V_2O_5/Al_2O_3-TiO_2催化剂上乙醇催化氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油储量的日益减少以及汽车工业的快速发展,传统车用燃料汽油、柴油的供应日益紧张,为此世界各国纷纷寻找清洁的替代燃料来替代传统的车用燃料汽油和柴油来摆脱对石油的过分依赖,以缓解车用燃料的紧张供求矛盾。我国也日益关注乙醇燃料车的开发,目前国家已经制定了相关规划,在部分地区开始推广乙醇汽油车。乙醇燃料虽然其本身不含硫、氮、磷等杂质以及乙醇燃料车尾气中的CH、CO及NO_X的含量较汽油车少而被誉为清洁燃料。但乙醇燃料车尾气中未完全燃烧的乙醇以及乙醇燃烧的中间产物醛、酮的含量明显增加,醇和含氧化合物为刺激性气体,有很高的光化学活性,是生成光化学烟雾的主要前驱体之一,另外甲醛、乙醛具有遗传毒性。因此,开展乙醇燃料车尾气净化研究有着十分重要的意义。研究和开发质优价廉的催化剂并使之能够完全催化氧化乙醇及其中间燃烧副产物尾气是乙醇燃料车在全国推广应用的一个重要前提。由于乙醇燃料汽车尾气净化的对象主要是乙醇、乙醛等低分子含氧有机物,且尾气温度低,所以要求净化催化剂具有良好的深度氧化性能和低温活性。
     本课题在前期工作的基础上,试图减少贵金属用量或者完全不用贵金属而用过渡金属等来代替贵金属作为催化剂的活性组分。在大量实验的基础上,结果发现,以γ-Al_2O_3-TiO_2复合氧化物为催化剂的载体,以质量含量为5%的过渡元素V为催化剂的活性组分的催化剂上乙醇、乙醛的催化氧化有较高的反应活性,并对催化剂进行了XRD、BET表征。得出结论如下:
     (1)催化剂的制备工艺对催化剂的性能有很大的影响。V浸渍时间12h,焙烧温度500℃,焙烧时间5h的催化剂的性能最佳,其T_(50),T_(95)分别为170℃,215℃。
     (2)条件实验对催化剂的性能也有很大的影响。氧气含量在5%-8%范围内、乙醇进料浓度小于1000ppm、空速在24000h~(-1)时,催化剂上乙醇的催化氧化效果最好。
     (3)5%V/Al_2O_3-TiO_2催化剂上甲醇、乙醇和乙醛的转化率都比较高,其中,甲醇的活性最好,在125℃时,转化率已经超过50%,其次是乙醛和乙醇。三者在175℃以上时其转化率均达到95%以上,说明V/Al_2O_3-TiO_2催化剂且对多种污染物具有良好的同时净化效果。
     (4)在标准5%V/Al_2O_3-TiO_2催化剂中,三氧化铝是以γ-Al_2O_3的形式存在的,二氧化钛是以锐钛矿型的晶体结构存在的,而含V物种主要是以V_2O_5形式存在。
     (5)不同焙烧温度催化剂的XRD表明,焙烧温度低于500℃的催化剂的晶体结构没有发生变化,700℃的催化剂中的YiO_2晶体结构由锐钛矿型转化为金红石型,V_2O_5的V化合价也发生了变化,此催化剂的活性有明显下降的趋势。
     (6)不同V含量催化剂的XRD表明,V含量在1%-5%范围内时,V在载体上呈高度分散状态,当V含量增加到10%时,有微弱的V_2O_5衍射峰,V含量再增加时,V_2O_5的衍射峰强度逐渐增强。
Supply of gasoline and diesel becomes lack increasingly with oil reserves dwindling as well as rapid development of the automobile industry, many countries around the world are looking for the clean alternative fuels to replace traditional gasoline and diesel for getting rid of excessive oil reliance in order to easing tense demand and supply of fuels. China was also concerned about development of the ethanol-fuel automobiles increasingly, and had developed a relevant plan, began to promote ethanol petrol automobiles in some areas of china. Although the ethanol fuel itself doesn't include sulfur, nitrogen, phosphorus, other impurities etc and CH, CO and NO_x contents of the ethanol-fuel automobiles exhaust less than gasoline and diesel automobiles, ethanol not fully combusted and acetaldehyde, ether etc of the ethanol fuel automobile exhaust increased obviously. Alcohol and oxygenated compounds are irritated gases, and had a high photochemical activity, was also one of main precursors of photochemical smog formations, what was worse was that formaldehyde and acetaldehyde had a genetic toxicity. Therefore, the ethanol fuel automobile exhaust purification research had become a very important subject. How to find a high-quality catalyst which can deeply oxidate ethanol fuel was an important research subject, It was also a key factor that the ethanol fuel automobile was extensively used in the country. Objects of the ethanol fuel automobile exhaust purification were ethanol, acetaldehyde, ether etc small molecular oxygenated organic compounds, and exhaust temperature of the ethanol fuel automobile was low, so it required purification catalyst which had good performance and low temperature oxidation activity.
     We tried to reduce amount of precious metals or without precious metals fully for active components of catalysts to replace precious metals on the basis of our preparatory work. Research results found that the 5%V/Al_2O_3 -TiO_2 catalyst had higher reactivity on ethanol and acetaldehyde on the basis of large experimental results .At the same time supports and catalysts were characterized by XRD and BET. The conclusions were as follows:
     (1) Preparation conditions of catalysts greatly affected performance of catalysts . Activity of catalyst prepared by soaking V 12h, calcination temperature and time at 500℃and 5h respectively was the best, T_(50), T_(95) of catalyst were only 170℃, 215℃respectively.
     (2) Reaction conditions also greatly affected performance of catalysts . 5% -8% oxygen content, less than 1000ppm ethanol feed concentration and 24000 h~(-1) space velocity were the best reaction condition of ethanol catalytic oxidation over 5%V/Al_2O_3 -TiO_2 catalyst .
     (3) Methanol, ethanol and acetaldehyde had high conversion over the 5% V/Al_2O_3-TiO_2 catalyst. Activity of methanol was the best, the conversion rate had been over 50% at 125℃, following conversions of acetaldehyde and ethanol.
     (4)γ-Al_2O_3 and TiO_2 of composite supportγ-Al_2O_3-TiO_2 existed in the form ofγ-Al_2O_3 and anatase crystal structure respectively.
     (5) XRDs of different calcination temperature catalysts showed that the crystal structure of catalysts had not changed under 500℃, the crystal structure of TiO_2 of the catalyst had changed from anatase to red-spar when calcination temperature of catalyst at 700℃, V valence of V_2O_5 had also changed at the same time.
     (6) XRDs of different V content catalysts showed that V decentralized highly on support during the 1%-5% V content range , when V content up to 10 percent, XRD of catalyst showed a slight V_2O_5 diffraction peaks, intensity of the diffraction peaks further strengthened with V content increasing.
引文
[1]王建昕,傅立新。污染治理及催化转化器[M],北京:化学工业出版社,2005.5
    
    [2] Shelef M, McCabe R M .Twenty-five years after introduction of automotive catalysts: what next?[J], Catalysis Today, 2000, 62: 35-50
    
    [3] Muraki H, Zhang Geng.Design of advanced automotive exhaust catalyst[J], Catalysis Today, 2000, 63: 337-345
    
    [4]雷鹏举,周泽兴。甲醇燃料汽车排气净化[J],环境科学学报,1991,11(4):417-423
    
    [5] MCCABE W, MITCHELL P J. Exhaust-catalyst development for methanol-fueled Vehidesl A comparatative study of methanol oxidation over alumina-supported catalysts containing group8, 10, andllmetals [J], ApplCatal, 1986, 27: 83-98
    
    [6] Francisco J S." On the Competition between Hydrogen Abstraction versus C-O Bond in Initiating Dimethyl Ether Combustion" [J], Combust Flame ,1999,117,312
    
    [7]彭华,吴新杰,李明等。汽车使用乙醇汽油后醛酮类变化趋势的研究[J],环境科学与技术,2005,28(3):51-52
    
    [8]潘奎润。甲醇燃料汽车的发展和评价[J],商用汽车,1999,6:7-10
    
    [9]韩昭沧。燃料及燃烧[M],北京:冶金工业出版社,1994
    
    [10]张永光。醇类燃料的发展及在我国的应用(上)[J],节能与环保,2003,12:5-8
    
    [11] MACDOUGLL L V. Methanol to fuels -the ach-ievements and remaining proldems [J], Catal Today, 1991, 8: 337-369
    
    [12]李奋鸣。甲醇燃料的研究、开发现状及发展前景[J],化工技术经济,2004,21(2)
    
    [13] Idriss H, Seebauer E G. Reactions of ethanol over metal oxides[J], Journal ofMolecular Catalysis A: Chemical, 2000,152 (1-2): 201-212
    
    [14] Mazzocchia C, kaddouri A. On the activity of copper chromite catalysts in ethyl acetatecombustion in the presence and absence of oxygen[J], Journal of Molecular Catalysis A:Chemical,2003,204-205: 647-654
    
    [15] Mboon A Q, Fvan Looij, Geus J W. Reduction of oxidized Ni(111)-Fe surfaces byhydrogen[J], Surface Science,1992, 262: 287-293
    
    [16] Mboon A Q, Huisman H M, Comparison between the reduction kinetics of oxidizedNi(111) and Ni(100) surfaces by hydrogen and deuterium[J],Surface Science 1992, 272:??294-298
    
    [17] Blasin-Aube V, Belkouch J, Monceaux L. General study of catalytic oxidation ofvarious VOCs over La_(0.8)Sr_(0.2)MnO_(3+x) perovskite catalyst-influence of mixture[J], AppliedCatalysis B: Environmenta, 2003, 43: 175-186
    
    [18] Robert W, McCabe, Patricia M.IndEngChem, Prod Res Dev[J], 1984, 23:196-202
    
    [19] Rajesh H , Ozkan U S . "Complete Oxidation of Ethanol, Acetaldehyde, andEthanol/Methanol Mixture Copper Oxide and Copper-Chromium Oxide Catalysts" [J], IndEng Chem Res ,1993, 32: 32
    
    [20] Wahlberg A, Pettersson L J. Preparation, evolution and characterization of coppercatalyst for ethanol fueled diesel engines[J]. Applied Catalysis B: Envionmental, 1999 (23):271-281
    
    [21] McCabe R W. Oxidation of ethanol and acetaldehyde over alumina-supportedcatalysts[J],Ind.Eng.Chem.Prod.Res.Dev, 1983(22): 212-217
    
    [22] McCabe R W. Reaction of ethanol and acetaldehyde over noble and metal oxidecatalysts[J], Ind.Eng.Chem.Prod.Res.Dev., 1984, 23(2): 196-202
    
    [23] Larsson P O, Andersson A.Complete oxidation of CO,ethanol,and ethyacetate overcopper oxide supported on titania and ceria modified titania[J]. J.Catal., 1998(17): 72
    
    [24] Poulopoulos S G, Andersson A. Oxides of copper, ceria promoted copper, manganeseand copper manganese on Al_2O_3 for the combustion of CO, ethyl acetate and ethanol[J],Applied Catalysis B: Enviromental, 2000, (24): 175-192
    
    [25]张政委,宋铁珊,陈志祥。乙醇完全氧化反应催化剂的性能研究[J],应用化工,2005,34(5):292-295
    
    [26]王伟,涂学炎,张世鸿。乙醇燃料车尾气净化催化剂的研究[J],云南大学学报(自然科学版),2004,26(2):159-161
    
    [27] Poulopoulos S G, Grigoropoulou H P, Philippopoulos C J. Acetaldehyde yield and reaction products in the catalic destruction of gaseous ethanol[J], Catalysis Letters, 2002, 78(1-4): 291-296
    
    [28]闫宗兰,林瑞,罗孟飞,辛勤。浸渍顺序对Ag-Pd/Ce_(0.8)Zr_(0.2)O_2催化剂活性及脱附性能的影响[J],催化学报,2004,25(8):615-618
    [29] Gonzalez R D, Nagai M. Oxidation of ethanol and acetaldehyde on silica-supported platinum catalysts: preparative and pretreatment effects on catalyst selectivity [J], Appl.Catal, 1985, (18): 57
    
    [30] Cordi E.M., .Falconer J.Lo "Oxidation of Volatile Organic Compounds on Al_2O_3, Pd/Al_2O_3, and PdO/Al_2O_3 Catalysts"[J], J.Catal., 1996, 162: 104
    
    [31] Lin R, Luo M F, Xin Q. "The Mechanism Studies of Ethanol Oxidation on PdO Catalysts by TPSR Technique" [J], Catal Lett, 2004, 93: 139
    
    [32] Marques da Silva A, Corro G., Marecot P, Barbier J. "Ethanol Oxidation on Three-Way Automotive Catalysts.Influence of Pt-Rh Interaction " [J], Stud Surf Sci, Catal., 1998, 116: 93
    
    [33] Noronha F B , Durao M C, .Batista M S. "The Role of Ni on the Performance of Automotive Catalysts:Evaluating the Ethanol Oxidation Reaction ", Catal.Today , 2003, 85: 13
    
    [34] Yu-Yao Y F, Ind Eng Chem. Ceria in automotive exhaust catalysts : I. Oxygen storage[J], Journal of Catalysis, 1984, 86 (2): 254-265
    
    [35] Wang Wei, Zhuang Hong-bin, Lin Guo-dong. Study of Ag/La_(0.6)Sr_(0.4)MnO_3 catalysts for complete oxidation of methanol and ethanol at low concentrations[J], Applied Catalysis B: Environmental, 2000, 24(3-4): 219-232
    
    [36] Simona Minico. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts[J], Applied Catalysis B: Environmental, 2000, 28 (3-4): 245-251
    
    [37] Malley A O, Hodnett B K. The influence of volatile organic compound structure on conditions required for total oxidation[J], Catalysis Today, 1999, 54 (1): 31-38
    
    [38] Yu-Yao Y F. Ceria in automotive exhaust catalysts : I. Oxygen storage[J], Journal of Catalysis, 1984, 86: 254-265
    
    [39] Yu-Yao Y F. Effects of the surface structure of Rh/γ-Al_2O_3 on the hydrogenolysis of n-pentane, on the oxidation of n-butane, and on the reduction of nitric oxide[J], Journal of Catalysis, 1979, 56: 21-31
    
    [40] McCabe R W, Mitchell PJ. Exhaust-catalyst development for methanol-fueled vehicles: 1. A comparative study of methanol oxidation over alumina-supported catalysts
    
    ??containing group 9, 10, and 11 metals[J], Applied Catalysis, Appl Catal[J], 1986, 27:83-98
    
    [41] Hamnett A. " Mechanism and Electrocatalysis in the Direct Methanol Fuel Cell" [J],Catal.Today ,1997, 38: 445
    
    [42] Gu Z,Hohm K L." Catalytic Oxidation of Methanol on Nanoscale Copper Oxide andNickel Oxide" [J], Ind Eng Chem Res, 2004, 43: 30
    
    [43] McCabe R. W, Mitchell P. J.. "Oxidation of Ethanol and Acetaldeiate over AluminaSupported Catalysts"[J], Ind. Eng. Chem. Prod. Res. Dev., 1983, 22: 212
    
    [44] McCabe RW , Mitchell P J. " Reactions of Ethanol and Acetaldehyde over NobleMetal and Metal Oxide Catalysts" [J], Ind Eng Chem Prod Res Dev, 1984, 123: 96
    
    [44] Larsson P O , Andersson A," Complete Oxidation of CO, Ethanol, and Ethyl Acetateover Copper Oxide Supported on Titania and Ceria Modified Titania" [J], J Catal,1998,179 : 72
    
    [46] Yee A, Morrison S J, Idriss H.. " The Reactions of Ethanol over M/CeO_2Catalysts: Evidence of Carbon-Carbon Bond Dissociation at Low Temperaturesover Rh/CeO_2"[J], Catal.Today, 2000, 63 : 327
    
    [47] Sheng P Y , Bowmaker G A , Idriss H. "The Reactions of Ethanol over Au/CeO_2" [J], Appl Catal A, 2004, 1261: 71
    
    [48] Yee A., Morrison S J , Idriss H .Pt/CeO_2 by Temperature-Programmed "A Study of Ethanol Reactions over Desorption and ih Situ FT-IR Spectroscopy: Evidence of Benzene Formation" [J], J Catal, 2000 , 191: 30
    
    [49] Felter T E, Weinberg W H. adsorption of methanol on Ag(111) and its reaction with preadsorbed oxygen[J], Applications of Surface Science,1983, 16: 351-364
    
    [50]万颖,王幸宜,卢冠忠。原位红外光谱研究镧对负载钯催化剂上甲醇车尾气氧化机理的影响[J],高等学校化学学报,2001,22(2):276-279
    
    [51] Ruilin, Mengfei Luo, Qin Xin etl. The mechanism studies of ethanol oxidation on Pd catalysts by TPSR techniques[J]. Catalysis letters, 2004, 93(3-4): 139-144.
    
    [52] Baldanza M A S, deMello L F, Vannice A, Noronhaetal F B. Adsorptive and Catalytic Properties of Alumina-Supported Pd-Mo Catalysts[J], Journal of Catalysis, 2000, 192: 64-76
    [53] Rajesh H, Ozkan U S, Ind Eng Chem. Role of Ammonia Oxidation in Selective Catalytic Reduction of Nitric Oxide over Vanadia Catalysts[J], Journal of Catalysis, 1993, 32: 1622-1630
    [54] Mazzocchia C, kaddouri A. On the activity of copper chromite catalysts in ethyl acetate combustion in the presence and absence of oxygen[J], Journal of Molecular Catalysis A: Chemical, 2003, 205-204: 647-654
    [55] Cong Y, Spaendonk V, Masel R I. Low temperature C-C bond scission during ethanol decomposition on Pt(331)[J], Surface Science, 1997, 385 (2-3): 246-258
    [56] Holroyd R P, Bennett R A, Joneset I Z. Molecular beam studies of alcohol (C_1-C_3) adsorption and reaction with oxygen pre-covered Pd(110)[J], Surface Science, 1997, (377-379): 786-790
    [57] Sedeek K, Adam A. Dielectric relaxation in Ge_(1-x)Se_2Pb_x (x=0, 0.2 and 0.6) nano-crystalline system[J], Materials Chemistry and Physics, 2004, 85: 20-26
    [58] Malley A O, Hodnett B K. The influence of volatile organic compound structure on conditions required for total oxidation[J], Catalysis Today, Catal Today[J], 1999, 54 (1): 31-38
    [59] Sokolovskii V D. Structure and catalytic properties of samarium-calcium oxide catalysts in methane oxidative dehydrodimerization[J], Catalysis Today, 1990, 6: 489-495
    [60] EricM Cordi, Peter J, O'Neill, John Falconer . Transient oxidation of volatile organic compounds on a CuO/Al_2O_3 catalyst[J], Applied Catalysis B: Environmental, 1997, 14 (1-2): 23-36
    [61] Abu-Zied B Mo The synergism of cadmium on the catalytic activity of Cd-Cr-O system: II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements[J], Journal of Molecular Catalysis A: Chemical, 2001, 176: 227-246
    [62] Holmgren A, Duprez D, Andersson B. Structural and catalytic properties of Zr-Ce-O mixed oxides, Role of the anionic vacancies[J], Studies in Surface Science and Catalysis, 2000, 130: 3327-3332
    [63] McCabe R W, Mitchell P J. Exhaust-catalyst development for methanol-fueled vehicles: 1. A comparative study of methanol oxidation over alumina-supported catalysts
    ??containing group 9,10, and 11 metals[J], Applied Catalysis,1986, 27 (1): 83-98
    
    [64]金韵,俞启全,曹培利。在Pt/Al_2O_3催化剂上甲醇深度氧化的催化剂有效因子[J],环境科学,1988,10(4):6-9
    
    [65]金韵,俞启全,申建华。在Pt/Al_2O_3催化剂上乙醇深度氧化的内扩散影响,环境化学[J],1990,9(1):9-14
    
    [66] Ling T R,Chen Z B , Lee M D. "Preparation and Characterization of Alumina and Chromia Cryogel-Based Catalysts" [J], Appl Catal A , 1996, 136: 191
    
    [67]俞启全,金韵,杨永年等。在Pt/Al_2O_3催化剂上乙醇深度氧化的稳态及非稳态动力学[J],分子催化,1989,3(2):
    
    [1] Poulopoulos S G, Grigoropoulou H P, Philippopoulos C J. Acetaldehyde yield and reaction products in the catalic destruction of gaseous ethanol[J], Catalysis Letters, 2002, 78(1-4) : 291-296
    
    [1] Wang W, Zhang H B, Lin G D, Xiong Z T.. " Study of Ag/La0.6Sr0.4MnO_3 Catalysts for Complete Oxidation of Methanol and Ethanol at Low Concentrations " [J], Appl Catal B , 2000, 24: 219
    
    [2]章乃辛。Al_2O_3-TiO_2复合载体在石油化工催化剂中的应用[J]。化学工业与工程技术,1996,17(4):
    
    [3]周广栋,郭晓红,李亚男等。制备方法对氧化镁负载的钼钒磷酸铜催化剂结构和催化性能的影响[J],分子催化,2005,19(4):255-259
    
    [4]周广栋,郭晓红,李亚男等。氧化镁负载钼钒磷酸铜催化剂上正己醇氧化脱氢制正己醛[J],催化学报,2005,26(5):389-392
    
    [5]李锋,金保升,刘涛等。以工业级TiO_2为载体负载不同助催化剂V_2O_5脱氮催化剂的性能[J],环境科学,2000,24(4),374-378
    
    [6]魏找彬,辛勤。TiO_2在Al_2O_3表面上分散状态的AEM研究[J],物理化学学报,1990,6(4):474-479
    
    [7]李惠娟,蒋晓明,郑晓明。钛铝载体的合成及负载CO对NO催化性能研究[J],物理化学学报,2006,22(5):584-589
    
    [8]罗胜成,桂琳琳,唐有祺。TiO_2-Al_2O_3复合载体的比较研究[J],物理化学学报[J],1996,12(1):7-11
    
    [9]李哲,权艳红,黄伟等。纳米γ-Al_2O_3-TiO_2复合载体的制备与表征[J],分子催化,2007,21(5):417-422
    
    [10]许波连,范以宁,刘浏等。催化剂表面钒氧物种的分散状态和催化性能[J],中国科学(B),2006,32(3),235-242
    
    [11]刘百军,郑宇印,孟庆民等。TiO_2-Al_2O3复合氧化物负载加氢脱硫催化剂的研究[J],分子催化,2004,18(6):447-451
    
    [1] Kamata H, Ohara H, Takahashi K. etal, SO_2 Oxidation over the V_2O_5/TiO_2 SCR Catalyst[J], Catal.Lett, 2001, 73: 79-83
    
    [2]洪中山,曹勇,孙琦等。焙烧条件对Cu/ZnO/Al_2O_3甲醇催化剂的影响[J],复旦学报(自然科学版),2002,41:330-334
    
    [3]朱兵,汪仁。甲醇燃料车尾气净化催化剂的研究,Ⅰ氧含量对钯催化剂上甲醇低温深度氧化性能的影响[J],1997,18(5):414-417
    
    [1]黄仲涛,林维明,庞先桑等。工业催化剂设计与开发[M],广东:华南理工大学出版社,1990
    
    [2]徐如人,庞文琴等。分子筛与多孔材料化学[M],北京科学社会出版社,2005
    
    [3]许波连。第十一届全国催化学术会议论文集,杭州,浙江大学出版社,2002,p338-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700