar content. Acta Horticulturae,315:103-109.
    210. Gesch R.W.,Kang I.H.,Gallo-Meagher M.,VUJCV,Boote K.J.,Allen L.H.,Bowes J.R.G.,2003. Rubisco expression in rice leaves is related to genotypic variation of photosynthesis under elevated growth CO2 and temperature.Plant Cell and Environment,26:1941-1950.
    211. Gomez J.M.,Jimenez A.,Olmos E.,Sevilla F.,2004.Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea(pisum sativum cv.puget) chloroplasts.Journal of Experimental Botany,55:119-130.
    212. Gong M. etal.,1997.Effect ofcalcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings[J]. Aust.Plant Physiol,24,371-379.
    213. Haldimann P.,Fracheboud Y.,Stamp P.,1996.Photosynthetic performance and resistance to photoinhibition of Zea mays L. leaves grown at sub-optimal temperature. Plant Cell Environ, 19:85-92.
    214. Havaux M., Davaud A.,1994.Photo inhibition of photosynthesis in chilled potato leaves is not correlated with loss of photosysthem activity. Preferential inactivation of Photosystem I. Photosynth Res,40:75-92.
    215. Havaux M.,Eyletters M.,1991.Is the in vivo photosystem I function resistant to photoinhibition? An answer from photo-acoustic and far-red absorbance measurements in intact leaves.Z Natur forsch,46:1038-1044.
    216. Harbinson J.,Genty B., Baker N.R.,1990.The relationship between CO2 assimilation and electron transport in leaves. Photosynth Res.,25:213-224.
    217. Hayata Y., Li X.X., Osajima Y.,2001.Sucrose accumulation and related metabolizing enzyme activies in seeded and induced parthenocarpic muskmelons. J. Am. Soc. Hortic. Sci.,126:676-680.
    218. Heath R.I.,Packer L.,1968.Photoperoxidation in isolased chloroplasts I Kinetics and stoichiometry of fatH acid peroxidation. Archives of Biochemistry & Biophysics,125:189-198.
    219. Hernandez J.A.,Ferrer M.A.,Jimenez,Barcelo A.R.,Sevilla F.,2001.Antioxidant systems and O2-H2O2 production in the apoplast of pea leaves:its relation with salt-induced necrotic lesions in minor veins. Plant Physiology,127:817-831.
    220. Henrysson T., Sundby C.,1990.Characterization of photosystem I in stroma thylakoid membranes[J]. Photosynth Res,25:107-117.
    221. Heuvelink E.,1997.Effect of fruit load on dry matter partitioning in tomato[J].Science Horticulture, 69:51-59.
    222. Hepler P.K.,2005.Calcium:A cent ral regulator of plant growt h and development [J]. The Plant Cel 1,17:2142-2155.
    223. Hirotsu N,Makino A,Ushio A,Mae T.,2004.Changes in the thermal dissipation and the electron flow in the water-water cycle in rice grown under conditions of physiologically low temperature.Plant and Cell Physiology,45:635-644.
    224. Hoffman F.M.,Miller J.H.,1966.An endogenous rhythm in the Hill-reaction of tomato chloroplasts. Amer J. Bot,53(6):543-548.
    225. Hong Shuang Song,Xu Da Quan.,1997.Difference in response of chlorophyll fluorescence parameters to strong light between wheat and soybean leaves.Chin Sci Bull,42:684-688
    226. Hong Shuang Song,Xu Da Quan.,1999.Light-induced increase in initial chlorophyii fluorescence Fo level and the reversible inactivation of PSII reaction centers in soybean leaves.Photosynth Res,61:269-280
    227. Horeman S.N., Foyer C.H., Asard H.,2000.Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci,5:263-270.
    228. Horton P., Ruban A.V.,1996.Walter RG. Regulation of light harvesting in green plants. Annu Rev Physiol Plant Mol Biol,47:655-684.
    229. Horton P.,Ruban A.,Walter R.G.,1994.Regulation of light harvesting in green plants:indication by nonphotochemical quenching of chlorophyll fluorescence.Physiol Plant,106:415-421.
    230. Hossain M.A.,Nakano Y.,AsadaK.,1984.Monodehydroaseorbate reductase in Spinach chloroplasts and its participation in regulation of ascorbate for scavenging hydrogen peroxide.Plant Cell physiology,25:385-395.
    231. Hwang H.J., Kim E.M., Rhew T.H., Lee C.H.,2004.Reversible photo inactivation of photo system Ⅱ during desiccation of barley (Hordeum vulgare L. cv. Albori) leaves in the light. Journal of Plant Biology,47:142-148.
    232. Hirotsu N.,Makino A.,Ushio A.,2004.Mae T Changes in the thermal dissipation and the electron flow in thewater-water cycle in rice grown under conditions of physiologically low temperature.Biochimicaet Biophysica Acta,591,166-174.
    233. Huang M.,Guo Z.,2005.Responses of ant oxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant,49:81-84. doi:10.1007/s00000-005-1084-3.
    234. Hutchison R.S.,etal.,2000.Differential effects of chilling induced photo oxidation on the redox regulation of photosynthetic enzymes[J].Biochemistry,39:6679-6688.
    235. Hu, W.H., Song, X.S., Shi, K., Xia, X.J., Zhou, Y.H., YU, J.Q.,2008.Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica,46(4):581-588.
    236. IglesiasD.J.,Llisol.,TadeoE.R.,and Talon M.,2002.Regulation of Photosynihesis though soucre:sink imbalance in citrus is mediated by carbohydrate content in levaes.Physiologia Plnatarum,116:563-572.
    237. Inoue K.,Fujii T.,Yokoyama E.,etal.,1989.The photo inhibition site of photo system I in isolated chloroplasts under extremely reducing conditions. Plant Cell Physiol,30:65-71.
    238. Islam M.S., Matsui T., Yoshida Y.,1996.Carbohydrate content and activities of sucrose synthase, sucrose phosphate synthase and acid invertase in different tomato cultivars during fruit development. Sci. Hortic.,65:125-136.
    239. Jain M., Kaur N., Tyagi A.K., Khurana J.P.,2006. The auxin-responsive GH3 gene family in rice (Oryza sativa). Functional and Integrative Genomics,6:36-46.
    240. Jana S.,Choudhuri M.A.,1981.Glycolate metabolism of three submerged aquatic angiosperms during aging.A qualic Botany,12:345-354.
    241. Jenanette E., Reyss A., Gregoyr N., Gantet P and Prioul J.L.,2000.Carbohydrate metabolism in a Heat-girdled maize source leaf.Plant,Cell and Environment,23:61-69.
    242. Jian L.C.,Li J.H.,Chen W.P.,et al.,1999.Cytochemical localization of calcium and Ca2+-ATPase activity in plant cell under chilling stress:a compara-tive study between the chilling-sensitive Maize and the chilling-insensitive winter wheat[J].Plant cell physiol,40(10):1061-1071.
    243. Jing Yang,Qiu sheng Kong,Chang ping Xiang,2009.Effects of low night temperature on pigments, chl a fluorescence and energy allocation in two bitter gourd (Momordica charantia L.) genotypes. Acta Physiol Plant,31:285-293.
    244. Jiang M.Y.,Zhang J.H.,2001.Effect of abscisic acid on act ive oxygen species, ant ioxidat ive defence system and oxidative damage in leaves of Maize seedlings[J]. Plant Cell Physio 1,42:1265-1273.
    245. Jin S.H.,Hong J.,Li X.Q.,Jiang D.A.,2006.Antisense inhibition of rubisco activase increases rubiseo contentand altersthe proportion of rubisco activase in stroma and thylakoids in chloroplasts of rice leaves. Annals of Botany,97:739-744.
    246. Jin Y.H.,Tao D.L.,Hao Z.Q.,Ye J.,Du Y.J.,Liu H.L.,Zhou Y.B.,2003.Environmental stresses and redox status of ascorbate. Acta Botanica Sinica,45(7):795-801.
    247. Jones, T.L. etal.,1998.Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol.118,149-158
    248. Jovanovic S.D., Pignocchi C., Noctor G., etal.,2001.Low ascorbic acid in the vtc-1 mutant of arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system.Plant Physiol,127:426-435.
    249. Jung S.,Steffen K.L.,Lee H.J.,1998.Comparative photoinhibition of a high and a low altitude ecotype of tomato to chilling stress under high and low light conditions. Plant Sci,134:69-77.
    250. Kato M.C.,Hikosaka K.,Hirotsu N.,etal.,2003.The excess light energy that is neither utilized in levaes:role of light and temperature and requirement for chloroplast protein synthesis during damage and turnove. Biochem Biophys Acta,1143:113-134.
    251. Kingston S.A.H., etal.,1997.Effects of chilling on carbon assimilation, enzyme activation and photosynthetic electron transport in the absence of photo inhibition in maize leaves[J].Plant Physiol,114:1039-1046.
    252. Klimov S.V., Astakhova N.V., Bocharova M.A.& Trunova T.I.,1996.Low-temperature tolerance of photosynthesis and carbohydrate metabolic patterns account for the difference in tomato and cucumber cold tolerance. Russian Journal of Plant Physiology,43,783-789.
    253.Krause G.H.,1988.Photoinhibition of photosynthesis.An evaluation of damage and protective mechanisms[J].Physiol.Plant,74:566-574.
    254. Kok B.,1956.On the inhibition of photosynthesis by intense light.Biochim.Biophys.Acta,21:234-244.
    255. Lambreva M.,Christov K.,Tsonev T.,2006.Short-term effect of elevated CO2 concentration and high irradiance on the antioxidant enzymes in bean plants. Biologia Plantarum,50:617-623.
    256. Law M.Y.,Charles S.A.,Halliwell B.,1983.Glutathione and ascorbic acid in spinach(spinacia oleracea)chloroplast.The effect of hydrogen peroxide and paraquat. Biochemical Journa,210:899-903.
    257. Layne D.R.,Flore J.A.,1995.End-product inhibition of photosynthesis in Prunus cerasusL in response to whole-plant source-sink manipulation. Journal of the American Society of Horticultural Science,120:583-599.
    258. Layne D.R.,Flore J.A.,1993.Physiological responses of prunus cerasus to whole-plant source manipulation.Leaf gas exchange,chlorophyll fluorescence, water relations and carbohydrate concentrations.Physiologia Plantarum,88:44-55.
    259. Leegood R.C.,Edwards G.E.,1996.Carbon metabolism and photorespiration:temperature dependence in relation to environment factors. In:Baker NR(ed).Photosynthesis and the Environment. Dordrecht: Kluwer Academic,191-221.
    260. Leipner J.,Fracheboud Y.,Stamp P.,1997.Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant Cell Environ,20:366-372
    261. Lee H.Y.,Hong Y.N.,Chow W.S.,2001.Photo inactivation of photosystemⅡ complexes and photo- pretection by non-functional neighbors in Capsicum annuum L.leaves[J].Planta,212:332-342.
    262. Leipner J.,Stamp P.,Fracheboud Y.,2000.Artificially increased ascorbate content affect zeaxanthin antenna subcomplexes in the photosynthetic membranes of higher plants.Plant Physiol,115:1609-1618.
    263. Lorenzen J.H.,Lafta A.M.,1996.Effect of heat stress on enzymes that affect sucrose levels in potato shoots[J].Amer Soc Hort Sci,12(6):1152-1156.
    264. Long S.P.,East T.M.,Baker N.R.,1983.Chilling damage to photosynthesis in young Zea mays I. Effects of light and temperature variation on photosynthetic CO2 assimilation.[J].Exp Bot,34:177-188.
    265. Lovelock C.E.,Winter K.,1997.Oxygen-dependent electron transport and protection from photo-inhibition in leaves of tropical tree species.planta,198:580-587
    266. Li X. P.,Gilmore A.M.,Niyogi K. K.,2002a.Molecular and global time-resolved analysis of a psbS gene dosage effect on PH and xanthophyllcycle-dependent nonphotochemical quenehing in photosyste 11.J Biol Chem,277:33590-33597.
    267. Li X.P.,Muller-Moule P.,Gilmore A.M.,etal.,2002b.Psbs-dependent enhancement of feedback de-excitation protects photo system II from photoinhibition.Proc Natl Acad Sci USA,99:15222-15227.
    268. Li X. G., Meng Q.W., Jiang G.Q., Zou Q.,2003.The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. Photosynthetica,41:259-265.
    269. Li X.G.,Wang X.M.,Meng Q.W., Zou Q.,2004a.Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica,42:257-262.
    270. Li X.G., Duan W.,Meng Q.W.,Zou Q.,Zhao S.J.,2004b.The function of chloroplastic NAD(P)H dehydrogenase in tobacco during chilling stress under low irradiance. Plant Cell Physiol,45:103-106.
    271. Li X., Xu P., Zhao J., Meng J., He Q.,2006.Ferredoxin-quinone reductase benefits cyclic electron flow around photosystem I in tobacco leaves upon exposure to chilling stress under low irradiance. Photosynthetica,44:349-354.
    272. Lin R.C., Xu C.C., Li L.B.,etal.,2002.Xantllophyll cycle and its molecular mechanism in photoprotection.Acta Botanica Sinica,44(4):379-383.
    273. Liu Y. F., Li T. L., Xu T., Qi M. F., Xu C. Q., Qi H.Y.,2011.Effect of low night temperature treatment and recovery on photosynthesis and the allocation of absorbed light energy in tomato(Lycopersicon esculentum Mill.) leaves.Journal of Horticultural Science & Biotechnology,86 (2):91-96.
    274. Lunn J.E., MacRae E.,2003.New complexities in the synthesis of sucrose. Current Opinion in Plant Biology,6(3):208~214.
    275. Madore M.A.,1990.Carbohydrate metabolism in photosynt hetic and nonphotosynt hetic tissues of variegated leaves of Coleus blumei Benth[J].Plant Physiol,93:617-622.
    276. Malkin S.,Telfer A.,Barber J.,1996.Quantitative analysis of State 1-State2 transitions in intact leaves using modulated fluorimetry-evidence for changes in the absorption cross-section of the two photosystems during state transitions. Biochim Biophys Acta,848:48-57
    277. Martino-Catt, S.,Ort, D.R.,1992.Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc. Natl. Acad. Sci. U. S. A.,89:3731-3735
    278. Mahan J.R.,Mauget S.A.,2005.Antioxidant metabolism in cotton seedlings exposed to temperature stress in the field. Crop Science,45:2337-2345.
    279. Marcelis L.F.M.,1991.Eeffets of sink demand on photosynthesis incueumber. Journal of Experimental Botany,42:1387-1392.
    280. Marino D., Gonzalez, E.M.,Arrese-Igor C.,2006.Drought effects on carbon and nitrogen metabolism of pea nodules can be mimicked by paraquat:evidence for the occurrence of two regulation pathways under oxidative stresses. Journal of Experimental Botany,57:665-673.
    281. Masojidek J.,Torzillo G., Koblisek M.,etal.,1999.Photo adaptation of two members of the chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures:changes in chlorophyll fluorescence quenching and the xanthophylls cycle.Planta,209:126-135.
    282. Melis A.,1991.Dynamics of photosynthetic membrane composition and function[J].Biochim Biophys Acta,1058:87-106.
    283. Mittler R.,2002.Oxidativestress,antioxidantsandstresstolerance.Trends in Plant Science,9:405-410.
    284. MittovaV.,TalM.,Volokita M., Guy M.,2003b.Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in responses to salt-induced oxidative stress in the wild salt-tolerant tomato species LycoPersicon pennellii.Plant and Cell Environment,26:845-856.
    285. Ming Gong,Yong Junli,Xun Dai,etal.,1997.Involvement of calcium and calmodulin in the acquisition of heat-shock induced thermotolerance in maize seedlings[J].Plant Physiol,150,615-621.
    286. Moon, F.W., Jrkopec D.M.,1990.Limitations of photosynthesis in Loliwm perenne after chilling[J]. Amer Soc Hort Sci,115:478-481.
    287. Moriguchi T., Sanada T., Yamaki S.,1990.Seasonal fluctuations of some enzymes relating to s ucrose and sorbital metabolism in peach fruit. Am.Soc.Hortic.Sci,115:278-281.
    288. Morita S.,Kaminaka H.,Masumura T.,Tanaka K.,1999.Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress:the involvement of hydrogen peroxide in oxidative stress signalling.Plant Cell Physiology,40:417-422.
    289. Munekage Y., Hashimoto M., Miyake C.,etal.,2004.Cyclic electron flow around photosystem Ⅰ is essential for photosynthesis. Nature,429:579-82.
    290. Munekage Y.,Hojo M.,Meurer J.,etal.,2002.PGR5 is involved in cyclic electron flow around photosysteml and is essential for photoprotection in Arabidopsis. Cell,110:361-71.
    291. Miiller P.,Li X.P.,Niyogi K.K.,2001.Non-Photochemical quenching:A response to excess light energy. Piant Physiol,125(4):1558-1566.
    292. Muller-Moule P.,Conklin P.L.,Niyogi K.K.,2002.Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol,128:970-977.
    293. Murata N.,1969.Control of excitation transfer in photosynthesis.I.Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta,172:242-251.
    294. Naoki Mizusawa, Tatsuya Tomo, kimiyki Saoth etal.,2003.Degardation of the D1 protein of PhotosystemⅡ under illumination in vivo:Two different Pathways involving cleavage or Intermolecular cross-linking.Biochemistry,42:10034-10044.
    295. Nagalakshmi N., Prasad M.N.V.,2001.Responses of glu tath ione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus [J].Plant Sci,160:191-199.
    296. NakanoY.,AsadaK.,1981.Hydrogen peroxide is secavenged by ascorbate peroxidase in spinach chloroplasts.Plant Cell Physiology,22:867-880.
    297. Neale P., Melis A.,1991.Dynamics of photosystem Ⅱ heterogeneity during photoinhibition:depletion of PSII from non-appressed thylakoids during strong-irradiance exposure of Chlamydomonas reinhardtii[J].Biochim Biophys Acta,1056:195-203.
    298. Neubauer C.,Yamamoto H.Y.,1992.Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplast. Plant Physiol,99:1354-1361.
    299. Neill S.,Desikan R.,Haneoek J.,2002.Hydrogen peroxide signalling.Current Opinion in Plant Biology,5:388-395.
    300. Niyogi K.K.,Shih C.,Chow W.S.,etal.,2001.Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosyn Res,67:139-145.
    301. Niyogi K.K.,1999.Photo protection revisited:Genetic and Molecular app roaches. Annu Rev Plant Physiol Plant Mol Biol,50:333-359.
    302. Niyogi K.K.,2000.Satety valves for photosynthesis. Curr Opin Plant Biol.,3:455-460.
    303. Noctor G., Foryer C.H.,1998.Ascorbate and glutathion:keeping active oxygen under control.Annu Rev Plant Physiol Plant Mol Biol,49:249-279.
    304. NoguchiT.2002.Dual role of triPlet localization on the accessory chlorophyll in the photosystemll reaction center:photoprotection and photodamage of the D1 protein. Plant Cell Physiol, 43(10):1112-1116.
    305. Noctor G., Foyer C.H.,1998.Ascorbate and glutathione:Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology,49:249-279.
    306. Oquist G., Chow W.S.,Anderson J.M.,1992.Photo inhibition of photosynthesis represents a mechanism for the long-term regulation of photo system Ⅱ [J].Planta,186:450-460.
    307. Ort D.R.,2001.When there is too much light. Plant Physiol,125:29-32.
    308. Ort D.R.,Bake,N.R.,2002.A photoprotective role for O2 as an alternative electron sink in photosynthesis?Current Opinion in Plant Biology,5:193-198.
    309. Osmond C.B,Grace S.C.,1995.Perspectives on photoinhibition and photorespiration in the field:quintessential inefficiencies of the light and dark reactions of photosynthesis.J Exp Bot,46:1351-1362.
    310. Patricia Prieto,Josep Penuelas, Joan LlusiaAE, Dolores Asensio, Marc Estiarte,2009.Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiol Plant,31:729-739.
    311. Paul M.J.,Foyer C.,2001.Sink regulation of photosynthesis. Journal of Experimental Botany, 52:1383-1400.
    312. Parry M.A.J., Andralojc P.J.,Khan S.,Lea P.J., Keys A.J.,2002.Rubisco activity:effects of drought stress.Annals of Botany89:833-839.
    313. Parry M.A.J.,Andralojc P.J.,Parmar S.,Keys A.J.,Habash D.,Paul M.J.,Alred R.,Quick W.P., Servaites J.C.,1997.Regulation of Rubisco inhibitors in the light.Plant,Cell and Environment,20:528-534.
    314. Paul M.J.,Foyer C.,2001.Sink regulation of photosynthesis. Journal of Experimental Botany, 52:1383-1400.
    315. Philip Y.,Young A.J.,1995.Occurrence of the carotenoid lactucaxanthin in higher plant LHC.Photo-synth Res,43:273-282
    316. Pinheiro C., Rodrigues A. P., Chaves M.M.,2005.Sugar metabolism in developing lupin seeds is affected by a short-term water deficit. J. Exp. Bot.,56:2705-2712.
    317. Pieters A J, Paul M J, Lawlor D W.2001.Low sink demand limits photosynthesis under Pi deficiency. Journal of Experimental Botany.52:1083-1091.
    318. Plaut Z., Myaoral M.L.,Reinhold L.,1987.Eeffct of altered sink:source ratio on photosynthetic Metabolism of source leaves. Plant Physiology,85:786-791.
    319. Powles S.B.,1984.Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol, 35:14-44.
    320. Portis A.R.,2003.Rubisco activase:Rubisco's catalytic chaperone.Photosynthesis Research,75:11-27.
    321. Qi Hong yan,Li Tian lai,Zhang Jie.2003.Effects on sucrose metabolism,dry matter distribution and fruit quality of Tomato under water deficit[J].Agricultural Sciences in China,2003,2(11):1253-1258.
    322. Rentel M.C.,Knight M.R.,2004.Oxidative stress induced calcium signaling in arabidopsis[J]. Plant Physiology,135:1471-1479.
    323. Ruuska S.A.,Badger M,R.Andrews T.T.etal.,2000.Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco:little evidence for significant Mehler reaction.J Exp Bot.51:357 -368.
    324. Rout N.P., Shaw B.P.,2001.Salt tolerance in aquatic macrophytes:possible involvement of the antioxidative enzymes.Plant Science,160:415-423.
    325. Sassenrath G.F., Ort D.R.,Portis A.R.Jr.,1990.Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light.A rchives of Biochemistry & Biophysics,282,302-308.
    326. Sawada S., Kuninkaa M., Watanabe K., Sato A., Kawamura H., Komine K., Sakamoto T., Kasai M.,2001.The mechanism to suppress photosynthesis through end-production inhibition in single-rooted sobyean levaes during acclimation to CO2 enrichment. Plant and CellPhysiology,42: 1093-1102.
    327. Sankhalkar S.,Sharma P.K.,2005.Photo inhibition of photosynthesis:Role of abscisic acid and antioxidants. Physiology and Molecular Biology of Plants,11:275-289.
    328. Sassenrath G.F.,Ort D.R.,Portis A.R.,J.r.,1990.Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light. A rchives of Biochemistry&Biophysics,282:302-308.
    329. Savitch L.V.,Massacci A., Gray G.R.,Huner N.P.A.,2000.Acclimation to low temperature or high light mitigates sensitivity to photoinhibition:roles of the Calvin cycle and the Mehler reaction. Australian Journal of Plant Physiology,27:253-264.
    330. Scandalios J.G.,1993.oxygen stress and superoxide dismutases.Plant Physioloy,101:7-12.
    331. Schafer A.A.,Aloni B.,Fogelman E.,1987.Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochem,26:1883-1887.
    332. Schaffer A.A., Pharr D.M.,Madore M.A.,1986.Photo assimilate Distribution in Plants and Crops. New York:Marcel Dekker,729-757.
    333. Schrader S.M.,Wise R.R.,Wachol T.D.,2004.Thylakoid Menbrane responses to moderately high leaf temperature in pima cotton[J].Plant Cell Environ,27:725-735.
    334. Shalata A., Mittova V., Volokita M.,Guy M.,Tal M.,2001. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative systetem. Physiologia Plantarum,112:487-494.
    335. Sharkey T D.1985.Photosynthesis in intact leaves of C3 plants:physics, physiology and rate limitations. The Botanical Review,51:53-105.
    336. Shen W.Y.,Nada K.,Tachibana S.,1999.Effects of cold treatment on enzymatic and non-enzymatic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber(Cucumis sativus L)cultivars. Journal of Japanese Society Horticulture Science,68:967-973.
    337. Shen J.R., Terashima I., Katok S.,1990.Cause for dark, chilling-induced inactivation of photosynthetic oxygen-evolving system in cucumber leaves. Plant Physiol,93:1354-1357.
    338. Smirnoff N., Conklin P.L.,Loewus F.A.,2001.Biosynthesis of ascorbic acid in plants:a renaissance. Annual Review of Plant Physiology and Plant Molecular Biology,52:437-467.
    339. Sonoike K., Kamo M., Hihara Y.,etal.,1997.The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photo inhibition. Photosynth Res,53:55-63.
    340. Sonoike K.,Terashima I.,1994.Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L.Planta,194:287-293.
    341. Sonoike K.,1996a.Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I:Possible involvement of active oxygen species. Plant Sci,115:157-164.
    342. Sonoike K.,1996b.Photoinhibition of photosystem I:Its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol,37:239-247.
    343. Sonoike K.,1998.Various aspects of inhibition of photosynthesis under light chilling stress:"photoinhibition at chiling damage in the light"[J].J.Plant Res.,111:121-129.
    344. Streb P.,Shang W.,Feierabend J.,BIigny R.,1998.Divergent strategies of photoprotection in high mountain plants.Planta,207:313-324.
    345. Stitt M., Wilke I., Feil R.,1988.Coarse control of sucrose phosphate synthase in leaves:alterations of the kinetic properties in response to the rate of phitisynthesis and accumulation of sucrose. Planta,174: 217-230.
    346. Sudhakar C.,Lakshmi A.,Giridarakumar S.,2001.Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry(Morus alba L.)under NaCl salinity.Plant science,161:613-619.
    347. Sukar R., Chinta S., Ramanjulu S.,2001.Alleviation of Nacl salinity stress by calcium is partly related to the increased proline accumulation in mulberry(Morus alba L.)callus.Journal of Plant Biology,28: 203-206.
    348. Sulochana C.,Savithramma N.,2002.Interactive effects of PEG-induced water stress and Cacl2 on the changes in CaM,Ca2+,protease activity in seedlings of groundnut(Arachis hypogaea L.) cultivars. Journal of Plant Biology,29:271-277.
    349. Sung S.S.,Sheih W.J,.Geiger D.R.,1994.Growth sucrose synthase and invertase activities of developing Phaseolus vulgaris L.fruit. Plant Cell and Enviorn,17:419-426.
    350. Szabo I., Bergantino E., Giacometti G.M.,2005.Light and oxygenic photosynthesis:energy dissipati-on as a protection mechanism against photo-oxidation. EMBO Reports,6:629-634.
    351. Taiz L., Zeiger E.,2006. Plant physiology, Ed 4 Vol 9. Sinauer Associates, Inc., Publishers, Sunderland
    352. Tan X.X., Xu D.Q.,Shen Y.K.,1998.Both spillover and light absorption cross-section changes are involved in the regulation of excitation energy distribution between photosystems during state transition in wheat leaf. Photosynth Res,56:95-102
    353. Takahiro Henmi, Hitoshi Yamasaki, Shinsuke Sakuma,etal.,2003.Dynamic Interaction Between the D1 Protein, Cp43 and 0EC33 at the luminal side of Photo system II in spinach chloroplasts:evidencer from light-induced crossing-linking of the protein in the donor-side photoihnibition. Plant and Cell Physiology,44(4):451-456.
    354. Terashima I.,Funayama S.,Sonoike K.,1994.The site of photo inhibition in leaves of Cucumis sativus L.at low temperatures is photosystem I, not system Ⅱ.Planta,193:300-306.
    355. Terashima I.,Huang L.R.,Osmond C.B.,1989a.Effects of leaf chilling on thylakoid functions measured at room temperature in Cucumis sativus L.and Oryza sativa L. Plant Cell Physiol,30:841-850.
    356. Terashima I.,Funayama S.,Sonoike K.,1994.The site of photoinhibition in leaves of Cucumis sativus L.at low temperature is photosystem I,not system II [J].Planta,193:300-306.
    357. Torres Franklin M.L.,Contour Ansel D.,Zuily Fodil Y.,etal.,2008.Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought, stress[J].J.Plant Physiol,165:514-521.
    358. Tjus S.E.,Moller B.L.,Scheller H.V.,1998.Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures.Plant Physiol,116:755-764.
    359. Uchida A., Jagendorf A.T., Hibino T.,2002.Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science,163:515-523.
    360. Van Heerden P.D.R., Kruger G.H.J.,Loveland J.E.,Parry M.A.J.,Foyer C.H.,2003.Dark chilling imposes metabolic restrictions on photosynthesis in soybean.Plant, Cell and Experimental, 26:323-327.
    361. Wang C.Y.,1990.Chilling injury in horticultural crops.CRC Press,Boca Raton,Florida, USA.
    362. Wang H.W.,Mi H.L.,Ye J.Y.,etal.,2003.Low concentration of NaHSO3 increase cyclic photophosphorylation and photosynthesisin Cyanobacterium synechocystis PCC6803. Photosynth Res,75:151-159.
    363. Weeden N.F., BuchananB.B.,1983.Leaf cytosolic fructose 2,1,6-2-bisphosphatase[J].Plant Physiol.,72: 258-261.
    364. Wehloer A.N.,Nie G.,Long S.P.,1994.Acclimation of photosynthetic proteins to rising atmospheric CO2.Photosynthesis Res.,39:413-425.
    365. Wilkins, M.B.,1992.Circadian rhythms:their origin and control. New Phytol.121:347-375.
    366. White T.A., Kannan M.S.,Walseth T.F.,2003.Intracellular calcium signaling through the CADPR pathway is agonist specific in porcine airway smooth muscle. FASEB Journal,10.1096/fj.02-0622fje.
    367. Whitmarsh J.,Samson G.,Poulson M.,1994.Photo protection in Photo system Ⅱ-the role of cytochrome b559.[M].In:Baker N,Bowyer J(eds)Photoinhibition of photosynthesis:From Melocular Mechanism to the Field[M].Bios Scientific Publishers,Oxford,75-93.
    368. Wise R.R., Naylor A.W.,1987.Chilling-enhanced photooxidation.Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol,83:278-282.
    369. Xue G.P.,McIntyre C.L.,Jenkins C.L.D.,Glassop D.,Herwaarden A.F.,Shorter R.,2008. Molecular Dissection of Variation in Carbohydrate Metabolism Related to Water-Soluble Carbohydrate Accumulation in Stems of Wheat. Plant Physiology,146:441-454.
    370. Yang S.H., Wang L.J., Li S.H., Duan W.,Loescher W.,Liang Z.C.,2007.The effects of UV-B radiation on photosynthesis in relation to photosystem Ⅱ photochemistry, thermal dissipation and antioxidant defenses in winter wheat (Triticum aestivum L.) seedlings at different growth temperatures. Functional Plant Biology,34:907-917.
    371. Yasusi Yamamoto,Yoji Nishi, Hitoshi Yamasaki,2004.Assay of Photoinhibtion of Photosystem 11 and Protease activity.Mehtods Mol,274:217-228.
    372. Yong I.K.,Ji S.S.,Nilda R.B.,Tay E.H., Oksoo H., Baik H.G.,Sunyo J.,Ja O.G.,2003. Antioxidantive enzymes offer protection from chilling damage in rice p lants.Crop Science,43:2109-2117.
    373. Yu C.W.,Murphy T.M., Sung W.W.,Lin C.H.,2002.H2O2 treatment induces glutathione accumulation and chilling tolerance in mung bean. Funct Plant Biol.,29:1081-1087.doi:10.1071/PP01264.
    374. Zhang N.,Portis A.R.,1999.Mechanisms of light regulation of Rubisco:a specific role for the larger Rubisco activase isoform involing reductive activation by thioredoxinf [J].Proc.Natl. Acad.Sci. USA, 96:9438-9443.
    375. Zhou, Y.H.,Yu, J.Q.,Mao,W.H., Huang,L.F., Song, X.S., Nogues, S.,2006.Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants. Plant Cell Physiol,47:192-199.
    376. Zhou, Y.H.,WU, J.X., ZHU,L.J., K. SHI and J.Q. YU,2009.Effects of phosphorus and chilling under low irradiance on photosynthesis and growth of tomato plants. Biologia Plantarum, 53(2):378-382.
    377. Zhou R., Quebedeaux B.,2003.Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response towhole plant source-sink manipulation. Journal of the American Society for Hortieultural Science,128:113-119.
    378. Zium Hanck U.,Heber U.,1980.Oxygen requirement of photosynthetic CO2 assimilation Photo-synthesis nor dissipated by photo protective mechanism determines the rate of photo inactivation in Photosystem Ⅱ. Plant Cell Physiol,44(3):318-325.
    379. Zrenner R.,Stitt M.,1991.Comparison of the effect of rapidly and gradually developing water-stress on carbohydrate metabolism in spinach leaves. Plant Cell Environ,14:939-946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700