固态发光可调的新型聚集诱导发光材料的合成、晶体结构及光物理性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为显示、照明等有机发光器件中的关键组成部分,有机发光材料的性能很大程度上决定了发光器件的发展及其实用化进程。有机发光材料往往以固态薄膜的形式出现在发光器件中,所以研究和探索高效固态发光的有机材料具有重大意义。聚集诱导发光现象为开发强发光的有机材料提供了一个有效方法,并在过去十年发展了大量基于噻咯、四苯乙烯和苯乙烯腈等单元结构的聚集诱导发光材料。
     利用化学和/或物理方法调控有机材料固态下的发光行为及其产生机制受到了越来越广泛的重视。压致荧光变色材料是一类新型的力刺激响应智能材料,它在信息存储、商标防伪和微应力传感等领域具有潜在的应用,但是具有压致荧光变色性能的有机化合物目前尚十分稀少。本论文主要致力于开发新核结构的聚集诱导发光材料,并通过化学修饰或外部刺激的方法实现固态发光行为的调控,其主要内容概括如下:
     第一章重点介绍了激发态分子的光物理过程,并对高效固态发光的有机小分子材料及荧光调控的最新进展进行了综述。
     第二章基于对1,1,4,4-四苯基丁二烯结构的修饰,设计合成了四种多取代2,2'-联二茚发光团1a、2a、3a和4a,并充分研究了它们在溶液和固态下的光物理性质。化合物1a-4a在溶液中发光微弱,但是在晶体下发光很强,表现出聚集诱导发光性质。通过缓慢溶剂挥发法,成功获得了化合物1a-4a的单晶。通过单晶结构分析,发现分子在晶体中具有十分扭曲的构型,不存在分子间的p-p堆积作用,导致形成了非紧密堆积结构,这是高效发光的重要原因。化合物1a-3a的晶体发射深蓝色荧光,4a的晶体为绿色;而化合物1a-3a的无定形薄膜红移到天蓝色,4a的无定形薄膜仍为绿色。这表明化合物1a-3a的固态发光依赖于它们的分子构型及堆积状态。进一步研究了化合物1a-3a压致荧光变色性能,并通过粉末X-射线衍射(PXRD)和差式扫描量热法(DSC)的测试验证压致变色的机制。
     第三章在上一章的基础上,为了将2,2'-联二茚体系的发光向长波长方向拓展同时获得高效固态发光的BODIPY类荧光团,创新性地将BODIPY基团引入到多取代2,2’-联二茚体系中,设计合成了化合物BDY-IN.化合物BDY-IN仍具有聚集诱导发光性质。利用再沉淀法得到了化合物BDY-IN两种发光差异很大的纳米聚集体,最大发射分别为543nm和646nm,这表明BDY-IN的聚集态发光受聚集形式影响。采用缓慢溶剂挥发法,通过氯仿/乙醇体系中培养出发橙色荧光的单晶BDY-O,最大发射为582nm;通过二氯甲烷/乙醇体系中培养出发红色荧光的单晶BDY-R,最大发射为分别661nm。通过对两种单晶结构的分析发现,BDY-R的分子构型比BDY-O的更为平整且BDY-R的晶体中存在分子间p-p堆积作用,这两个原因导致了BDY-R比BDY-O发光红移约79nm。
     第四章设计合成了三种含有三苯乙烯腈和三苯胺基元的化合物CN-TPA、3CN-TPA和4CN-DTPA。研究了三种化合物的聚集诱导发光特性,同时发现了化合物CN-TPA的固体粉末具有压致荧光变色效应。化合物CN-TPA的晶体粉末发蓝绿色荧光(594nm),碾磨可以将其破坏成发黄绿色荧光(545nm)的无定形粉末,再经加热可以恢复成发蓝绿色荧光(594nm)的晶体粉末。粉末X-射线衍射(PXRD)表明化合物CN-TPA的晶体和无定形粉末具有不同的分子堆积模式。差式扫描量热法(DSC)测试显示,晶体是热力学稳定态,而无定形态是亚稳态。采用缓慢溶剂挥发法,获得了化合物CN-TPA发蓝绿色荧光(584nm)的单晶。通过单晶结构分析,发现在晶体中分子构型十分扭曲,导致了形成了非紧密堆积结构;这样,外部压力可以容易地破坏分子构型及堆积模式,从而引起相变。
     第五章利用一步生成两根C-N键成环的方法合成了系列稠环取代的N,N’-二芳基吩嗪衍生物(M1-flu、M2-py和M3-phen)。发现该类化合物在溶液中表现出不依赖于溶剂极性的高达240nm的Stocks位移。它们的溶液最大发射在600nm左右,而固体粉末在蓝、绿光区域。以化合物M1-flu作为发光材料初步研究了该类化合物的电致发光性质。
     第六章设计合成了茚修饰的9,10-二苯基蒽衍生物INAN,并与参比化合物9,10-二(4-(2,2-二苯乙烯基)苯)蒽DPAV比较,初步研究了其光物理性能。
     第七章结论。
As a key component in the organic light-emitting devices (OLEDs), the organic light-emitting materials largely affect the process of industrialization of OLEDs. The organic light-emitting materials are practically used as thin films in OLEDs, so it is of great significance to study and explore organic materials with highly efficient solid state emission. Aggregation-induced emission phenomenon (AIE) offers an effective approach for the development of highly luminous organic materials, and in the past decade a large number of AIE-active dyes based on the core-structure with silole or tetraphenylethene have been developed.
     The switching and tuning of organic solid-state fluorescence via chemical and/or physical methods and its mechanism is of great current interest. Mechanochromic fluorescent materials are a class of smart materials with fluorescent properties that change in response to external force stimuli, which could be used in memory chips, sensors, and security inks. However, organic mechanochromic fluorescent materials that are dependent on changes in physical molecular packing modes are extremely rare. This thesis mainly contributes to develop novel core-structures AIE fluorophores, and switch and tune these dyes' solid-state emission through chemical modification or external stimuli. Its main contents summarized as follows.
     In chapter one, the photophysical processes of excited molecules are briefly introduced. The latest progress of organic small molecules with highly efficient solid-state emission and various strategies that have been effectively utilized to achieve switchable and tunable fluorescence in the organic solid state are reviewed.
     In chapter two, based on the structure of1,1,4,4-tetraphenyl butadiene, four polysubstituted2,2'-biindenyl fluorophores la,2a,3a and4a were designed and synthesized, and their optical properties in solution and solid-state were investigated. Compounds la-4a have the AIE nature. Single crystals of these dyes were obtained by slow solvent evaporation method. The large interplane angles in the cystals make the conformations of la-4a largely deviated from a planar conformation, which prevents molecules from p-p stacking interactions, and thus induces intense emissions in crystal state. The crystals of la-3a show intense blue luminescence, and4a green; while the amorphous film's emission of la-3a red-shift to sky blue, and4a still green. This suggests that solid state emission of compounds la-3a depends on their molecular conformation and packing mode. The mechanochromic ability of la-3a was further examined, and the powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements were carried out to validate the mechanism of mechanochromism.
     In chapter three, based on the last chapter, in order to expand the emission of2,2'-biindenyl derivatives to red region and obtain the BODIPY fluorophore with highly efficient solid state emission, BODIPY moieties were innovatively incorporated into2,2'-biindenyl systems. Bodipy fluorophore BDY-IN was designed and synthesized. BDY-IN still has the AIE nature. Two kinds nano-particles of BDY-IN were prepared by reprecipitation, and they exhibited distinct emission which suggested that the emission of the nano-particles depends on BDY-IN molecular packing mode in the aggregate. The BDY-IN crystals with two polymorphic forms (BDY-O and BDY-R) have been obtained. Due to the more planar conformation and face to face p-p stacking interaction increasing the p-conjugated degree, the emission of BDY-R displays an obvious red shift about79nm compared with BDY-O.
     In chapter four, three fluorophores (CN-TPA,3CN-TPA and4CN-DTPA) containing triphenylacrylonitrile and triphenylamines moieties were designed and synthesized. These three dyes are all AIE-active, and CN-TPA display mechanochromism in solid phase. Grinding could disrupt the crystalline CN-TPA with blue-green emission into amorphous CN-TPA with yellow-green emission, and heating treatment could change the amorphous CN-TPA into crystalline CN-TPA. Powder X-ray diffraction (PXRD) characterizations demonstrated that crystalline and amorphous CN-TPA possesses different molecular packing. A differential scanning calorimetry (DSC) measurement revealed that the emission switching was due to the exchange between the thermodynamic-stable crystalline and metastable amorphous states. Single crystals of CN-TPA were gotten by slow solvent evaporation method. The reason for the phase transformation caused by external pressure is ascribed to the twisted conformation of the molecule which leads to poor solid molecular packing and weak interactions in the interfaces of lamellar layers confirmed by its single-crystal X-ray diffraction analysis.
     In chapter five, the fused ring substituted N,N-diaryl phenazine derivatives were synthesized by generating two C-N bond in one step to form a ring. These compounds exhibit unnormal large Stocks shift up to240nm independent on the polarity of the solvent. Their solution show orange-red emission around600nm, while the solid powder in the blue and green region. Ml-flu was selected as a luminescent material used in organic light emitting diode (OLED).
     In chapter six, indenyl-modified9,10-diphenyl anthracene derivative IN A was designed and synthesized, and its photophysical properties were preliminary studied and compared with 9,10-bis(4-(2,2-diphenylvinyl)phenylanthracene (DPVA).
     In chapter seven, conclusion.
引文
[1]陈金鑫,黄孝文OLED有机电致发光材料与器件.清华大学出版社.2007.
    [2]Mullen K., Scherf U. Organic light-emitting devices:synthesis properties and applications. Wiley-VCH, Weinheim,2006.
    [3]Sasabe H., Kido J. Multifunctional materials in high-performance OLEDs:challenges for solid-state lighting. Chem. Mater.,2011,23:621-630.
    [4]胡文平.纳米科学与技术:有机场效应晶体管.科学出版社.2011.
    [5]Zaumseil J., Sirringhaus H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev.2007,107:1296-1323.
    [6]Guo Y., Yu G., Liu Y. Functional organic field-effect transistors. Adv. Mater.2010, 22:4427-4447.
    [7]Samuel I. D. W., Turnbull G. A. Organic semiconductor lasers. Chem. Rev.2007,107: 1272-1295.
    [8]Chenais S., Forget S. Recent advances in solid-state organic lasers. Polymer International, 2012,61:390-406.
    [9]Basabe-Desmonts L., Reinhoudt D. N., Crego-Calama M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev.2007,36:993-1017.
    [10]Lin P., Yan F. Organic Thin-film transistors for chemical and biological sensing. Adv. Mater.2012,24:34-51.
    [11]Birks J. B. Photophysics of aromatic molecules. Wiley, London,1970.
    [12]Saragi T. P. I., Spehr T., Siebert A., Fuhrmann-Lieker T., Salbeck J. Spiro compounds for organic optoelectronics. Chem. Rev.2007,107:1011-1065.
    [13]Qin T., Zhou G., Scheiber H., Bauer R. E., Baumgarten M., Anson C. E., List E. J. W., Mullen K. Polytriphenylene dendrimers:a unique design for blue-light-emitting materials. Angew. Chem. Int. Ed.2008,47:8292-8296.
    [14]Qin T., Ding J., Wang L., Baumgarten M., Zhou G., Mullen K., A divergent synthesis of very large polyphenylene dendrimers with iridium(Ⅲ) cores:molecular size effect on the performance of phosphorescent organic light-emitting diodes. J. Am. Chem. Soc.2009, 131:14329-14336.
    [15]Xie Z., Yang B., Li F., Cheng G., Liu L., Yang G., Xu H., Ye L., Hanif M., Liu S., Ma D., Ma Y. Cross dipole stacking in the crystal of distyrylbenzene derivative:the approach toward high solid-state luminescence efficiency. J. Am. Chem. Soc.2005,127:14152-14153.
    [16]Hong Y., Lam J. W. Y., Tang B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011,40:5361-5388.
    [17]Wiirthner F., Kaiser T. E. and Saha-Moller C. R. J-aggregates:from serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed.2011,50:3376-3410.
    [18]Zhao C. H., Sakuda E., Wakamiya A., Yamaguchi S. Highly emissive diborylphenylene-containing bis(phenylethynyl)benzenes:structure-photophysical property correlations and fluoride ion sensing. Chem. Eur. J.2009,15:10603-10612.
    [19]樊美公,姚建年,佟振合.分子光化学与光功能材料科学.科学出版社,2009.
    [20]Valeur B. Molecular fluorescence, Wiley-VCH, Weinheim,2002.
    [21]Pope M., Swenberg C. E. Electronic processes in organic crystals and polymers.2nd ed., New York,1999, pp.39-48.
    [22]Itano K., Ogawa H., Shirota Y. Exciplex formation at the organic solid-state interface: Yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials. Appl. Phys. Lett.1998,72:636-638.
    [23]Johansson N., Salbeck J., Bauer J., Weissotel F., Bros P., Andersson A. Salaneck W. R. Solid-state amplified spontaneous emission in some spiro-type molecules:s new concept for the design of solid-state lasing molecules. Adv. Mater.1998,10:1136-1141.
    [24]Salbeck J., Schoner M., Fuhrmann T. Optical amplification in spiro-type molecular glasses. Thin Solid Films 2002,417:20-25.
    [25]Chao T.-C., Lin Y.-T., Yang C.-Y, Hung T. S., Chou H.-C., Wu C.-C., Wong K.-T. Highly efficient UV organic light-emitting devices based on bi(9,9-diarylfluorene)s. Adv. Mater.2005,17:992-996.
    [26]Wong K.-T., Liao Y.-L., Lin Y.-T., Su H.-C., Wu C.-C. Spiro-configured bifluorenes: highly efficient emitter for UV organic light-emitting device and host material for red electrophosphorescence. Org. Lett.2005,7:5131-5134.
    [27]Wong K. T., Chien Y. Y, Chen R. T., Wang C. F., Lin Y. T., Chiang H. H., Hsieh P. Y., Wu C. C., Chou C. H., Su Y. O., Lee G. H., Peng S. M. Ter(9,9-diarylfluorene)s:highly efficient blue emitter with promising electrochemical and thermal stability. J. Am. Chem. Soc.2002,124:11576-11577.
    [28]Wu C.-C., Lin Y.-T., Wong K.-T., Chen R.-T., Chien Y.-Y. Efficient organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties. Adv. Mater.2004,16:61-65.
    [29]Lee S. H., Jang B. B., Kafafi Z. H. Highly fluorescent solid-state asymmetric spirosilabifluorene derivatives. J. Am. Chem. Soc.2005,127:9071-9078.
    [30]Lee K. H., Kim S. O., You J. N., Kang S., Lee J. Y., Yook K. S., Jeon S. O., Lee J. Y., Yoon S. S. Tert-Butylated spirofluorene derivatives with arylamine groups for highly efficient blue organic light emitting diodes. J. Mater. Chem.2012,22:5145-5154.
    [31]Xie Z., Wang H., Li F., Xie W., Liu L., Yang B., Ye L., Ma Y. Crystal structure of a highly luminescent slice crystal grown in the vapor phase:a new polymorph of 2,5-diphenyl-1,4-distyrylbenzene. Cryst. Growth Des.2007,7:2512-2516;
    [32]Luo J., Xie Z., Lam J. W. Y., Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun.2001,1740-1741
    [33]Hong Y, Lam J. W. Y., Tang B. Z. Aggregation-induced emission:phenomenon, mechanism and applications. Chem. Commun.2009,4332-4353
    [34]Wang J., Mei J., Hu R., Sun J. Z., Qin A., Tang B. Z. Click synthesis, aggregation-induced emission, EIZ isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc.2012,134:9956-9966.
    [35]Yuan W. Z., Gong Y., Chen S., Shen X. Y., Lam J. W. Y., Lu P., Lu Y., Wang Z., Hu R., Xie N., Kwok H. S., Zhang Y., Sun J. Z., Tang B. Z. Efficient solid emitters with aggregation-induced emission and intramolecular charge transfer characteristics: molecular design, synthesis, photophysical behaviors, and OLED application. Chem. Mater.2012,24:1518-1528.
    [36]Aldred M. P., Li C., Zhang G.-F., Gong W.-L., Li A. D. Q., Dai Y., Ma D., Zhu M.-Q. Fluorescence quenching and enhancement of verifiable oligofluorenes end-capped with tetraphenylethene (TPE). J. Mater. Chem.2012,22:7515-7528
    [37]Li Y., Chen Z., Cui Y, Xia G.,Yang X.-F. Substitution position directing the molecular packing, electronic structure and aggregate emission property of bis[2-(9-anthracenyl)vinyl]benzene system. J. Phys. Chem. C.2012,116:6401-6408.
    [38]Shen X. Y., Yuan W. Z., Liu Y., Zhao Q., Lu P., Ma Y., Williams I. D., Qin A., Sun J. Z., Tang B. Z. Fumaronitrile-based fluorogen:red to near infrared fluorescence, aggregation-induced emission, solvatochromism, and twisted intramolecular charge transfer. J. Phys. Chem. C.2012,116:10541-10547.
    [39]Zhao Z., Wang Z., Lu P., Chan C. Y K., Liu D., Lam J. W. Y., Sung H. H. Y., Williams I. D., Ma,Y Tang B. Z. Structural modulation of solid-state emission of 2,5-bis(trialkylsilylethynyl)-3,4-diphenylsiloles. Angew. Chem. Int. Ed.2009,48:7608-7611.
    [40]Zhao Z., Chen S., Shen X., Mahtab F., Yu Y., Lu P., Lam J. W. Y., Kwok H. S., Tang B. Z. Aggregation-induced emission, self-assembly, and electroluminescence of 4,4'-bis(1,2,2-triphenylvinyl)biphenyl. Chem. Commun.2010,46:686-688.
    [41]Z Zhao., Chen S., Lam J. W. Y., Lu P., Zhong Y., Wong K. S., Kwok H. S., Tang B. Z. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem. Commun.2010,46:2221-2223.
    [42]Yuan W. Z., Lu P., Chen S., Lam J.W. Y., Wang Z., Liu Y., Kwok H. S., Ma Y., Tang B. Z. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced Emission:development of highly efficient light emitters in the solid state. Adv. Mater.2010,22:2159-2163.
    [43]Zhao Z., Chan C. Y K., Chen S., Deng C., Lam J. W. Y., Jim C. K. W., Hong Y, Lu P., Chang Z., Chen X., Lu P., Kwok H. S., Qiu H., Tang B. Z. Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property. J. Mater. Chem.2012,22: 4527-4534.
    [44]Liu Y., Chen S., Lam J. W. Y., Mahtab F., Kwok H. S., Tang B. Z. Tuning the electronic nature of aggregation-induced emission chromophores with enhanced electron-transporting properties. J. Mater. Chem.2012,22:5184-5189.
    [45]Liu Y., Chen S., Lam J. W. Y., Lu P., Kwok R. T. K., Mahtab F., Kwok H. S., Tang B. Z. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem. Mater.2011,23:2536-2544.
    [46]Zhao Z., Lu P., Lam J. W. Y., Wang Z., Chan C. Y K., Sung H. H. Y., Williams I. D., Ma Y., Tang B. Z. Molecular anchors in the solid state:restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chem. Sci.2011,2: 672-675.
    [47]Liu Y., Chen S., Lam J. W. Y., Lu P., Ryan Kwok T. K., Mahtab F., Kwok H. S.,Tang B. Z. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property. Chem. Mater.2011,23:2536-2544
    [48]Zhao Z., Ye S., Guo Y0, Chang Z., Lin L., Jiang T., Lam J. W.Y., Lu P., Qiu H., Liu Y., Tang B. Z.1,3,6,8-Tetrakis[(triisopropylsilyl)ethynyl]pyrene:A highly efficient solid-state emitter for non-doped yellow electroluminescence devices. Organic Electronics.2011.12, 2236-2242.
    [49]Lai M. Y., Chen C. H., Huang W. S., Lin J. T., Ke T. H., Chen L. Y., Tsai M. H., Wu C. C. Benzimidazole/amine-based compounds capable of ambipolar transport for application in single-layer blue-emitting OLEDs and as hosts for phosphorescent emitters. Angew. Chem. Int. Ed.2008,47:581-585.
    [50]Shimizu M., Mochida K., Hiyama T. Modular Approach to silicon-bridged biaryls: palladium-catalyzed intramolecular coupling of 2-(arylsilyl)aryl triflates. Angew. Chem. Int. Ed.2008,47:9760-9764.
    [51]Shimizu M., Mochida K., Hiyama T. Highly efficient blue fluorescence from 3,20-silylene-bridged 2-phenylindoles in the solid state. J. Phys. Chem. C.2011,115: 11265-11274.
    [52]Hies L., Tsuji H., Nakamura E. Synthesis of benzo[b]siloles via KH-Promoted cyclization of (2-alkynylphenyl)silanes. Org. Lett.2009,11:3966-3968.
    [53]Yamada H., Xu C., Fukazawa A., Wakamiya A., Yamaguchi S. Structural modification of silicon-bridged ladder stilbene oligomers and distyrylbenzenes. Macromol. Chem. Phys. 2009,210:904-916.
    [54]Mochida K., Shimizu M., Hiyama T. Palladium-catalyzed intramolecular coupling of 2-[(2-pyrrolyl)silyl]aryl triflates through 1,2-Silicon migration. J. Am. Chem. Soc.2009, 131:8350-8351.
    [55]Zhao C. H., Wakamiya A., Inukai Y., Yamaguchi S. Highly emissive organic solids containing 2,5-diboryl-1,4-phenylene unit. J. Am. Chem. Soc.2006,128:15934-15935.
    [56]Zhao C. H., Sakuda E., Wakamiya A., Yamaguchi S. Highly emissive diborylphenylene-containing bis(phenylethynyl)benzenes:structure-photophysical property correlations and fluoride ion sensing. Chem. Eur. J.2009,15:10603-10612.
    [57]Fu G.-L., Zhang H.-Y., Yan Y.-Q., Zhao C.-H. p-Quaterphenyls laterally substituted with a dimesitylboryl group:s promising class of solid-state blue emitters. J. Org. Chem.2012, 77:1983-1990.
    [58]Zhao Y.-H., Pan H., Fu G.-L., Lin J.-M., Zhao C.-H. A highly emissive cruciform triarylborane as a ratiometric and solid state fluorescence sensor for fluoride ions. Tetrahedron Letters.2011,52:3832-3835.
    [59]Zhao C.-H., Zhao Y.-H., Pan H., Fu G.-L. Highly solid-state emissive para-terphenyls laterally substituted with a diphenylamino group. Chem.Comm.2011,47:5518-5520.
    [60]Pan H., Fu G.-L., Zhao Y.-H., Zhao C.-H. Through-Space Charge-transfer emitting biphenyls containing a boryl and an amino group at the o,o'-positions. Org. Lett.2011,13: 4830-4833.
    [61]Fu G.-L., Pan H., Zhao Y.-H., Zhao C.-H. Solid-state emissive triarylborane-based BODIPY dyes:Photophysical properties and fluorescent sensing for fluoride and cyanide ions. Org. Biomol. Chem.2011,9:8141-8146
    [62]Iida A, Yamaguchi S. Intense solid-state blue emission with a small Stokes'shift: p-stacking protection of the diphenylanthracene skeleton. Chem. Commun.2009,3002-3004.
    [63]Chien C.-H., Chen C.-K., Hsu F.-M, Shu C.-F., Chou P.-T., Lai C.-H. Multifunctional deep-blue emitter comprising an anthracene core and terminal triphenylphosphine oxide groups. Adv. Funct. Mater.2009,19:560-566.
    [64]Chen C. T. Evolution of red organic light-emitting diodes:materials and devices. Chem. Mater.2004,16:4389-1400.
    [65]Chiang C. L., Wu M.F., Dai D. C., Wen Y. S., Wang J. K., Chen C. T. Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting eiodes. Adv. Funct. Mater.2005,15:231-238.
    [66]Chiang C.-L., Wu. M.-F., Dai D.-C., Wen Y.-S., Wang J.-K., Chen C.-T. Red-emitting fluorenes as efficient emitting hosts for non-Doped organic red-light-emitting diodes. Adv. Funct. Mater.2005.15:231-238
    [67]Huang J., Qiao X., Xia Y., Zhu X., Ma D., Cao Y., Roncali J. A dithienylbenzothiadiazole pure red molecular emitter with electron transport and exciton self-confinement for nondoped organic red-light-emitting Diodes Adv. Mater.2008,20: 4172-4175.
    [68]Huang J., Liu Q., Zou J.-H., Zhu X.-H., Li A.-Y., Li J.-W., Wu S., Peng J., Cao Y., Xia R., Bradley D. D. C., Roncali J. Electroluminescence and laser emission of soluble pure red fluorescent molecular glasses based on dithienylbenzothiadiazole. Adv. Funct. Mater. 2009,19:2978-2986.
    [69]Nakazono S., Imazaki Y., Yoo H., Yang J., Sasamori T., Tokitoh N., dric T. C, Kageyama H., Kim D., Shinokubo H., Osuka A. Regioselective Ru-catalyzed direct 2,5,8,11-alkylation of perylene bisimides. Chem. Eur. J.2009,15:7530-7533.
    [70]Zhao Q., Zhang S., Liu Y., Mei J., Chen S., Lu P., Qin A., Ma Y., Sun J. Z., Tang B. Z. Tetraphenylethenyl-modified perylene bisimide:aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem.2012,22: 7387-7394.
    [71]West R., Fink M. J., Michl J. Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science.1981,214:1343-1344.
    [72]Fukazawa A., Li Y., Yamaguchi S., Tsuji H., Tamao K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. J. Am. Chem. Soc.2007,129:14164-14165.
    [73]Kobayashi M., Matsuo T., Fukunaga T., Hashizume D., Fueno H., Tanaka K., Tamao K. Air-stable, room-temperature emissive disilenes with p-extended aromatic groups. J. Am. Chem. Soc.2010,132:15162-15163.
    [74]Kwak M. J., Kim Y. Photostable BF2-chelated fluorophores based on 2-(2'-hydroxyphenyl)benzoxazole and 2-(2'-hydroxyphenyl)benzothiazole. Bull. Korean Chem. Soc.2009,30:2865-2866.
    [75]Li D., Wang K., Huang S., Qu S., Liu X., Zhu Q., Zhang H., Wang Y. Brightly fluorescent red organic solids bearing boron-bridged p-conjugated skeletons. J. Mater. Chem.2011,21:15298-15304.
    [76]Shimizu M., Kaki R., Takeda Y., Hiyama T., Nagai N., Yamagishi H., Furutani H. 1,4-Bis(diarylamino)-2,5-bis(4-cyanophenylethenyl)benzenes:fluorophores exhibiting efficient red and near-infrared emissions in solid state. Angew. Chem. Int. Ed.2012,51: 4095-4099.
    [77]Balzani V, Credi A., Venturi M. Molecular Devices and Machines. Wiley-VCH, Weinheim,2003.
    [78]Roberts D. R. T., Holder S. J. Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials. J. Mater. Chem.2011,21:8256-8268.
    [79]Chi Z., Zhang X., Xu B., Zhou X., Ma C., Zhang Y, Liu S., Xu J. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev.2012,41:3878-3896
    [80]Brinkmann M., Gadret G., Muccini M., Taliani C., Masciocchi N., Sironi A. Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydroxyquinoline)aluminum(Ⅲ). J. Am. Chem. Soc. 2000,122:5147-5157.
    [81]Shimizu, M., Hiyama, T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem. Asian J.2010,5:1516-1531.
    [82]Li H., Zhang X., Chi Z., Xu B., Zhou W., Liu S., Zhang Y, Xu J. New thermally stable piezofluorochromic aggregation-induced emission compounds. Org. Lett.2011,13: 556-559.
    [83]Zhou T., Jia T., Zhao S., Guo J., Zhang H., Wang Y Acid-stimuli-luminescence and aarbonyl-proton interaction dependent emission properties of 2,6-biphenyl-4-pyrone crystals. Cryst. Growth Des.2012,12:179-184.
    [84]Zhao Y, Fu H., Peng A., Ma Y, Xiao D., Yao J. Low-dimensional nanomaterials based on small organic molecules:preparation and optoelectronic properties. Adv. Mater.2008, 20:2859-2876.
    [85]D'Andrade B. W., Forrest S. R. White organic light-emitting devices for solid-state lighting. Adv. Mater.2004,16:1585-1595.
    [86]Gupta D., Katiyar M., Deepak. Various approaches to white organic light emitting diodes and their recent advancements. Opt. Mater.2006,28:295-301.
    [87]Kim E., Park S. B. Chemistry as a prism:a review of light-emitting materials having tunable emission wavelengths. Chem. Asian J.2009,4:1646-1658.
    [88]Wakamiya A., Mori K., Yamaguchi S.3-Boryl-2,2'-bithiophene as a versatile core skeleton for full-color highly emissive organic solids. Angew. Chem. Int. Ed.2007,46: 4273-4276.
    [89]Ishow E., Brosseau A., Clavier G., Nakatani K., Tauc P., Fiorini-Debuisschert C., Neveu S., Sandre O., Leaustic A. Multicolor emission of small molecule-based amorphous thin films and nanoparticles with a single excitation wavelength. Chem. Mater.2008,20: 6597-6599.
    [90]Rabbani-Haghighi H., Forget S., Chenais S., Siove A., Castex M.-C., Ishow E. Laser operation in nondoped thin films made of a small-molecule organic red-emitter. Appl. Phys. Lett.2009,95:033305.
    [91]Shimizu M., Takeda Y., Higashi M., Hiyama T. 1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes:minimal fluorophores exhibiting highly efficient emission in the solid state. Angew. Chem. Int. Ed.2009,48:3653-3656.
    [92]Zhao Z. j., Deng C., Chen S., Lam J. W. Y., Qin W., Lu P., Wang Z., Kwok H. S., Ma Y, Qiu H., Tang B. Z. Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. Chem. Commun.2011,47:8847-8849
    [93]Li D., Zhang H., Wang C., Huang S., Guo J., Wang Y. Construction of full-color-tunable and strongly emissive materials by functionalizing a boron-chelate four-ring-fused p-conjugated core. J. Mater. Chem.2012,22:4319-4328
    [94]Bernstein J. Polymorphism in Molecular Crystals. Oxford University Press, New York, 2002.
    [95]Hilfiker R. Polymorphism in the pharmaceutical industry. Wiley-VCH, Weinheim,2006.
    [96]陈小明,蔡继文.单晶结构分析原理与实践.科学出版社,2007.
    [97]Zhang X. J., Dong C., Zapien J. A., Ismathullakhan S., kang Z. H., Jie J. S., Zhang X. H., Chang J. C., Lee C. S., Lee S. T. Polyhedral organic microcrystals:from cubes to rhombic dodecahedra. Angew. Chem. Int. Ed.2009,48:9121-9123.
    [98]Zhu X., Gindre D., Mercier N., Frre P., Nunzi J.-M. Stimulated emission from a needle-like single crystal of an end-capped fluorene/phenylene co-oligomer. Adv. Mater. 2003,15:906-909.
    [99]Anthony S. P., Draper S. M. Nano/Microstructure fabrication of functional organic material:polymorphic structure and tunable luminescence. J. Phys. Chem. C.2010,114: 11708-11716.
    [100]Zhang H. Y., Zhang Z. L., Ye K. Q., Zhang J. Y., Wang Y. Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures. Adv. Mater.2006,18:2369-2372.
    [101]Mutai T., Satou H., Arak K. Reproducible on-off switching of solid-state luminescence by controlling molecular packing through heat-mode interconversion. Nat. Mater.2005,4: 685-687.
    [102]Mutai T., Tomoda H., Ohkawa T., Yabe Y. and Araki K. Switching of polymorph-dependent ESIPT luminescence of an imidazo[1,2-a]pyridine derivative. Angew. Chem. Int. Ed.2008,47:9522-9524.
    [103]Zhao Y, Gao H., Fan Y, Zhou T., Su Z., Liu Y Wang Y Thermally induced reversible phase transformations accompanied by emission switching between different colors of two aromatic-amine compounds. Adv. Mater.2009,21:3165-3169.
    [104]Schonberg A., Sidky M. Experiments with 4-thiopyrones and with 2,2',6,6'-Tetrapheny-4,4'-dipyrylene, The piezochromism of diflarylene. J. Am. Chem. Soc.1958,80:6312-6315.
    [105]Sagara Y, Mutai T., Yoshikawa I., Araki K. Material design for piezochromic luminescence:hydrogen-bond-directed assemblies of a pyrene derivative. J. Am. Chem. Soc.2007,129:1520-1521.
    [106]Luo X., Li J., Li C., Heng L., Dong Y.Q., Liu Z., Bo Z.,Tang B.Z. Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv. Mater.2011,23:3261-3265.
    [107]Mizoshita N., Tani T., Inagaki S. Isothermally reversible fluorescence switching of a mechanochromic perylene bisimide Dye. Adv. Mater.2012,24:3350-3355.
    [108](法)Jean-Marie Lehn著;沈兴海等译.超分子化学.北京大学出版社,2002.
    [109]Anthony S. P., Varughese S., Draper S. M. Swtching and tuning organic solid-state luminescence via a supramolecular approach. Chem. Commun.2009,7500-7502.
    [110]Yan D., Delori A., Lloyd G. O., Patel B., FriscicT., Day G. M., Bucar D.-K., Jones W., Lu J., Wei M., Evans D. G., Duan X. Modification of luminescent properties of a coumarin derivative by formation of multi-component crystals. CrystEngComm,2012,14: 5121-5123
    [111]Li R., Hu W., Liu Y, Zhu D. Micro-and nanocrystals of organic semiconductors. Acc. Chem. Res.2010,43:529-540.
    [112]Kasai H., Kamatani H., Okada S., Oikawa H., Matsudal H., Nakanishi H. Size-dependent colors and luminescences of organic microcrystals. Jpn. J. Appl. Phys. 1996,35:L221-L223
    [113]Kasai H., Kamatani H., Yoshikawa Y., Okada S., Oikawa H., Watanabe A., Itoh O., Nakanishi H. Crystal size dependence of emission from perylene microcrystals. Chem. Lett.1997,26:1181-1182
    [114]Fu H.-B., Yao J.-N. Size Effects on the optical properties of organic nanoparticles. J. Am. Chem. Soc.2001,123:1434-1439.
    [115]Zhao Y. S., Fu H., Peng A., Ma Y, Liao Q., Yao J. Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc. Chem. Res.2010,43: 409-418.
    [116]黄维,密保秀,高志强.有机电子学.科学出版社,2011.
    [117]Birks J. B. Photophysics of aromatic molecules. Wiley, London,1970.
    [118]Shimizu M., Hiyama T. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem. Asian J.2010,5:1516-1531.
    [119]An B.-K., Kwon S.-K., Jung S.-D., Park S. Y. Enhanced emission and its switching in fluorescent organic nanoparticles. J. Am. Chem. Soc.2002,124:14410-14415.
    [120]Zhao Z., Lam J. W. Y., Tang B. Z. Aggregation-induced emission of tetraarylethene luminogens. Curr. Org. Chem.2010.14:2109-2132.
    [121]An B.-K., Gierschner J., Park S. Y. p-Conjugated cyanostilbene derivatives:a unique self-assembly motif for molecular nanostrucrures with enhanced emission and transport. Ace. Chem. Res.2012,45:544-554.
    [122]Yuan W. Z., Chen S., Lam J. W. Y, Deng C., Lu P., Sung H. H-Y, Williams I. D., Kwok H. S., Zhang Y, Tang B. Z. Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chem. Commun. 2011,47:11216-11218.
    [123]Wang M., Zhang G., Zhang D., Zhu D., Tang B. Z. Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. J. Mater. Chem.2010,20:1858-1867.
    [124]Shi H., Liu J., Geng J., Tang B. Z., Liu B. Specific detection of integrin avβ3 by light-up bioprobe with aggregation-induced emission characteristics. J. Am. Chem. Soc.2012,134: 9569-9572.
    [125]Xie Z., Yang B., Xie W., Liu L., Shen F., Wang H., Yang X., Wang Z., Li Y., Hanif M., Yang G., Ye L., Ma Y. A class of nonplanar conjugated compounds with aggregation-induced emission:structural and optical properties of 2,5-diphenyl-1,4-distyrylbenzene derivatives with all cis double bonds. J. Phys. Chem. B. 2006,110:20993-21000.
    [126]Gao B.-R., Wang H.-Y., Hao Y.-W., Fu L.-M., Fang H.-H., Jiang Y., Wang L, Chen Q.-D., Xia H., Pan L.-Y., Ma Y.-G., Sun H.-B. Time-resolved fluorescence study of aggregation-induced emission enhancement by restriction of intramolecular charge transfer state. J. Phys. Chem. B.2010,114:128-134.
    [127]Liu Y., Tao X., Wang F., Shi J., Sun J., Yu W., Ren Y., Zou D., Jiang M. Intermolecular hydrogen bonds induce highly emissive excimers:enhancement of solid-state luminescence. J. Phys. Chem. C.2007,111:6544-6549.
    [128]Kido J., Shionoya H., Nagai K. Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly (N-vinylcarbazole). Appl. Phys. Lett.1995,67:2281.
    [129]Kraft A., Grimsdale A. C., Holmes A. B. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed.1998,37:402-428.
    [130]McGehee M. D., Heeger A. J. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater.2000,12:1655-1668.
    [131]Baierweck P., Simmross U., Mullen K. Biindenyls, biindenylides, and diindeno-fused heterocycles from oxidative coupling of 1-and 2-Indanone. Chem. Ber.1988,121: 2195-2200.
    [132]Lu J.-M., Shi M. Lewis acid catalyzed reaction of arylvinylidenecyclopropanes with acetals:a facile synthetic protocol for the preparation of indene derivatives. Org. Lett. 2006,8:5317-5320.
    [133]Han J., Meng J.-B. J. Photochem. Photobiol. C:Photochem. Rev. Progress in synthesis, photochromism and photomagnetism of biindenylidenedione derivatives.2009,10: 141-147.
    [134]徐勃.硕士毕业论文.华东理工大学(2010年)
    [135]Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT,2004.
    [136]ORCA, An ab initio, DFT and semiempirical SCF-MO package, version 2.8.0. http://www.thch.uni-bonn.de/tc/orca/.
    [137]Schaefer A., Horn H., Ahlrichs R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys.1992.97:2571.
    [138]Eichkom K., Treutler O., Ohm H., Haser M., Ahlrichs R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett.1995.240:283.
    [139]Eichkom K., Weigend F., Treutler O., Ahlrichs R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials Theor. Chem. Acc.1997.97:119.
    [140]Neese F., Wennmohs F., Hansen A., Becker U. Efficient, approximate and parallel Hartree-Fock and hybrid DFT calculations. A'chain-of-spheres'algorithm for the Hartree-Fock exchange. Chem.Phys.2009.356:98-109.
    [141]Baldo M. A., Thompson M. E., Forrest S. R. Phosphorescent materials for application to organic light emitting devices. Pure Appl. Chem.1999,71:2095-2106.
    [142]Loudet A., Burgess K. BODIPY dyes and their derivatives:syntheses and spectroscopic properties. Chem. Rev.2007,107:4891-4932.
    [143]Ulrich G., Ziessel R., Harriman A. The chemistry of fluorescent Bodipy dyes: versatility unsurpassed. Angew. Chem. Int. Ed.2008,47:1184-1201.
    [144]Erten-Ela S., Yilmaz M. D., Icli B., Dede Y., Icli S., Akkaya E. U. A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Org. Lett.2008,10: 3299-3302.
    [145]Harriman A., Mallon L. J., Elliot K. J., Haefele A., Ulrich G., Ziessel R. Length dependence for intramolecular energy transfer in three-and four-color donor-spacer-acceptor arrays. J. Am. Chem. Soc.2009,131:13375-13386.
    [146]Kostereli Z., Ozdemir T., Buyukcakir O., Akkaya E. U. Tetrastyryl-BODIPY-based dendritic light harvester and estimation of energy transfere fficiency. Org. Lett.2012, 14:3636-3639.
    [147]Sunahara H. Urano larity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching. J. Am. Chem. Soc.2007,129:5597-5604.
    [148]Bozdemir O. A., Guliyev R., Buyukcakir O., Selcuk S., Kolemen S., Gulseren G., Nalbantoglu T., Boyaci H., Akkaya E. U. Selective manipulation of ICT and PET processes in styryl-Bodipy derivatives:applications in molecular logic and fluorescence. J. Am. Chem. Soc.2010,132:8029-8036.
    [149]Liras M., Prieto J. B., Pintado-Sierra M., Arbeloa F. L., Garcia-Moreno I., Costela A., Infantes L., Sastre R., Amat-Guerri F. Synthesis, photophysical properties, and laser behavior of 3-amino and 3-acetamido BODIPY dyes. Org. Lett.2007,9:4183-4186.
    [150]Xiao Y., Zhang D., Qian X., Costela A., Garcia-Moreno I., Martin V., Perez-Ojeda M. E., Banuelos J., Gartzia L., Arbeloa I. L. Unprecedented laser action from energy transfer in multichromophoric BODIPY cassettes. Chem. Commun. 2011,47:11513-11515.
    [151]Niu S.-l., Massif C., Ulrich G., Renard P.-Y., Romieu A., Ziessel R. Water-Soluble Red-Emitting Distyryl-Borondipyrromethene (BODIPY) Dyes for Biolabeling. Chem. Eur. J.,2012.18:7229-7242.
    [152]He H., Lo P.-C., Yeung S.-L., Fong W.-F., Ng D. K. P. Preparation of unsymmetrical distyryl BODIPY derivatives and effects of the styryl substituents on their in vitro photodynamic properties. Chem. Commun.2011,47:4748-4750.
    [153]Zhang D., Wen Y., Xiao Y., Yu G., Liu Y., Qian X. Bulky 4-tritylphenylethynyl substituted boradiazaindacene:pure red emission, relatively large Stokes shift and inhibition of self-quenching. Chem. Comm.2008,4111-4119.
    [154]Ozdemir T., Atilgan S., Kutuk I., Yildirim L. T., Tulek A., Bayindir M., Akkaya E. U. Solid-state emissive BODIPY dyes with bulky substituents as spacers. Org. Lett.2009,11: 2105-2107.
    [155]Lu H., Wang Q., Gai L., Li Z., Deng Y., Xiao X., Lai G., Shen Z. Tuning the solid-state luminescence of BODIPY derivatives with bulky arylsilyl groups:synthesis and spectroscopic properties. Chem. Eur. J.2012,18:25-35.
    [156]Mao M., Xiao S., Li J., Zou Y., Zhang R., Pan J., Dan F., Zou K., Yi T. Solid-emissive boron-fluorine derivatives with large Stokes shift. Tetrahedron 2012,68:5037-5041.
    [157]Kubota Y., Uehara J., Funabiki K., Ebihara M., Matsui M. Strategy for the increasing the solid-state fluorescence intensity of pyrromethene-BF2 complexes. Tetrahedron Letters 2010,51:6195-6198.
    [158]Anthony S. P. Organic Solid-state fluorescence:strategies for generating switchable and tunable fluorescent materials. ChemPlusChem 2012,77:518-531.
    [159]施惠生.材料概论.同济大学出版社,2009.
    [160]Tian H., Yang S. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev.2004,33:85-97
    [161]Kim H. N., Guo Z., Zhu W., Yoon J., Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev.2011,40:79-93.
    [162]Sagara Y, KatoT. Mechanically induced luminescence changes in molecular assemblies. Nat Chem.2009,1:605-615.
    [163]Lasanta T., Olmos M. E., Laguna A., Lopez-de-Luzuriaga J. M., Naumov P. Making the golden connection:reversible mechanochemical and vapochemical switching of luminescence from bimetallic gold-silver clusters associated through aurophilic interactions. J. Am. Chem. Soc.2011,133:16358-16361.
    [164]Maldonado C. R., Touceda-Varela A., Jones A. C., Mareque-Rivas J. C. A turn-on fluorescence sensor for cyanide from mechanochemical reactions between quantum dots and copper complexes. Chem. Commun.2011,47:11700-11702.
    [165]Zhang X., Wang J.-Y., Ni J., Zhang L.-Y., Chen Z.-N. Vapochromic and mechanochromic phosphorescence materials based on a platinum(Ⅱ) complex with 4-trifluoromethylphenylacetylide. Inorg. Chem.2012,51:5569-5579.
    [166]Kunzelman J., Kinami M., Crenshaw B. R., Protasiewicz J. D., Weder C. Oligo(p-phenylene vinylene)s as a "new" class of piezochromic fluorophores. Adv. Mater. 2008,20:119-122.
    [167]Zhang G., Lu J., Sabat M., Fraser C. L. Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone. J. Am. Chem. Soc.2010,132: 2160-2162.
    [168]Ooyama Y., Harima Y. Molecular design of mechanofluorochromic dyes and their solid-state fluorescence properties. J. Mater. Chem.2011,21:8372-8380.
    [169]Gu X., Yao J., Zhang G., Yan Y., Zhang C., Peng Q., Liao Q., Wu Y., Xu Z., Zhao Y., Fu H., Zhang D. Polymorphism-dependent emission for di(p-methoxylphenyl)dibenzofulvene and analogues:optical waveguide/amplified spontaneous emission behaviors. Adv. Funct. Mater.2012, DOI: 10.1002/adfm.201201482
    [170]Zhang X., Chi Z., Li H., Xu B., Li X., Zhou W., Liu S., Zhang Y., Xu J. Piezofluorochromism of an Aggregation-Induced Emission Compound Derived from Tetraphenylethylene. Chem. Asian J.2011,6:808-811.
    [171]Mei J., Wang J., Qin A., Zhao H., Yuan W., Zhao Z., Sung H. H. Y., Deng C., Zhang S., Williams I. D., Sun J. Z., Tang B. Z. Construction of soft porous crystal with silole derivative:strategy of framework design, multiple structural transformability and mechanofluorochromism. J. Mater. Chem.2012,22:4290-4298
    [172]Wang J., Mei J., Hu R., Sun J. Z., Qin A., Tang B. Z. Click synthesis, aggregation-induced emission, EIZ isomerization, self-organization, and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen. J. Am. Chem. Soc.2012,134:9956-9966.
    [173]Kwon M. S., Gierschner J., Yoon S.-J., Park S. Y. Unique piezochromic fluorescence behavior of dicyanodistyrylbenzene based donor-acceptor-donor triad:mechanically controlled photo-induced electron transfer (eT) in molecular assemblies. Adv. Mater.2012, doi:10.1002/adma.201202409
    [174]Yoon S.-J., Chung J. W., Gierschner J., Kim K. S., Choi M.-G., Kim D., Park S. Y. Multistimuli two-color luminescence switching via sifferent slip-stacking of highly fluorescent molecular sheets. J. Am. Chem. Soc.2010,132:13675-13683.
    [175]Zhang X., Chi Z., Zhang J., Li H., Xu B., Li X., Liu S., Zhang Y., Xu J. Piezofluorochromic properties and mechanism of an aggregation-induced emission enhancement compound containing N-hexyl-phenothiazine and anthracene moieties. J. Phys. Chem. B.2011,115:7606-7611.
    [176]Klubek K. P., Vargas R., Liao L.-S. Oragnic Electroluminescent devices with high luminance. US20050014018 Al. Jan.20,2005.
    [177]Miao Q., Nguyen T.-Q., Someya T., Blanchet G. B., Nuckolls C. Synthesis, assembly, and thin film transistors of dihydrodiazapentacene:an isostructural motif for pentacene. J. Am. Chem. Soc.2003,125:10284-10287.
    [178]Sugimoto A., Kotani T., Tsujimoto J., Yoneda S. Preparation and properties of electron donor acceptor complexes of the compounds having capto-dative substituents. J. Heterocycl. Chem.1989,36:435-438.
    [179]Watanabe R., Mizuno K., Uehara K. Hydrobromic acid-dimethyl sulfoxide reagent for dealkylation of 5,10-dialkyl-5,10-dihydrophenazines:Synthesis of 10-alkyl-2 (lOH)-phenazinones. J. Heterocycl. Chem.1999,36:1057-1064.
    [180]Kozaki M., Uchida M., Kikukawa s., Okada K. Facile synthesis of 5,10-diaryl-5, 10-dihydrophenazines and application to EL devices. Org. Lett.2003,5:373-376.
    [181]沈雷平.硕士毕业论文.华东理工大学(2012年)
    [182]Peng X., Song F., Lu E., Wang Y., Zhou W., Fan J., Gao Y. Heptamethine cyanine dyes with a large stokes shift and strong fluorescence:a paradigm for excited-state intramolecular charge transfer. J. Am. Chem. Soc.2005,127:4170-4171.
    [183]Hsieh C.-C., Jiang C.-M., Chou P.-T. Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction. Acc. Chem. Res.2010,43: 1364-1374.
    [184]Schuster G. B., Scnmldt S. P., Dlxon B. O. Photophyslcs of N,N-dimethyldihydrophenazine and benzoannelated analogues:structurally dependent excited-state hierarchy. J. Phys. Chem.1980,84:1841-1843
    [185]Morris J. V., Bruhlmann U., Serafimov O., Huber J. R. Excited State Behavior of Aromatic Amines in Solution:Dihydrophenazine Derivatives. Berichte der Bunsengesellschaft fur physikalische Chemie,1974.78:1348-1353.
    [186]Higashi H., Sakai T., Hosokawa C. Europe Patent No.1063869A1,27 Dec.2000.
    [187]Park J.-Y., Jung S. Y., Lee J. Y., BaekY. G. High efficiency in blue organic light-emitting diodes using an anthracene-based emitting material. Thin Solid Films 2008, 516:2917-2921.
    [188]Xia Z., Zhang Z., Su J., Zhang Q., Fung K., Lam M., Li K., Wong W., Cheah K., Tian H., Chen C. Robust and highly efficient blue light-emitting hosts based on indene-substituted anthracene. J. Mater. Chem.2010,20:3768-3774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700