黑曲霉(Aspergillus niger sp.)固态发酵啤酒糟生产纤维素酶及其酶学性质与发酵产物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
啤酒糟是啤酒工业中的主要副产物之一。目前,大多数厂家将其当饲料出售,有的甚至当废物排放,污染环境的同时也造成了资源的浪费。啤酒糟的主要成分是麦芽壳和未糖化的麦芽组分,其中含有大量的纤维素,而纤维素是纤维素酶的诱导物,而且啤酒糟中含有一定量的含氮化合物和多种无机元素及维生素,质地疏松,是固态发酵生产纤维素酶的优良基质。本研究以啤酒糟为主要原料,对黑曲霉(Aspergillus niger sp.)固态发酵生产纤维素酶的发酵工艺条件、酶学性质以及发酵对培养基组成的影响进行了研究,主要研究结果如下:
     1.通过单因素实验对黑曲霉发酵啤酒糟生产纤维素酶的发酵工艺条件进行了初步研究,适宜的培养基组分为:500 mL三角瓶中装入啤酒糟和棉粕20 g,配料比8:2,料水比1:1.5,于30℃发酵66 h,滤纸酶活(FPA)和羧甲基纤维素酶活(CMCase)分别达到759.9±51.7 U/g和14187.8±579.1 U/g(干物质);在含氮量相等的条件下,试验所用的(NH4)2SO4、NH4Cl、NaNO3、(NH2)2CO、(NH4)2HPO4对酶活影响不显著;KH2PO4和CaCl2分别在0~2.5%和0~1.6%的添加范围内对产酶影响也不显著。
     2.在单因素研究的基础上,采用三因素二次通用旋转组合试验,研究了啤酒糟与棉粕的配料比、料水比和发酵时间对黑曲霉固态发酵啤酒糟生产纤维素酶的影响,建立了纤维素酶随啤酒糟与棉粕的配料比、料水比和发酵时间变化的二次回归方程,并利用该方程探讨了各因子对纤维素酶的影响。结果表明,各因子对纤维素酶的影响顺序为:配料比>发酵时间>料水比,而因子的交互作用不显著(P>0.05)。利用统计优选法寻优,确定了最优发酵条件:啤酒糟与棉粕的配料比7:3,料水比1:1.5,发酵时间66 h,FPA最高值为782.4 U/g。3.对该菌株产的纤维素酶的酶学性质进行研究表明:CMCase最适作用温度为60℃,最适反应pH 4.6,FPA的最适作用温度为50℃,最适反应pH为5.0。60℃热处理1 h,FPA相对酶活力为87.3%,CMCase相对酶活力为98.2%。CMCase和FPA在pH 3.0至pH 7.0之间较稳定。1 mmol/L Cu2+离子、5 mmol/L Ca~(2+)离子及1~10 mmol/L Mn~(2+)离子对酶活有极显著的激活作用(P<0.01);5 mmol/L和10 mmol/L Cu~(2+)离子对酶活具有极显著的抑制作用;Na~+、K~+、Ba~(2+)、Zn~(2+)、Mg~(2+)等金属离子在1~10 mmol/L范围内,对酶活的作用不显著(P>0.05)。
     4.对发酵产物进行分析表明,发酵后干物质损失率为12.58%,粗纤维降解率为29.36%。发酵后,培养基中的鼠李糖、阿拉伯糖、木糖、甘露糖、葡萄糖、纤维二糖含量极显著提高(P<0.01)。酶系分析表明,发酵产物中具有纤维素酶、木聚糖酶、β-甘露聚糖酶、β-葡聚糖酶和酸性蛋白酶。
Brewer’s spent grain (BSG) is one of the main by-products of brewing industry. Many companies sold it as animal feed, but some companies just discharged it as waste which caused pollution to the environment and resource waste. The main components of BSG were malt hull as well as leftovers of malt after saccharification. These substances were rich in cellulose that is inducer of cellulase. In addition, BSG contained nitrogenous compounds, inorganic elements and vitamins. So it especially suits to cellulase production by solid state fermentation. Using brewer’s spent grain as the main material, we carried out cellulase production by Aspergillus niger sp. in solid state fermentation. The fermentation conditions were studied and optimized in this paper as well as the characteristics of cellulase and the effects of fermentation on medium composition were also studied. The main results are as follows:
     1. The fermentation conditions were obtained through the single factor experiment.The results showed that the optimal condition was as follows: 20g brewer’s grain and cotton cake (the ratio of them was 8:2) in 500mL flask as culture medium, the ratio of material to water was 1:1.5, incubated for 66 h at 30℃. Under this condition, the maximal filter paper activity (FPA) and carboxymethyl cellulase activity (CMCase) reached 759.9±51.7 and 14187.8±579.1 U/g (dry matter), respectively. While the influence of different forms of inorganic nitrogen (ammonium sulfate, ammonium chloride, ammonium nitrate, diammonium phosphate, and urea) used in the experiment on the cellulase activity was not significant when the nitrogen content was equal, and the influence on cellulase activities was not significant after adding 0~2.5% KH_2PO_4 or 0~1.6% CaCl_2 into the medium, respectively.
     2. Based on single variable experiments, cellulase production which was carried out by Aspergillus niger sp in solid state fermentation using brewer’s spent grain was optimized by quadratic general rotary unitized design. A quadratic regression equation was established, and the effects of the factors on cellulase were also studied by the equation. The results showed that the order of the three factors that affected the cellulase fermentation was the ratio of brewer’s grain to cotton cake>fermentation time>the ratio of material to water. And the mutual effect of different factors was not significant (P>0.05) . The statistical optimization was used to optimize the fermentation conditions, and the optimum condition was as follows: the ratio of brewer’s grain to cotton cake was 7:3, the ratio of material to water was 1:1.5, the time of fermentation was 66 h, the maximal filter paper activity was obtained by 782.4 U/g (dry matter).
     3. The study on the enzymatic characteristics of the crude enzymes from Aspergillus niger sp. was carried out. The results show that the optimal reaction temperature of CMCase and FPA activity were 60℃and 50℃respectively. The optimal reaction pH value were 4.6 and 5.0, respectively. The FPA and CMCase kept 87.3% and 98.2% after thermal treatment for one hour when the temperature is 60℃, respectively. At the same time, the FPA and CMCase were stable from pH 3.0 to 7.0. One mmol/L Cu~(2+), 5 mmol/L Ca~(2+) and 1 to 10 mmol/L Mn~(2+) could stimulate the enzyme activities very significantly(P<0.01). Five mmol/L and ten mmol/L Cu~(2+) inhibited the enzyme activities very significantly. Na~+、K~+、Ba~(2+)、Zn~(2+)、Mg~(2+) showed no significant effect on the enzyme activities in a range of 1 to 10 mmol/L(P>0.05)。
     4. The analysis of fermented product indicated that dry matter loss ratio was 12.58% and 29.36% of coarse cellulose was decomposed. The content of rhamnose, arabinose, xylose, mannose, glucose and cellobiose in the medium were increased very markedly after fermentation (P<0.01). The studies on enzyme system of Aspergillus niger sp showed that xylanase, mannaseβ-glucanase and acid protease were inclouded in the fermentated products.
引文
[1]陈洪章.纤维素生物技术[M].化学工业出版社,北京, 2005: 10~15
    [2]崔宗均,李美丹,朴哲等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学, 2002, 23 (3): 36~39
    [3]陈燕勤,毛培宏,金湘等.纤维素酶及其分子生物学研究[J].化学与生物工程, 2004, 2: 1~3
    [4]陈燕勤,毛培宏,曾宪贤.细菌纤维素酶结构和功能的研究[J].化学与生物工程. 2004, 21(6): 4~6
    [5]段新源,王蔚,卢雪梅等.多种小分子物质在木素降解中的作用研究进展[J].中国生物工程杂志, 2003, 23(1): 51~56
    [6]冯炘,王丹,辛丽霞.粗糙脉孢菌(Neurosporacrassa)产纤维素酶发酵条件研究[J].食品科学, 2005, 26(1): 67~70
    [7]方靖,高培基.纤维二糖脱氢酶在纤维素降解中的作用研究[J].微生物学通报, 2000, 27(l): 15~18.
    [8]高培基,曲音波,汪天虹等.微生物降解纤维素机制的分子生物学研究进展[J].纤维素科学与技术, 1995, 3(2): 1~19
    [9]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展, 2003, 13(1): 21~29
    [10]高培基,庞世瑾.天然纤维素在生物降解过程中超分子结构的变化—氢键断裂在纤维素降解中作用的探讨[J].自然科学进展, 1998, 12(1): 35~37
    [11]韩颂,徐颖,于喜水.纤维素酶在甘草提取工艺中的应用总结[J].中医药学报, 2003, 31(3): 46~48
    [12]刘桂荣,张鑫,郑明珠.纤维素酶的生产及应用前景[J].食品研究与开发. 2004, 1(25): 14~16
    [13]刘春芬,贺稚非,蒲海燕等.纤维素酶及应用现状[J].粮食与油脂,2004, 1: 15~17
    [14]刘明,倪辉,吴永沛.纤维素酶在酒精工业中的应用进展[J].酿酒科技, 2006, 7: 83~85.
    [15]林云琴,周少奇.白腐菌降解纤维素和木质素的研究进展[J].环境技术,2003, 21(4): 32~36
    [16]林风.纤维素酶的生物化学和分子生物学研究新进展[J].生命科学, 1994, 6(1): 18~23
    [17]梁靖,须海荣,蒋文莉,陈利燕;纤维素酶在速溶茶中的应用研究[J].茶叶,2002,28(1):25~26
    [18]鲁杰,石淑兰,杨汝男等.纤维素酶水解纤维素类废弃物的研究[J].纤维素科学与技术, 2004, 12, (4): 7~12
    [19]李雄彪,纤维素的化学结构、生物合成和糖化研究[J].大自然探索, 1992, 11(1): 56~62
    [20]李日强.纤维素类废弃物的综合利用[J].中国环境科学, 2002, 22(1): 24~27.
    [21]孟雷,陈冠军,王怡等.纤维素酶的多型性[J].纤维素科学与技术, 2002, 10(2): 47~55
    [22]马桔云,赵晶岩,姜颖等.纤维素酶在黄连提取工艺中的应用[J].中草药, 2000, 31(2): 103~104
    [23]马田田.纤维素酶用于中药提取的初步研究[J].中草药, 1994, 25(3): 123~125
    [24]欧阳平凯,陈育如.植物纤维素水解的理论与应用[M].北京:中国科学技术出版社, 1995: 23~47
    [25]钱坤,余晓斌,丁建琴.纤维素酶在牛仔布后整理中的应用研究[J].食品与生物学报, 1996, 15(4): 353~357
    [26]宋桂经,郭安广,徐欣.洗涤剂用纤维素酶的研制与应用[J].日用化学工业, 1994, 2: 1~6
    [27]宋波,邓晓皋,施雷霆.纤维素酶的研究进展[J].上海环境科学, 2003, 22(7): 491~494
    [28]沈雪亮,夏黎明芽孢杆菌产纤维素酶的研究[J].林产化学与工业,2002,22,(3): 54~58
    [29]唐启义,冯明光.实用统计分析及其数据处理系统[M].北京:科学出版社, 2002, 159~163
    [30]王蔚,高培基.褐腐真菌木质纤维素降解机制的研究进展[J].微生物学通报, 2002, 29(3): 90-93.
    [31]王蔚,卢雪梅,高培基;褐腐真菌产生的低分子化合物对纤维素的解聚作用研究[J].菌物系统, 1997, 16(01): 40~46
    [32]王蔚,段新源,孙彩云,高培基.褐腐真菌产生的羟基自由基HO-对纤维素作用的研究[J].菌物系统, 2002, 21(3): 400~405
    [33]王蔚,胡玮,高培基.密粘褶菌Gloeophyllum trabeum胞外低分子量多肽的分离纯化及其对纤维素生物降解作用[J].中国生物化学与分子生物学报, 2002, 42(2): 220~225
    [34]王希国,杨谦,燕红.纤维素酶催化水解和氧化机制的研究进展[J].林产化学与工业. 2005, 25(03): 125~130
    [35]汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能[J].生物工程进展, 2000, 20(20): 37~40.
    [36]汪维云,朱金华,吴守一.纤维素科学及纤维素酶的研究进展[J].江苏理工大学学报, 1998, 19(3): 20~28
    [37]王春卉,汪天虹.纤维素酶分子的纤维素吸附区的研究进展[J].纤维素科学与技术, 1997, 5(4): 1~10
    [38]王高升,郝军芳.纤维素酶及其在造纸工业中的应用[J].北方造纸, 1996, 17(4): 18~21
    [39]王静.纤维素酶在纺织工业上的应用[J].丝绸技术, 1996, 4(4): 29~32
    [40]谢占玲,吴润.纤维素酶的研究进展[J].草业科学, 2004, 21(4): 72~76
    [41]肖冬光,王德培.里氏木霉纤维素酶在酒精生产中应用的研究[J].酿酒, 1997, 3: 12~16
    [42]肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志,2002, 22(2): 33~35
    [43]余晓斌,李晓华.黑曲霉产纤维素酶的研究[J].生物技术, 1997, 7(4): 13~15
    [44]阎伯旭,齐飞,纤维素酶分子结构和功能研究进展[J].生物化学和生物物理进展.1999, 26(3): 233~237
    [45]阎伯旭,孙迎庆.真菌和细菌纤维素酶的差别及内、外切葡聚糖苷酶的底物专一性[J].生命科学; 1999, 11(1): 61~64
    [46]闫训友,史振霞,张惟广等.纤维素酶在食品工业中的应用进展[J].食品工业科技, 2004, 25(10): 140~142
    [47]余世袁.林业资源的生物转化与利用[J].南京林业大学学报[J].2000, 24(2): 1~5
    [48]余兴莲,王丽,徐伟民.纤维素酶降解纤维素机理的研究进展[J].宁波大学学报; 2007, 20(1): 78~82
    [49]杨永彬,黄谚谚,林跃鑫.纤维素酶的结构及分子多样性[J].生命的化学, 2004, 24(03): 211~213.
    [50]张晓勇,高向阳,陈秀霞等.纤维素酶半纤维素酶的应用及分子相关性[J].纤维素科学与技术, 2006, 14(1): 47~51
    [51]张平平,刘宪华.纤维素生物降解的研究现状与进展[J].天津农学院学报, 2004, 11(3): 51~57
    [52]张礼星,徐柔,石贵阳,等.麦糟固态发酵生产纤维素酶[J].林产化学与工业, 2000, 20(3): 27~32
    [53]朱雨生,潭常.槐糖对木霉EA3867纤维素酶形成的诱导作用[J].微生物学报, 1978, 18(4): 320~331.
    [54] Bhat M. K.Cellulose degrading enzymes and their potential industrial applications[J].Biotechnology Advances,1997, 15(3): 583~620
    [55] Beguin P.The biological degradation of cellulose [J].Fems microbiology review, 1994, 13,(1): 25~58
    [56] Berghem, L. E. R., and L. G. Pettersson. The mechanism of enzymatic cellulose degradation.[J].European Biochem. 1973, 27: 21~30
    [57] Begium P. Molecular biology of cellulose degradation[M].Annual Review of Microbiology, 1999, 44: 219~248
    [58] Chtistian P.The trichoderma cellulase regulatory puzzle[J].Enzyme and Microbial Technology, 1993, 15 (2): 90~99
    [59] C. Mai, U. Kües and H. Militz, Biotechnology in the wood industry [J]. Microbiol. Biotechnol, 2004, 63(4): 477~494.
    [60] Claeyssens M Kamerling J P Kamerling J P.Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM9414: Substratespecificity and transfer activity of endoglucanase I[J].Biochemical Journal, 1990, 270(1): 251~256
    [61] Coughlan M P,Ljungdahl L G..In biochemisty and genetics of cellulose degradation[M]. London:Academic Press, 1988.
    [62] Coughlan M P.Mechanism of cellulose degradation by fungi and bacteria [J].Animal Feed Science and Technoglogy, 1991, 32: 77~100
    [63] Focher B; Haigler C H Structural features of cellulose and cellulose derivatives and their effects on enzymatic hydrolysis.. Biosynthesis and Biodegradation of Cellulose[M]. New York; 1991
    [64] FAN L T,LEE Y H,BEARDMORE D H.Mechanism of the enzymatic hydrolysis of cellulose:Effect of major structural features of cellulose on enzymatic hydrolysis[J].Biotechnol and Bioeng, 1980, 22(1): 177~199.
    [65] Focher B,Marztti A.Structural Features of Cellulose and Cllulose Derivatives , and Their Effects on Enzymatic Hydrolysis[M].Biosynthesis and Biodegradation of Cellulose, New York, 1991: 297~306.
    [66] Gardner, K.H., Blackwell J.,The structure of native cellulose [J]. Biopol- ymer, 1974, 13: 19~75.
    [67] Ghose T.K. Measurement of cellulase activities[J]. Pure Appl Chem, 1987, 59: 257~268
    [68] Ghose,T.K, Bisaria V S Studies on the mechanism of enzymatic hydrolysis of cellulosic substances[J].Biotechnol. And Bioeng, 1979, 21: 131~146
    [69] Gupta J K, Das N B, Gupta Y P; Effect of cultural conditional on cellulose formation by Trichoderma virid[J].Agricultural and Biological Chemistry.1972, 36(11): 1961~1967
    [70] Ghahal D S. Solid-state Fermentation with Trichoderma reesei for Cellulase Production[J].Appl. Envir. Microbiol., 1985, 39(2): 194~196
    [71] GAMA F M,TEIXEIRA J A,MOTA M.Cellulose morphology and enzymatic reactivity:A modified solute exclusion technique[J].Biotechnol and Bioeng, 1993, 43(5): 381~387.
    [72] GHOSE T K. Studies on the mechanism of enzymatic hydrolysis of cellulosic[J].Biotechnology and Bioengineering, 1979, 3(l): 21~29
    [73] Highley T L.Cellulolytic activity of brown-rot and white rot fungal on solid media[J] Holzforschung, 1988, 42(02): 211~216
    [74] H. Chanzy,J.F. Kennedy, G.D. Phillips, P.A. Williamson, Cellulose Sources and Exploitation[M].New York, 1990: 3~12
    [75] KIYOUFU SAKAI, TATSUO YMAUCHI, FUMIKO NAKASU, et al. Biodegradation of cellulose acetate by neisseria sicca[J].Biosci Biotech Biochem, 1996, 60(10): 1617~1622.
    [76] KLYOSOV A A.Trends in biochemistry and enzymology of cellulose degradation[J].Biochem, 1990, 29(47): 10577~10585
    [77] Lee S B,Shin H S,Ryu D D Y.Adsorption of cellulases on cellulose[J].Biotech Bioeng, 1982, 24: 2137~2142
    [78] Linder M, Teeri T T. The roles and function of cellulose binding domains[J].Biotechnology 1997, 57(1):15~28
    [79] Lenting H B M. Mechanism of interaction between cellulase action and applied shear force,an hypothesis[J].Biotechnology, 2001, 89(02): 217-226
    [80] MANDEL M,STERNBERG D.Recent Advances in CelluloseTechnology [J].Journal of Fermentation Technology; 1976, 54(4): 267~286
    [81] Meshitsuka G. Utilization of Wood and Cellulose for Chemicals and Energy[M]. Wood and Cellulose Chemistry. New York: Academic Press, 1991. 977~1013.
    [82]Medve.Adsorption and Synergism of Trichoderma Cellulase[J].Biotech nolg and Bioengineering, 1998, 59(5): 621~634.
    [83] MANDELS M,ANDREOTTI R,ROCHE C. Measurement of saccharif- ying cellulase[J].Biotechnol Bioeng Symp, 1976, 6(1): 21~33.
    [84] Meinke A.Enhancement of the endo-β-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop[J].Biol Chem, 1995, 270(9): 4383~4386
    [85] Murashima, K., Kosugi, A., Doi, R.H. Synergistic effects on crystallinecellulose degradation between cellulosomal cellulases from Clostridium cellulovorans[J].Bacteriology, 2002, 184 (18): 5088~5095
    [86] NIDETZKY B, STEINER S, HAYN M, et al. Cellulose hydrolysis by the cellulases from Trichoderma reese:a new model for synergistic interaction[J].Biochem, 1994, 29(8): 705~710.
    [87] Nisizawa T, Suzuki H. Inductive formation of cellulase by sophorose in Trichoderma Viride [J].Biochem, 1971, 70: 375~385
    [88] Nikolay A, Spiridonov, David B. Wilson. Regulation of Biosynthesis of Individual Cellulases in Thermomonospora fusca.[J].Bacteriol, 1998, 180(14): 3529~3539
    [89] O.Akpinar, R.J.Mcgorrin, M.H.Penner et al Cellulose Based. Chromatog- raphy For Cellooligosaccharide Production[J].Agricultural and Food Chemi- stry,2004, 52(12): 4144~4148.
    [90] Pierre Béguin, Jean-Paul Aubert The biological degradation of cellulose[J].Microbiology Reviews, 1994, 13(1): 25~58
    [91] Rabinovich, M.L., Melnik, M.S., Bolobova, A.V. Microbial Cellulases [J].Applied Biochemistry and Microbiology, 2002, 38(4): 305~321
    [92] Reese EG,Siu GH,Levinson HS.The biological degradation of soluble cellulose deriratives and its relationship to the mechanism of cellulose hydrolysis[J].Bactteriol,1950, 59: 485~490
    [93] Reese, E. T., R. G. H. Sui, and M. S. Levinson. The biological degradation of soluble cellulose derivatives and its relationship of cellulose bydrolysis.[J]. Bacteriol. 1950, 59: 485~497
    [94] Ryn D D Y,Kim C,Mandels M.Competitive adsorption of cellulase componets and its signilance in a synergism mechanism[J].Biotechnology and Bioengineering, 1984, 26: 488~496
    [95] Srisodsuk M Penttila M Penttila M.Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose[J].Biological Chemstry.1993, 268(28): 20756~20761
    [96] SnagJunHna,YongJeYoo,Characetrization of a Biufnetional Cellulase andIts Seal Gene[J].BiolChem., 1995, 270(43): 26012~26019
    [97] Sinnott M L The cellobiohydrolases of Trichoderma reesei: A review of indirect and direct evidence that their function is not just glycosidc bond hydrolysis [J].Biochemical Society Transactions 1998, 26(2): 160~164
    [98] S.I. Mussatto, G. Dragone, I.C. Roberto. Brewers’spent grain: generation, characteristics and potential applications[J].Journal of Cereal Science, 2006, 43: 1~14
    [99] SUN Ye,Hydrolysis of lignocellulosic materials for ethanol production:a review[J].Bioresourse Technology, 2002, 83(01): 1~11
    [100] Srisodsuk M,Reinikainen T,Penttila M,et al.Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolaseⅠin its interaction with crystalline Cellulose[J].Biol Chem,1993, 268(28): 20756~20761
    [101] Schwarz, W.H. The cellulosome and cellulose degradation by anaerobic bacteria[J].Applied Microbiology and Biotechnology, 2001, 56(5): 634~649
    [102] Spezio M, Wilson D B, Karplus P A; Crystal structure of the catalytic domain of a thermophilic endocellulase[M].Biochemistry; 1993: 80~98
    [103] Smith RE. Studies of cellulase System[J].Applied and Environmental Microbiology, 1977, 33(4) :980~981
    [104] Tomme P, Warren A, Gilkes R. Cellulose hydrolysis by bacteria and fungi[J].Adv. Microb. Physiol, 1995, 37(1):1~18
    [105] Takkinen K,Laukkanen M L,Sizmann D T et al, An active single-chain antibody containing a cellulase linker domain is secreted by Escherichia coli[J].Protein Engineering, 1991, 4(7): 837~841
    [106] TAKAO S, KAMAGATA Y, SASAKI H. Cellulose production by penicillium pururogenam[J]. Ferment Technol, 1985, 63(2): 127~134.
    [107] Ven Tilbeurgh H, Loontiene F G, Engelborgs Y, et al. Studies of the cellulolytic system of Trichoderma reesei. QM 94014[J].European Journal of Biochemistry, 1989, 184(3): 553~559
    [108] Wood T. Bioconversion of Cellulose Substance into Energy[M]. Chemicals and Microbiaprotein.,India,1978,:111~141
    [109] Wood T M Bhat K M Bhat K M.The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose[J].Biochemical 1989, 260(1): 37~44
    [110] Wood T M,Synergism between enzyme involved in the solubilization of native cellulose[J].Advances in Chemistry,1979, 181: 181~209
    [111]Xu G..Mechanisms of wood degradation by brown-rot fungi:chelator-mediated cellulose degradation and binding of iron by cellulose[J].Biotechnology, 2001, 87(1): 43~57
    [112] Y Cao, H. Tan, Structural characterization of cellulose with enzymatic treatment[J].Molecular Structure, 2004, 705(1):189~193
    [113] Yoshihiko A, Takahisa K; New insights into cellulose degradation by cellulases and related enzymes[M].Trends in Glycoscience and Glycotechnology, 2002
    [114] Ye Sun, Jiayang Cheng; Hydrolysis of lignocellosic materials for ethanol prodution: a review [J].Bioresource Technology; 2002, 83(6):1~11
    [115] ZHU Sheng-dong,YU Zi-niu,YU Zi-niu.Production of ethanol from microwave-assisted alkali pretreated wheat straw [J]. Process Biochemistry, 2006, 41(04): 869~873
    [116] Zhang, Y.-H.P., Lynd, Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems[J].Biotechnology and Bioengineering 2004, 88(7): 797~824.
    [117] Zhiyou Wen, Wei Liao, Shulin Chen. Production of cellulase by Trichoderma reesei from dairy manure [J].Bioresource Technology, 2005, 96(4): 491~499
    [117] ZALDIVAR J,NIELSEN J,OLSSON L.Fuel ethanol production from lignocellulose:a challenge for metabolic engineering and process integration[J].Applied Microbiological Biotechnology, 2001, 56(1): 17~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700