溶液加工光电材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球能源危机的到来,寻找新型、无污染的可再生能源成为一个世界性的课题,充分开发利用太阳能是一个有效途径。聚合物太阳电池(polymer solar cells,PSCs)由于其低成本、柔性、轻薄、溶液加工等特点而备受关注。高效的聚合物给体材料应具有在可见-近红外区宽和强的吸收,适当的最高占有分子轨道(HOMO)能级和最低未占有分子轨道(LUMO)能级,高的载流子迁移率,好的溶解性和成膜性等特点。
     有机发光二极管(OLEDs)在显示、照明、背光等领域有广泛应用的前景,而引起全世界学术界和工业界的研究热点。经过二十多年的研究,有机发光二极管显示面板已经进入产业化。目前,广泛用于OLEDs的材料为有机小分子和聚合物材料。基于小分子材料的OLEDs需通过真空蒸镀工艺实现,但成品率低、材料浪费严重、不易实现大面积等缺点,而聚合物发光二极管(PLEDs)可以通过喷墨打印、旋涂、卷对卷(Roll toRoll)等溶液加工工艺来制备器件,以弥补小分子利用真空蒸镀工艺的不足。因此,开发新光电材料对OLEDs的应用有着至关重要作用。
     本论文涉及两个方面的研究:一方面围绕提高窄带隙共轭聚合物给体材料的平面性以提高分子间的π-π堆积来提高聚合物的空穴迁移率以及更宽的吸收光谱以吸收更多的太阳光;另一方面,利用双苯并-24-冠-8和二级铵盐的主客体相互作用形成超分子光电聚合物材料用于有机发光二极管器件中。
     第二章中,我们设计合成了噻吩基取代的喹喔啉单体以及氧化成环的吩嗪衍生物单体与芴、咔唑富电子基团通过Suzuki聚合合成一系列的窄带隙共轭聚合物。相比以前报道基于苯基取代的喹喔啉类似聚合物,噻吩取代基的共轭聚合物的吸收光谱有明显的红移。相比基于喹喔啉的聚合物,基于氧化并环的吩嗪衍生物单体的共轭聚合物的吸收光谱有更大的红移,接近80nm红移。由于并环后减小位阻的影响和增大芳香环,基于氧化并环的吩嗪衍生物单体的共轭聚合物的空穴迁移率有接近一个数量级的提高。基于此系列窄带隙共轭聚合物和富勒烯衍生物共混的本体异质结聚合物太阳电池都展现出很好的性能,最好的器件性能的能量转换效率达到4.4%。
     第三章中,我们设计合成了9-亚甲基芴和喹喔啉以及5,6-双烷氧基-2,1,3-苯并噻二唑通过Suzuki聚合合成一系列的窄带隙共轭聚合物。相比于以前报道的9,9-双烷基芴,9-亚甲基芴上9位上的碳原子有sp~3杂化变为sp~2杂化,减少烷基链的位阻对分子间的π-π堆积。在固态下,聚合物的吸收光谱有明显的由于分子间的强的π-π相互堆积作用引起的吸收峰。此系列聚合物有很好的溶解性和成膜性,与富勒烯衍生物共混制备的本体异质结聚合物太阳电池都展现出优异的性能,最高的器件能量转换效率高达6.85%,而器件的填充因子高达72.6%。
     第四章中,我们设计合成了基于双苯并-24-冠-8和二级铵盐的主客体相互作用形成超分子光电聚合物,用于磷光器件中的主体材料。经主客体相互作用形成的超分子光电聚合物保持主客体单体的光学性质,由于主客体官能团的引入可以有效的阻断分子的共轭,保持高的三线态能级。超分子光电聚合物主体材料具有确定的结构、可变的粘度、机械性能,可以采用溶液加工制备器件。
     第五章中,我们设计合成了基于双苯并-24-冠-8和二级铵盐的主客体相互作用形成超分子光电聚合物用于可溶液加工的有机光电器件。用双苯并-24-冠-8功能化蓝光、绿光的共轭齐聚物作为主体材料,用二级铵盐功能化蓝光的共轭齐聚物作为客体材料。通过主客体相互作用形成的超分子光电聚合物通过核磁共振、粘度和差示扫描分析来确定结构。高荧光的超分子纳米纤维在高溶度等摩尔的主客体单体中通过提拉或者静电纺丝得到。通过对超分子光电聚合物的光物理性质和电致发光性质的研究,随着绿光主体掺杂含量的增加,超分子光电聚合物由蓝光变为绿光,同时光致发光效率大大提高,由于绿光主体的带隙更窄,在超分子光电聚合物中形成一个有效的激子陷进。与传统聚合物相比,超分子光电聚合物的电致发光性能是可以相媲美的。超分子光电聚合物的设计合成是从确定的单体开始并且也不含有金属催化剂,并且有很好的器件性能,因此超分子光电聚合物的研究为发展可溶液加工的有机半导体光电器件的应用提供有效的途径。
     第六章中,我们设计合成了基于双苯并-24-冠-8和二级铵盐的主客体相互作用形成超分子光电聚合物用于可溶液加工的白光有机二极管。用双苯并-24-冠-8功能化蓝光、绿光、红光的共轭齐聚物作为主体材料,用二级铵盐功能化蓝光的共轭齐聚物作为客体材料。通过调控不同颜色主体材料的比例,可以得到白光有机电致发光材料。通过对其光物理性质和电致发光性质的研究,超分子白光聚合物材料有可能成为有机光电的候选材料。
Significant effort on using solar energy is important way for clean and renewable energysources. Compared with silicon-based solar cells, polymer solar cells (PSCs) have beenattracting more and more attention for their unique advantages, such as low cost, light weight,and the potential for making flexible large area devices by roll-to-roll manufacturing. Toachieve high performance PSCs, the electron-donating conjugated polymers need to havestrong and broad absorption for the solar light, a good hole mobility, reasonable highestoccupied molecular orbital (HOMO) level and lowest unoccupied molecular orbital (LUMO)level, good solubility and film-forming property, and so on.
     Organic light-emitting diodes (OLEDs) have drawn great attentions from both academicand industrial communities due to their potential applications in fullcolor flat panel displays,backing-lighting sources, and solid-state lighting. Traditionally, the classic materials ofOLEDs are small molecules and polymer. The device fabrication based on small moleculesrequires vacuum-deposition equipment, which is wasteful of materials and limit the displaysize. And the conjugated polymer emitters could be used by solution process such asspin-coating, ink-jet printing or roll-to-roll printing, which are the advantages of simplerfabrication and lower production cost, especially for the larger-area devices. Hence, it is veryimportant to develop new conjugated polymers for optoelectronic device applications.
     In this thesis, we present two aspects of ourthesis studies, first topic includes theimprovement of the copolymers structural planarity leading to the enhanced hole mobility andred-shifted absorption spectrum; second topic includes the supramolecular conjugatedpolymers based on the reversible host-guest interactions between the dibenzo-24-crown-8(DB24C8) and the dibenzylammonium salt (DBA) for application in light-emitting devices.
     In the chapter2, a series of narrow band-gap donor-acceptor (D-A) conjugatedpolymers, with thiophene substituted quinoxaline monomer (TTQx) or its cyclizedphenazine derivative monomer (TTPz) and fluorene or carbazole, were synthesized viaSuzuki coupling reaction. It was found that the copolymers based on thiophenesubstituted quinoxaline exhibit obviously red-shifted absorbance compared to previously reported D-A copolymers based on phenyl substituted quinoxaline. Their analogouscopolymers based on the cyclized acceptor TTPz show more pronounced red-shiftedabsorption spectra with a significantly decreased band gap, due to the enlarged planarpolycyclic aromatic ring of TTPz. Moreover, compared to the copolymers based onTTQx, the TTPz based copolymers’ mobilities are also significantly increased due to thereduced steric hindrance and improved structural planarity among the copolymers.Bulk-heterojunction polymer solar cells based on the blends of the copolymers with afullerene derivative as an acceptor exhibit promising performance and the best deviceperformance with power conversion efficiency up to4.4%was achieved.
     In the chapter3, the9-alkylidene-9H-fluorene unit is inclined to take on a planarconformation, due to the sp2-hybridized carbon at the9-position. The copolymers based on9-alkylidene-9H-fluorene unit and quinoxaline or2,1,3-benzothiadiazole were beensynthesized and investigated for the photovoltaic properties. The coplanar copolymersfacilitate the polymer backbones forming close packing in solid atate to enhance chargecarrier transportation. PSCs based on on the blends of the copolymers with PC71BM as anacceptor exhibit promising performance, the highest power conversion efficiency is6.85%with a high fill factor of72.6%.
     In the chapter4, we designed and synthesized the supramolecular copolymers based onthe host-guest interactions between DB24C8and DBA, which is used as host materials inphosphorescent OLEDs. The two homoditopic monomers ended with DB24C8or DBAself-organize into a linear supramolecular polymer at high concentration. The formation of thesupramolecular polymer was confirmed by1H NMR, differential scanning calorimetry (DSC),viscosity and optical properties studies. The formation supramolcular polymer maintains thesame ETof the monomers. It is a novel approach for design of solution-processed hostmaterials with high triplet level by host-guest interactions.
     In the chapter5, we reported the first use of host-guest interaction-based supramolecularlight-emitting polymers (SLEPs) for solution-processed electroluminescent devices. TheDB24C8functionalized blue-emitting conjugated oligomer and green-emitting conjugatedoligomer were used as the host materials, and the DBA functionalized blue-emittingconjugated oligomer was used as the guest material. The resulting linear SLEPs were obtained from the self-organization of the host and guest oligomers, which was confirmed by1H NMR,viscosity and DSC studies. Highly fluorescent SLEPs nanofibers can be easily obtained bydrawing or electron-spinning from the equimolar solution of the host and guest oligomers.The photophysical and electroluminescence properties of the resulting SLEPs were fullyinvestigated. It was found that the SLEPs’ emission colors can be well tuned from blue togreen with significantly enhanced photoluminescent efficiencies by using host green oligomeras the dopant, which is due to the efficient energy transfer caused by the exciton trapping onnarrow band gap host green oligomer in the SLEPs. As a result, the designed SLEPs showedcomparable electroluminescence device performances to those analogous traditionalconjugated polymers. Considering the precisely defined starting monomers and catalyst-freepolymerization process for the designed SLEPs, combining the good device performances, thepresent study provide a promising alternative route to develop solution processedsemiconductors for optoelectronic applications.
     In the chapter6, we designed and synthesized the supramolecular copolymers based onhost-guest interactions and applied it to white OLEDs. The DB24C8functionalizedblue-emitting, green-emitting and red-emitting conjugated oligomers were used as the hostmaterials, and the DBA functionalized blue-emitting conjugated oligomer was used as theguest material. The white OLEDs supramolecular polymers obtained by doping differentcontents of green and red-emitting monomers. The photophysical and electroluminescenceproperties study showed that this supramolecular copolymer is a promising material for whiteOLEDs.
引文
[1] http://www.mitsubishichem-hd.co.jp/english/group/strategy/major_project/solar_cell.html.
    [2] http://www.sumitomo-chem.co.jp/
    [3] Chapin D. M., Fuller C. S., Pearson G. L. A new silicon p-n junction photocell forconverting solar radiation into electrical power [J]. Journal of Applied. Physics.,1954,25,676-677.
    [4] Tang C. W. Two-layer organic photovoltaic cell [J]. Applied Physics Letters,1986,48,183-185.
    [5] Sariciftci N. S., Smilowitz L., Heeger A. J., et al. Photoinduced electron transfer from aconducting polymer to buckminsterfullerene [J], Science,1992,258,1474-1476.
    [6] Yu G., Gao J., Hummelen J. C., et al. Polymer photovoltaic cells: enhanced efficienciesvia a network of internal donor-acceptor heterojunctions [J], Science,1995,270,1789-1791.
    [7] He Z., Zhong C., Huang X., et al. Simultaneous enhancement of open-circuit voltage,short-circuit current density, and fill factor in polymer solar cells [J], AdvancedMaterials,2011,23,4636-4643.
    [8] Kim J. Y., Lee K., Coates N. E., et al. Efficient tandem polymer solar cells fabricatedby all-solution processing [J], Science,2007,317,222-225.
    [9] Dou L., You J., Yang J., et al. Tandem polymer solar cells featuring a spectrallymatched low-bandgap polymer [J], Nature Photonics,2012,6,180-185.
    [10] Coakley K. M., McGehee M. D. Conjugated polymer photovoltaic cells [J], Chemistryof Materials.,2004,16,4533-4542.
    [11] Thompson B. C., Frechet J. M. J., Polymer-fullerene composite solar cells [J],Angewandte Chemie-International Edition,2008,47,58-77.
    [12] Spanggaard H., Krebs F. C. A brief history of the development of organic andpolymeric photovoltaics [J], Solar Energy Materials and Solar Cells,2004,83,125-146.
    [13] Brabec C. J., Sariciftci N. S., Hummelen J. C. Plastic solar cells [J], AdvancedFunctional Materials,2001,11,15-26.
    [14] Yu G., Zhang C., Heeger A. J. Dual-function semiconducting polymer devices:Light-emitting and photodetecting diodes [J]. Applied Physics Letters,1994,64,1540-1542.
    [15] Wienk M. M., Kroon J. M., Verhees W. J. H., et al. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells [J]. AngewandteChemie-International Edition,2003,42(29):3371-3375.
    [16] Geens W., Shaheen S. E., Wessling B., et al. Dependence of field-effect hole mobilityof PPV-based polymer films on the spin-casting solvent [J], Organic Electronics,2002,3,105-110.
    [17] Wen S., Pei J., Zhou Y., et al. Synthesis and photovoltaic properties ofpoly(p-phenylenevinylene) derivatives containing oxadiazole [J], Journal of PolymerScience Part A: Polymer Chemistry,2009,47,1003-1012.
    [18] Shen P., Sang G., Lu J., et al. Effect of3D π-π stacking on photovoltaic andelectroluminescent properties in triphenylamine-containing poly(p-phenylenevinylene)derivatives [J], Macromolecules,2008,41,5716-5722.
    [19] Ma W. L., Yang C. Y., Gong X., et al. Thermally stable, efficient polymer solar cellswith nanoscale control of the interpenetrating network morphology [J], AdvancedFunctional Materials,2005,15,1617-1622.
    [20][] Reyes-Reyes, M., Kim, K., Carroll, D. L. High-efficiency photovoltaic devicesbased on annealed poly(3-hexylthiophene) and1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C-61blends [J], Applied Physics Letters,2005,87,083506.
    [21] Hou J., Tan Z., Yan Y., et al. Synthesis and photovoltaic properties of two-dimensionalconjugated polythiophenes with bi(thienylenevinylene) side chains [J], Journal of theAmerican Chemical Society,2006,128,4911-4916.
    [22] He Y., Chen H.-Y., Hou J., et al. Indene-C60bisadduct: a new acceptor forhigh-performance polymer solar cells [J], Journal of the American Chemical Society,132,1377-1382.
    [23] Zhao G., He Y., Li Y.6.5%Efficiency of polymer solar cells based onpoly(3-hexylthiophene) and indene-c60bisadduct by device optimization [J], AdvancedMaterials,22,4355-4358.
    [24] Liang Y., Wu Y., Feng D., et al. Development of new semiconducting polymers for highperformance solar cells [J], Journal of the American Chemical Society,2009,131,56-57.
    [25] Liang Y., Feng D., Wu Y., et al. Highly efficient solar cell polymers developed viafine-tuning of structural and electronic properties [J], Journal of the AmericanChemical Society,2009,131,7792-7799.
    [26] Liang Y., Xu Z., Xia J., et al. For the bright future—bulk heterojunction polymer solarcells with power conversion efficiency of7.4%[J], Advanced Materials,22,E135-E138.
    [27] Liang Y., Yu L. A new class of semiconducting polymers for bulk heterojunction solarcells with exceptionally high performance [J], Accounts of Chemical Research,43,1227-1236.
    [28] Huang Y., Huo L., Zhang S., et al. Sulfonyl: a new application of electron-withdrawingsubstituent in highly efficient photovoltaic polymer [J], Chemical Communications,2011,47,8904-8906.
    [29] Peet J., Kim J. Y., Coates N. E., et al. Efficiency enhancement in low-bandgap polymersolar cells by processing with alkane dithiols [J], Nature Materials,2007,6,497-500.
    [30] Hou J., Chen H.-Y., Zhang S., et al. Synthesis, characterization, and photovoltaicproperties of a low band gap polymer based on silole-containing polythiophenes and2,1,3-benzothiadiazole [J], Journal of the American Chemical Society,2008,130,16144-16145.
    [31] Chen H.-Y., Hou J., Hayden A. E., et al. Silicon atom substitution enhances interchainpacking in a thiophene-based polymer system [J], Advanced Materials,22,371-375.
    [32] Yue W., Zhao Y., Shao S. Y., et al. Novel NIR-absorbing conjugated polymers forefficient polymer solar cells: effect of alkyl chain length on device performance [J],Journal of Materials Chemistry,2009,19,2199-2206.
    [33] Svensson M., Zhang F. L., Veenstra S. C., et al. High-performance polymer solar cellsof an alternating polyfluorene copolymer and a fullerene derivative [J], AdvancedMaterials,2003,15,988-991.
    [34] Zhou Q. M., Hou Q., Zheng L. P., et al. Fluorene-based low band-gap copolymers forhigh performance photovoltaic devices [J], Appl. Phys. Lett.,2004,84,1653-1655.
    [35] Blouin N., Michaud A., Leclerc M. A low-bandgap poly(2,7-carbazole) derivative foruse in high-performance solar cells [J], Advanced Materials,2007,19,2295-2300.
    [36] Park S. H., Roy A., Beaupre S., et al. Bulk heterojunction solar cells with internalquantum efficiency approaching100%[J], Nature Photonics,2009,3,297-303.
    [37] Wang E. G., Wang L., Lan L. F., et al. High-performance polymer heterojunction solarcells of a polysilafluorene derivative [J], Appl. Phys. Lett.,2008,92,033307.
    [38] Qin R., Li W., Li C., et al. A planar copolymer for high efficiency polymer solar cells[J], Journal of the American Chemical Society,2009,131,14612-14613.
    [39] Huo L., Hou J., Zhang S., et al. A polybenzo[1,2-b:4,5-b′]dithiophene derivative withdeep homo level and its application in high-performance polymer solar cells [J],Angewandte Chemie International Edition,2010,49,1500-1503.
    [40] Wang M., Hu X., Liu P., et al. Donor-acceptor conjugated polymer based onnaphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells [J],Journal of the American Chemical Society,2011,133,9638-9641.
    [41] Zhou H., Yang L., Stuart A. C., et al. Development of fluorinated benzothiadiazole as astructural unit for a polymer solar cell of7%efficiency [J], Angewandte ChemieInternational Edition,2011,50,2995-2998.
    [42] Peng Q., Liu X., Su D., et al. Novel benzo[1,2-b:4,5-b′]dithiophene–benzothiadiazolederivatives with variable side chains for high-performance solar cells [J], AdvancedMaterials,2011,23,4554-4558.
    [43] Gadisa A., Mammo W., Andersson L., et al. A new donor–acceptor–donor polyfluorenecopolymer with balanced electron and hole mobility [J], Advanced FunctionalMaterials,2007,17,3836-3842.
    [44] Lindgren L. J., Zhang F., Andersson M., et al. Synthesis, characterization, and devicesof a series of alternating copolymers for solar cells [J], Chemistry of Materials,2009,21,3491-3502.
    [45] Wang E., Hou L., Wang Z., et al. Side-chain architectures of2,7-carbazole andquinoxaline-based polymers for efficient polymer solar cells [J], Macromolecules,2011,44,2067-2073.
    [46] He Z., Zhang C., Xu X., et al. Largely enhanced efficiency with a pfn/al bilayercathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgappolycarbazole donor [J], Adv. Mater.,2011,23,3086-3089.
    [47] Wang E., Hou L., Wang Z., et al. An easily synthesized blue polymer forhigh-performance polymer solar cells [J], Advanced Materials,22,5240-5244.
    [48] Zhang F., Bijleveld J., Perzon E., et al. High photovoltage achieved in low band gappolymer solar cells by adjusting energy levels of a polymer with the LUMOs offullerene derivatives [J], Journal of Materials Chemistry,2008,18,5468-5474.
    [49] Wang X. J., Perzon E., Oswald F., et al. Enhanced photocurrent spectral response inlow-bandgap polyfluorene and C-70-derivative-based solar cells [J], AdvancedFunctional Materials,2005,15,1665-1670.
    [50] Perzon E., Wang X. J., Admassie S., et al. An alternating low band-gap polyfluorene foroptoelectronic devices [J], Polymer,2006,47,4261-4268.
    [51] Bürgi L., Turbiez M., Pfeiffer R., et al. High-mobility ambipolar near-infraredlight-emitting polymer field-effect transistors [J], Advanced Materials,2008,20,2217-2224.
    [52] Zoombelt A. P., Mathijssen S. G. J., Turbiez M. G. R., et al. Small band gap polymersbased on diketopyrrolopyrrole [J], Journal of Materials Chemistry,20,2240-2246.
    [53] Bijleveld J. C., Zoombelt A. P., Mathijssen S. G. J., et al. Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics [J], Journal of the AmericanChemical Society,2009,131,16616-16617.
    [54] Martijn M. W., Mathieu T., Jan G., et al. Narrow-bandgap diketo-pyrrolo-pyrrolepolymer solar cells: the effect of processing on the performance [J], AdvancedMaterials,2008,20,2556-2560.
    [55] Bijleveld J. C., Gevaerts V. S., Di Nuzzo D., et al. Efficient solar cells based on aneasily accessible diketopyrrolopyrrole polymer [J], Advanced Materials,2010,22,E242-E246.
    [56] Bronstein H., Chen Z., Ashraf R. S., et al. Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effecttransistors and organic photovoltaic devices [J], Journal of the American ChemicalSociety,2011,133,3272-3275.
    [57] Zou Y., Gendron D., Badrou-A ch R., et al. A High-mobility low-bandgappoly(2,7-carbazole) derivative for photovoltaic applications [J], Macromolecules,2009,42,2891-2894.
    [58] Zou Y., Gendron D., Neagu-Plesu R., et al. Synthesis and characterization of newlow-bandgap diketopyrrolopyrrole-based copolymers [J], Macromolecules,2009,42,6361-6365.
    [59] Huo L., Hou J., Chen H.-Y., et al. Bandgap and molecular level control of thelow-bandgap polymers based on3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells [J],Macromolecules,2009,42,6564-6571.
    [60] Zhou E., Wei Q., Yamakawa S., et al., Diketopyrrolopyrrole-based semiconductingpolymer for photovoltaic device with photocurrent response wavelengths up to1.1μm[J], Macromolecules,2009,43,821-826.
    [61] Woo C. H., Beaujuge P. M., Holcombe T. W., et al. Incorporation of furan into lowband-gap polymers for efficient solar cells [J], Journal of the American ChemicalSociety,2010,132,15547-15549.
    [62] Walker B., Tamayo A. B., Dang X.-D., et al. Nanoscale phase separation and highphotovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solarcells [J], Advanced Functional Materials,2009,19,3063-3069.
    [63] Zou Y., Najari A., Berrouard P., et al. A thieno[3,4-c]pyrrole-4,6-dione-basedcopolymer for efficient solar cells [J], Journal of the American Chemical Society,2010,132,5330-5331.
    [64] Piliego C., Holcombe T. W., Douglas J. D., et al. Synthetic control of structural order inn-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells [J],Journal of the American Chemical Society,2010,132,7595-7597.
    [65] Chu T.-Y., Lu J., Beaupré S., et al., Bulk heterojunction solar cells usingthieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d]silole copolymer with apower conversion efficiency of7.3%[J], Journal of the American Chemical Society,2011,133,4250-4253.
    [66] Amb C. M., Chen S., Graham K. R., et al. Dithienogermole as a fused electron donor inbulk heterojunction solar cells [J], Journal of the American Chemical Society,2011,133,10062-10065.
    [67] Zhang Y., Zou J., Yip H.-L., et al. Conjugated polymers based on C, Si and N-bridgeddithiophene and thienopyrroledione units: synthesis, field-effect transistors and bulkheterojunction polymer solar cells [J], Journal of Materials Chemistry,2011,21,3895-3902.
    [68] Najari A., Berrouard P., Ottone C., et al. High open-circuit voltage solar cells based onnew thieno[3,4-c]pyrrole-4,6-dione and2,7-carbazole copolymers [J], Macromolecules,2012,45,1833-1838.
    [69] Pope M., Kallmann H.P., Magnante P. Electroluminescence in organic crystals [J]. TheJournal of Chemical Physics,1963,38,2042-2043.
    [70] Tang C. W., VanSlyke S. A. Organic electroluminescent diodes [J]. Applied PhysicsLetters,1987,51,913-915.
    [71] Burroughes J.H.; Bradley D.D.C.; A. R. Brown, et al. Light-emitting diodes based onconjugated polymers [J]. Nature,1990,347,539-541.
    [72] Braun D., Heeger A. J. Visible light emission from semiconducting polymer diodes[J].Applied Physics Letters,1991,58,1982-1984.
    [73] Groenendaal B. L., Jonas F., Freitag D., et al. Poly(3,4-ethylenedioxy-thiophene) andits derivatives: past, present, and future [J]. Advanced Materials,2000,12,481-494.
    [74] Cao Y.; Yu G.; Zhang C., et al. Polymer light-emitting diodes with polyethylenedioxythiophene-polystyrene sulfonate as the transparent anode [J]. SyntheticMetals,1997,87,171-174.
    [75] Friend R. H., Gymer R.W., Holmes A.B., et al. Electroluminescence in conjugatedpolymers [J]. Nature,1999,397,121-128.
    [76]黄春辉,李福友,黄维,有机电致发光材料与器件导论,上海,复旦大学出版社,2005年。
    [77] Grimsdale A. C., Chan K. L., Martin R. E., et al. Synthesis of light-emitting conjugatedpolymers for applications in electroluminescent devices [J], Chemical Reviews,2009,109,897-1091.
    [78] Baldo M. A., O'Brien D. F., You Y., et al. Highly efficient phosphorescent emissionfrom organic electroluminescent devices [J], Nature,1998,395,151-154.
    [79] Ma Y., Zhang H., Shen J., et al. Electroluminescence from triplet metal-ligandcharge-transfer excited state of transition metal complexes [J], Synthetic Metals,1998,94,245-248.
    [80] Lehn J. M.沈兴海译,超分子化学:概念和展望,北京大学出版社,2002.
    [81] Brunsveld L., Folmer B. J. B., Meijer E. W., et al. Supramolecular polymers [J],Chemical Reviews,2001,101,4071-4098.
    [82] Huang F..Gibson H. W. Polypseudorotaxanes and polyrotaxanes [J], Progress inPolymer Science,2005,30,982-1018.
    [83] Hoeben F. J. M., Jonkheijm P., Meijer E. W., et al. About supramolecular assemblies ofπ-conjugated systems [J], Chemical Reviews,2005,105,1491-1546.
    [84] De Greef T. F. A., Smulders M. M. J., Wolffs M., et al. Supramolecular polymerization[J], Chemical Reviews,2009,109,5687-5754.
    [85] Harada A., Hashidzume A., Yamaguchi H., et al. Polymeric rotaxanes [J], ChemicalReviews,2009,109,5974-6023.
    [86] Niu Z..Gibson H. W., Polycatenanes [J], Chemical Reviews,2009,109,6024-6046.
    [87] Fang L., Olson M. A., Benitez D., et al. Mechanically bonded macromolecules [J],Chemical Society Reviews,2010,39,17-29.
    [88] Gasa T. B., Valente C., Stoddart J. F., Solution-phase counterion effects insupramolecular and mechanostereochemical systems [J], Chemical Society Reviews,2011,40,57-78.
    [89] Zheng B., Wang F., Dong S., et al. Supramolecular polymers constructed by crownether-based molecular recognition [J], Chemical Society Reviews,2012,41,1621-1636.
    [90]汪峰博士毕业论文,基于冠醚和穴醚的超分子聚合物研究[D],浙江大学,2009。
    [91]汪峰,董盛谊,郑波,等。基于冠醚衍生物的超分子聚合物[J],高分子学报,2011,9,956-964.
    [92] Ashton P. R., Baxter I., Cantrill S. J., et al. Supramolecular daisy chains [J],Angewandte Chemie International Edition,1998,37,1294-1297.
    [93][] Ashton P. R., Parsons I. W., Raymo F. M., et al. Self-assembling supramoleculardaisy chains [J], Angewandte Chemie International Edition,1998,37,1913-1916.
    [94] Yamaguchi N., Nagvekar D. S., Gibson H. W. Self-organization of a heteroditopicmolecule to linear polymolecular arrays in solution [J], Angewandte ChemieInternational Edition,1998,37,2361-2364.
    [95] Huang F., Nagvekar D. S., Zhou X., et al. Formation of a linear supramolecularpolymer by self-assembly of two homoditopic monomers based on thebis(m-phenylene)-32-crown-10/paraquat recognition motif [J], Macromolecules,2007,40,3561-3567.
    [96] Yamaguchi N., Gibson H. W. Formation of supramolecular polymers from homoditopicmolecules containing secondary ammonium ions and crown ether moieties [J],Angewandte Chemie International Edition,1999,38,.143-147.
    [97] Yamaguchi N., Gibson H. W. Stabilities of cooperatively formed cyclic pseudorotaxanedimers [J], Chemical Communications,1999,789-790.
    [98] Gibson H. W., Yamaguchi N., Jones J. W. Supramolecular pseudorotaxane polymersfrom complementary pairs of homoditopic molecules [J], Journal of the AmericanChemical Society,2003,125,3522-3533.
    [99] Huang F., Gibson H. W. A supramolecular poly[3]pseudorotaxane by self-assembly of ahomoditopic cylindrical bis(crown ether) host and a bisparaquat derivative [J],Chemical Communications,2005,1696-1698.
    [100] Wang F., Han C., He C., et al. Self-Sorting organization of two heteroditopic monomersto supramolecular alternating copolymers [J], Journal of the American ChemicalSociety,2008,130,11254-11255.
    [101] Wang F., Zhang J., Ding X., et al., Metal coordination mediated reversible conversionbetween linear and cross-linked supramolecular polymers [J], Angewandte ChemieInternational Edition,2010,49,1090-1094.
    [102] Dong S., Luo Y., Yan X., et al. A dual-responsive supramolecular polymer gel formedby crown ether based molecular recognition [J], Angewandte Chemie InternationalEdition,2011,50,1905-1909.
    [103] Rowan S. J., Cantrill S. J., Stoddart J. F., et al. Toward daisy chain polymers:“wittigexchange” of stoppers in [2]rotaxane monomers [J], Organic Letters,2000,2,759-762.
    [104] Sasabe H., Inomoto N., Kihara N., et al. Synthesis of poly[2]rotaxane by Sonogashirapolycondensation [J], Journal of Polymer Science Part A: Polymer Chemistry,2007,45,4154-4160.
    [105] Sohgawa Y., Fujimori H., Shoji J., et al. Polyslipping: a new approach topolyrotaxane-like assemblies [J], Chemistry Letters,2001,30,774-775.
    [106] Oku T., Furusho Y., Takata T. First poly[3]rotaxane synthesized through thenoncovalent step-growth polymerization of a homoditopic dumbbell compound and amacrocycle with a reversible thiol–disulfide interchange reaction [J], Journal ofPolymer Science Part A: Polymer Chemistry,2003,41,119-123.
    [107] Yamaguchi N., Hamilton L. M., Gibson H. W. Dendritic pseudorotaxanes [J],Angewandte Chemie International Edition,1998,37,3275-3279.
    [108] Gibson H. W., Yamaguchi N., Hamilton L., et al. Cooperative self-assembly ofdendrimers via pseudorotaxane formation from a homotritopic guest molecule andcomplementary monotopic host dendrons [J], Journal of the American ChemicalSociety,2002,124,4653-4665.
    [109] Leung K. C. F., AricóF., Cantrill S. J., et al. Template-directed dynamic synthesis ofmechanically interlocked dendrimers [J], Journal of the American Chemical Society,2005,127,5808-5810.
    [110] Leung K. C. F., Aricó F., Cantrill S. J., et al. Dynamic mechanically interlockeddendrimers: amplification in dendritic dynamic combinatorial libraries [J],Macromolecules,2007,40,3951-3959.
    [111] Huang F., Gibson H. W. Formation of a supramolecular hyperbranched polymer fromself-organization of an ab2monomer containing a crown ether and two paraquatmoieties [J], Journal of the American Chemical Society,2004,126,14738-14739.
    [112] Ge Z., Hu J., Huang F., et al. Responsive supramolecular gels constructed by crownether based molecular recognition [J], Angewandte Chemie International Edition,2009,48,1798-1802.
    [113] Maggini L..Bonifazi D. Hierarchised luminescent organic architectures: design,synthesis, self-assembly, self-organisation and functions [J], Chemical Society Reviews,2012,41,211-241.
    [114] Liu F., Tang C., Chen Q.-Q., et al. Supramolecular π-π stacking pyrene-functionedfluorenes: toward efficient solution-processable small molecule blue and white organiclight emitting diodes [J], The Journal of Physical Chemistry C,2009,113,4641-4647.
    [115] Ma Z., Li Y.-B., Deng K., et al., Supramolecular assemblies oftetrahydroxyloligo(phenyleneethynylene) with cross-shaped side chains and itscoadsorption with diacids on graphite [J], The Journal of Physical Chemistry C,114,11460-11465.
    [116] Luo J., Lei T., Wang L., et al. Highly fluorescent rigid supramolecular polymericnanowires constructed through multiple hydrogen bonds [J], Journal of the AmericanChemical Society,2009,131,2076-2077.
    [117] Abbel R., Grenier C., Pouderoijen M. J., et al. White-light emitting hydrogen-bondedsupramolecular copolymers based on π-conjugated oligomers [J], Journal of theAmerican Chemical Society,2009,131,833-843.
    [118] El-ghayoury A., Schenning A. P. H. J., van Hal P. A., et al. Supramolecularhydrogen-bonded oligo(p-phenylene vinylene) polymers [J], Angewandte ChemieInternational Edition,2001,40,3660-3663.
    [119] Jonkheijm P., van Duren J. K. J., Kemerink M., et al. Control of film morphology byfolding hydrogen-bonded oligo(p-phenylenevinylene) polymers in solution [J],Macromolecules,2005,39,784-788.
    [120] Hou Q., Xu Y. S., Yang W., et al. Novel red-emitting fluorene-based copolymers [J],Journal of Materials Chemistry,2002,12,2887-2892.
    [121] Scharber M. C., Mühlbacher D., Koppe M., et al. Design rules for donors inbulk-heterojunction solar cells-towards10%energy-conversion efficiency [J],Advanced Materials,2006,18,789-794.
    [122] Sze S. M. Physics of Semiconductor Devices [M]. New York: Wiley-Interscience,1981
    [123] Chen M.-H., Hou J., Hong Z., et al. Efficient polymer solar cells with thin active layersbased on alternating polyfluorene copolymer/fullerene bulk heterojunctions [J],Advanced Materials,2009,21,4238-4242.
    [124] Du C., Li C., Li W., et al.9-Alkylidene-9H-fluorene-containing polymer forhigh-efficiency polymer solar cells [J], Macromolecules,2011,44,7617-7624.
    [125] Tao Y., Yang C., Qin J. Organic host materials for phosphorescent organiclight-emitting diodes [J], Chemical Society Reviews,2011,40,2943-2970.
    [126] Chen J., Shi C., Fu Q., et al. Solution-processable small molecules as efficientuniversal bipolar host for blue, green and red phosphorescent inverted OLEDs [J],Journal of Materials Chemistry,2012,22,5164-5170.
    [127] Pina J., de Melo J. S., Burrows H. D., et al. On the triplet state ofpoly(N-vinylcarbazole)[J], Chemistry. Physics. Letters.,2004,400,441-445.
    [128] Zacharias P., Gather M. C., Rojahn M., et al. New crosslinkable hole conductors forblue-phosphorescent organic light-emitting diodes [J], AngewandteChemie-International Edition,2007,46,4388-4392.
    [129] Li Y. N., Ding J. F., Day M., et al. Novel stable blue-light-emitting oligofluorenenetworks immobilized by boronic acid anhydride linkages [J], Chemistry of Materials,2003,15,4936-4943.
    [130] Scheler E..Strohriegl P. Three Color random fluorene-based oligomers for fastmicrometer-scale photopatterning [J], Chemistry of Materials,2010,22,1410-1419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700