浅层地下水有机污染研究—以某城市近郊为例
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来,随着工农业的发展,地下水污染日趋严重。就污染的种类、污染的范围以及对人类的健康而言,地下水有机污染排在所有污染物的首位。由于许多有机污染物具有“致癌、致畸和致突变”的“三致”作用而被世人瞩目。受分析技术和费用的限制,地下水有机污染系统的研究在我国仍属于一个空白。本文是以“国土资源重点项目”和“国家重点基础研究973项目”两项目为依托,开拓了地下水有机污染系统研究的先例。
     研究表明,所有40项有机测试组分中,检出25项,分别为单环芳烃类、卤代烃类和多环芳烃类。从多次取样结果看,研究区地下水中有机物主要为三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯,检出率分别为60.27%、29.45%、30.82%和32.19%,检出值在0.09-71.89μg/L之间。地下水中氯代烃的空间分布呈点状分布特征,重污染点主要集中在研究区的西郊一带,已形成一个局部重污染区,其它地方零星分布。重污染区污染范围大约5km~2,主要污染物是三氯乙烯和四氯乙烯,多数在10μg/L以上。从环境水文地质角度看,潜水含水层中有机物的检出率和检出值较承压含水层和潜水-承压含水层过渡带高,高浓度点主要集中在潜水含水层中。
     从单因子污染指数法和综合污染指数法评价结果来看,三氯乙烯、四氯乙烯是研究区地下水中主要有机污染物。从平面分布特征来看,重污染(Ⅳ)(地下水中至少有一项有机物超过对照值10倍)和严重污染(Ⅴ)(地下水中至少有一项有机物超过对照值50倍及50倍以上)的点主要分布在西南部的潜水区和中部的潜水-承压水过渡带,承压含水层未受污染。总体上看,西部污染较东部严重,南部较北部严重。
     水质评价结果表明,研究区的地下水水质整体较好,但有个别点个别组分已超标。威胁地下水质的有机污染物主要是三氯乙烯和四氯乙烯。三氯乙烯和四氯乙烯超标分别可达14.38倍和9.128倍。
     工厂广泛使用有机溶剂是地下水中氯代烃的主要污染来源,污染河流和垃圾淋滤液不是主要的。研究区重污染(Ⅳ)和严重污染(Ⅴ)83.3%的点位于工业区,工业区地下水中三氯乙烯和四氯乙烯超过饮用水标准的水点占区域总超标点的80%和87.5%。
     氯代烃对地下水的污染与其本身的物理性质、包气带的结构和地下水动力条件等因素有关。氯代烃的迟后因子R值很小,很容易在地下环境中迁移,因此研究区地下水中氯代烃检出率高,并且局部己形成重污染区;氯代烃重污染点主要集中在潜水和潜水承压水过渡带,是因为这一带含水层防污性能差;而在洪积扇缘的承压水区,由于表层粘土层厚,含水层防污性能相对较好,地下水不容易受到氯代烃的污染,因此这一带氯代烃检出率低、检出值小。地下水动态变化是引起氯代烃呈季节性变化的主要原因。在重污染区污染羽的上部TCE和PCE枯水期高于丰水期,而下部正好相反;垃圾场附近的地下水中氯代烃检出值丰水期比枯水期高。
     室内长期排污河渠对地下水影响的模拟研究表明,含水介质颗粒的大小是影响污染物净化的主要原因,介质颗粒越大,对污染物的净化率就低。苯、甲苯和单环芳烃总量(TBETX)在粗砂中的总净化率小于中砂;柱2的苯、甲苯和TBETX的单位体积质量变化率(FWAC)、单位孔隙体积质量变化率(PFWAC)和总的净化率大于柱3和柱1柱,这是因为柱2砂土
    
    中含粘十的量大了往3和杜1的缘故:沿水流方向上单环芳烃各组分浓度导递减趋势,其自
    然净化作川主要发生在土壤表面0.4米内:水动力特征的改变使得污染物的迁移特征也随之
    改变;从目前的实验未看,长期排污河渠对地下水有影响,但影响不会很大。
     研究区目前的取样点和加油站监测井中几乎没有检出单环芳烃,地下水中单环芳烃是否
    污染仍是一个悬而未决的问题。但一点可以肯定:即使有,也是局部污染,形不成人面积的
    污染。不论潜水含水层、200米的承压含水层以及500米的煤系地层和 1000米以上的岩溶
    水中都有本并[a]充检出,含量低,为数个n舍卜。深层地下水中的苯并[仙花的人为来源的说
    法从理论上没法解释,可能是大然来源。浅层地下水中本并[al ie的来源是否有人为来源,
    就目前的情况来看,没法下一个准确的结论。因此,苯并回龙的来源仍是一个问题,作进
    一步深入的研究是有必要的。
     以卜这些认识,为研究区地下水资源规划、管理和保护提供重要的基础资料和科学依据。
    同时,可望为以后在我国其他城市开展地下水有机污染调查和治理工作提供借鉴。
In the last few years, with the development of the industry and agriculture, the groundwater contamination is gradually serious. In regard to the category and scope of contamination and its harm to human health, organic chemicals in groundwater are the first one. Because they can cause cancer, abnormality and mutation, many organic chemicals have been regarded by the public in the world. By the restriction of the technique and expenses of analysis, the systemic research on organic chemicals in groundwater still has not been reported in China. Based on "key item of the national land resources "and" research of national key foundation 973 project", this paper sets a precedent for the systemic research on groundwater contaminated by organic chemicals in China.
    The results indicate that the 25 organic compositions occur in all 40 ones in groundwater, which are aromatic hydrocarbons, halogenated hydrocarbons and polycyclic aromatic hydrocarbons. Chlorinated aliphatic hydrocarbons(CAHs) which contain trichloromethane(TCM), phenixin(CT), trichloroethylene(TCE) and tetrachloroethylene(PCE) are common in groundwater in the studied area, the frequency of occurrence is 60. 27%, 29. 45%, 30. 82% and 32.19% respectively. The concentration of CAHs ranges between 0. 09 n g/ L and 71. 89 u g/ L. The distribution of chloroaliphatic hydrocarbons (CAHs) in groundwater is of point characteristic, whose heavy contaminated points mainly concentrate at west suburb of the studied area, have already become a heavy local contaminated section, piecemeal distribution in other place. The scope of heavy contaminated section is about 5 km'', whose main contaminants are TCE and PCE above 10 u g/ L. The frequency and concentration of occurrence in phretic aquifer is higher than in confined aqu
    ifer and their transition zone. High concentration points mainly concentrate on pretic aquifer.
    The evaluation from the single factor contamination index method and the synthetic contamination index method indicate that TCE and PCE are the major organic contaminants in the groundwater in the studied area. The points of heavy contamination (IV) which contain at least one-organic composition in the groundwater whose concentration is 10 times more than background concentration, and the points of serious contamination (V) which contain at least one organic composition in the groundwater is 50 times more than background value. These two kinds of points primarily distribute in the south western phretic aquifer and the central part of the transition zone and the confined aquifer is not contaminated. In summary, contamination in the western region is heavier than that in the eastern region. Similarly, contamination in southern region is heavier than that in the northern region.
    The evaluation of groundwater quality demonstrates that the groundwater quality
    
    
    in the studied area is good on the whole, but individual composition has already exceeded to the standard of drinking water quality. The organic chemicals that threaten the groundwater quality is primarily TCE and PCE which exceed 14. 38 times and 9. 128 times respectively more than the drinking water standard.
    Organic solvent extensively used in the factory is a major source of CAHs in groundwater in comparison with landfill leachate and contaminated rivers. 83.3% Wells of heavy contamination(FV) and serious contamination(V) in the studied area are located in the industrial estate. Wells contaminated by TCE and PCE in the industrial estate which exceed drinking water standard are 80 and 87. 5 percent of the total wells which exceed the drinking water standard.
    Groundwater contaminated by CAHs is relevant to the physical property of CAHs, the construction of vadose zone, the hydraulic condition etc. Due to factor R of CAHs is very small, they very easily move in the underground environment. For this reason, the frequency of occurrence of CAHs in groundwater has been high, which have already become local heavy contaminative section. Wells contaminated by CAHs is located in phretic aquifer and the t
引文
[1]丁应洋等.有机污染物在土壤-水体系中的分配理论.农村生态环境,1997,13(3):42-45
    [2]郭华明,王焰新.地下水有机污染治理技术现状及发展前景.地质科技情报,1999,18(2)
    [3]郭永海,沈照理,钟佐燊,刘淑芬.河北平原地下水有机氯污染及其防污性能的关系.水文地质工程地质,1996,No1,40-42
    [4]胡广仁.柴油泄漏引起地下水污染.环境地质研究(第二辑),北京:地质出版社,1993,120-126
    [5]胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素.环境科学进展,1998,7(5):14-22
    [6]李东艳.砂土中柴油迁移土柱实验与反硝化条件下苯生物降解微环境实验研究(博士论文),北京,中国地质大学,2000.
    [7]李广贺,张旭,黄巍.石油污染包气带中降解微生物的分布特征.环境科学,2000,21:61-64
    [8]李晓华,许嘉琳.王华东.污染土壤中石油组分迁移特征研究[J].中国环境科学,1998,18(增刊):54-58
    [9]李颖,樊萍,赵春柏等.原油在土壤中迁移及降解研究[J].油气田环境保护,1997,7(3):33-36
    [10]李勇,徐瑞薇.有机污染物在土壤和地下水中迁移建模.农村生态环境学报,1994,10(3):64-68
    [11]刘兆昌,聂永锋等.地下水系统的污染与控制.中国环境科学出版社,北京,1991.
    [12]卢晓霞等.根据分子连接指数估算极性有机化合物的吸附系数.环境科学学报,1999,19(3)
    [13]朴海善等,根据水/辛醇分配系数(Kow)估算有机化合物的吸着系数(Koc).环境科学技术,1999,87(4):8-13
    [14]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [15]孙淑芬,廖文根.生物降解处理地下水有机污染物的模型研究.水利学报,1994,8:1-9
    [16]田家怡,张洪凯等.小清河污灌水质有机化合物污染及对地下水影响的研究.山东环境,1995,64(1):15-18
    [17]王东海,李广贺,贾道昌.石油污染物在砂砾石层中的迁移与分布.环境科学,1998,19(5):18-21
    [18]魏复盛等,水和废水监测分析方法指南,中国环境科学出版社,1997
    [19]吴玉成,钟佐燊,张建立,反硝化条件下微生物降解地下水中的苯和甲苯,中国环境科学,1999,19:505-509
    [20]夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社,2001.
    [21]徐绍辉,朱学愚.地下水石油污染的水力截获技术及其数值模拟.水利学报,1999,1(1)
    [22]徐卫东,钟佐燊,饱和带有机污染物的厌氧反硝化微生物降解.环境科学,1998,19:41-44
    [23]占伟,吴文忠,徐盈,李植生.有机有毒污染物在土壤及底泥系统中的吸附-解吸行为研究进展.环境科学进展,1998,693):1-23.
    [24]张洪凯.小清河水体和沿岸地下水中有机污染物的监测及其毒性分析.中国环境监测,1997,13(2):40-41
    [25]张俊,陈宗军,王红旗.数值模拟在土壤环境影响评价中的应用.中国环境科学,1999,19(1)
    [26]张兰英等.垃圾渗沥液中有机污染物的污染及去除.中国环境科学,1998,18(2)
    
    
    [27] 郑西来,荆静,席临萍.包气带中原油的迁移利降解研究.水文地质工程地质,1998,(1) : 35-37
    [28] 郑西来,刘孝义,钱会.土壤中油-水驱替机理研究.环境科学学报,1999,19(2)
    [29] 周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单.中国环境监测,1990,6(4) : 1-3
    [30] 朱利中,陈宝梁.有机膨润士在废水处理中的应用及发展.环境科学进展,1998, 6 (3) :53-61
    [31] Agell K G. In situ remedial methods: air sparging. The national Environmental Journal, 1992, 2(1) : 20-23.
    [32] Allen-King R M, Larry D M, Mark R T. Organic carbon dominated trichloroethene sorpting in a clay-rich glacial deposit. Groundwater, 1997, 35(1) :124-130.
    [33] Alvarez P J J and T M Vogel, degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions, Wat. Sci. Technol., 1995, 31:15-28
    [34] Alvarez-Cohen, L., McCarty, P. L. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Applied and Environmental Microbiology, 1991,57:1031-1037
    [35] Alvarez-Cohen, L., McCarty, P. L. A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. Technol , 1991,25:1381-1387.
    [36] Anderson R. T.. Rooney-varga J. N, Gaw C. V. and Lovley D. R, Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers, Environ. Sci. Technol., 1998,32: 1222-1229.
    [37] Anderson, J. E., and P. L. McCarty, Model for the treatment of trichloroetheylene by methonotrophic biofilms, J. Eviron. Eng., 1994,120(2) : 379-400.
    [38] Anderson, M. R. , R. L. Johnson, and J. F. Pankow, Dissolution of dense chlorinated solvents into groundwater, 3,Modeling contaminants plumes from fingers and pools of solvent, Environ. Sci. Tech. , 1992, 26(5) :901-908.
    [39] Arciero, D. , Vannelli, T., Logan, M., Hooper, A. B. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 1989,159:640-643.
    [40] Barcelo M. Na et al, Contamination of groundwater .?prevention, assessment, restoration , 1990
    [41] Borden R C, Carlos A G, Mark T B. Geochemical indicators of intrinsic bioremediation. Groundwater, 1995, 33(2) :180-189.
    [42] Bramlett J. A., Repa E. W. , and Mashni C. I. Leachate Characterization and Synthetic Leachate Formulation for Liner Testing, The Seventh National Conference on Management of Uncontrolled Hazardous Waste Sites, 1986.
    
    
    [43] Bramlett .J. A., Repa E. W. , and Mashni C. I. Leachate Characterization and Synthetic Leachate Formulation for Liner Testing, The Seventh National Conference on Management of Uncontrolled Hazardous Waste Sites, 1986.
    [44] Brown R A, jasiulewicz F. air sparging: a new model for remediation. Pollution Engineering, 1992, 24(7) :52-55.
    [45] Burland S. M and Edwards E.A. , Anaerabic benzene biodegradation linked to nitrate reduction, Appl. Envion. Mirobiol. , 1999,65:529-533
    [46] Chang, H.-L. , and L. Alvarez-Cohen, Model for the cometabolic biodegradation of chlorinated organics, Environ. Sci. Technol. , 1995a,29(9) : 2357-2367.
    [47] Chang, M.-K. , Voice, T. C., Criddle, C. S. Kinetics of the cometabolic inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol. Bioeng. 1993.
    [48] Chen, Y.-M. , L. M. Abriola, P. J. J. Alvarez, P. J. Anid, and T. M. Vogel, Modeling transport and biodegradation of benzene and toluene in sandy aquifer material: Comparison with experimental measurements, Water Resources Research, 1992, 28 (7) :1833-1847.
    [49] Chih-Ming Kao and Robert C. Borden, Site-specific variability in BTEX biodegradation under denitrifying conditions, Ground Water, 1997, 35(2) :305-311
    [50] Chrysikopoulos, C. V. , E. A. Voudrias, and M. M. Fyrillas, Modeling ofcontaminant transport resulting from dissolution of nonaqueous phase liquid pools in saturated porous media, Transp. Porous Media, 1994, 16(2) :125-145.
    [51] Chrysikopoulos, C. V. ,and T.-J. Kim, Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media, Transp. Porous Media, 2000,38(1/2) :167-187.
    [52] Constantinos V. Chrysikopoulos. Dissolution of a well-defined trichloroethylene pool in saturated porous media: Experimental design and aquifer characterization. Water Resources Research, 2000, 36(7) :1687-1696.
    [53] Corapcioglu M. Y. , R. Lingam and K. K. R. Kambham. Multiphase contamintants in natural permeable media:various modeling approaches. In: Migration and fate of pollutants in soils and subsoils. D. Petruzzelli and E. G. Helfferich ed. Springer-Verlog Berlin Heidelberg. 1993. 191-220.
    [54] Criddle, C. S. , The Kinetics of Cometabolism, Biotech. Bioeng., 1993,41:1048-1056.
    [55] David. F, Sandra. P, Klee. M. S HP 6890 .气相色谱文集. Vol.1. : 2000, 63-65;
    [56] Debra R. R. , Frederick G, P., ,J. P. Gould,W. H. Cross. The fate of selected organic pollutants codisposed with municipal refuse . Res. J. Water Pollit. Control Fed., 1991, 63,780.
    [57] Degraffenyeid N. and Shreve G.. The effect of cadmium on kinetics of trichloyoethlene biodegradation by Psemdomonas(Burkolderia)Picketti pk01
    
    under denitrifying conditions. Wat. Res, 1998, 32,3398-3402.
    [58] Degraffenyeid N. andShreve G.. The effect of cadmium on kinetics of trichloyoethlene biodegradation by Psemdomonas(Burkolderia)Picketti pk01 under denitrifying conditions . Wat. Res, 1998, 32, 3398-3402.
    [59] Edwards E. A. and Grbic-Galic D. R, Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl. Environ. Microbiol., 1994,60:313-322.
    [60] Edwards E. A. and Grbic-Galic D. R, Complete mineralization of benzene by aquifer microorganisms under strickly anaerobic conditions, Appl. Envion. Mirobiol., 1992,58:2663-2666.
    [61] Ei-Farhan, Y. H. , Scow. K. M., Rolston, D. E. Coupling transport and biodegradation of toluene and trichloroethylene in unsaturated soils. Water Resources Research, 1998, 34(3) :437-445.
    [62] El-Farhan, Y. H. , scow, K. M., L. W. de Jonge, Rolston, D. E. Coupling transport and biodegradation of toluene and trichloroethylene in unsaturated soils. Water Resources Research,1993,34(3) :437-445.
    [63] Fan, S. , and K. , M. , Scow, Biodegradation of trichloroethylene and toluene by indigenous microbial populations in soil, Applied and Environmental Microbiology, 1993, 59(6) :1911-1918
    [64] Fogel,M. M. , Taddeo , A. R. , Fogel, S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Applied and Environmental Microbiology, 1986, 51:720-724.
    [65] Folsom, B. R. , Chapmam, P. J. , Pritchard, P. H. Phenol and tricholorethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates. Applied and Environmental Microbiology, 1990, 56:1279-1285.
    [66] Fox, B. G. , Borneman, J. G. , Wackett, L. P., Lipscomb, J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental implications. Biochemistry 1990,29: 6419-6427.
    [67] GB11890-89水质分析方法国家标准汇编[s],北京:中国标准出版社,1996,173-180;
    [68] Geller, J. T. , and J. R. hunt, Mass transser from nonaqueous phase organic liquids in water-saturated porous media, Water Resour. Res., 1993, 29(4) , 833-845.
    [69] Gillham R W, O' Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-ca.ent iron. Groundwater, 1994, 32(6) :958-967.
    [70] Haber, C. L. , Allen, L. N., Zhao, S. , Hanson, R. S. Methylotrophic bacteria: biochemical diversity and genetics. Science 1983 221:1147-1153.
    [71] Haddad B I, Geoffrey B P. A successful integrated multicomponent remediation approach implemented at a petroleum contaminated site. In: Marines, Konkis, Tsiambaos et al eds. Engineering Geology and the Environment. Balkema: Rotterdam, 1997,1877-1882.
    
    
    [72] Harker, A. R. , Kim, Y. Tricholorethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Applied and Environmental Microbiology, 1990,56:1179-1181.
    [73] Henry, S. M. , Grbic-Galic, D. Influence of endogenous and exogenous electron donors and trichloroethylene oxidation toxicity on trichloroethylene oxidation by methanotrophic culures from a groundwater aquifer. Applied and Environmental Microbiology,1990, 57:236-244.
    [74] Higgins, I. J. , Best, D. J. Hammond, R. C. New findings in methabe-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 1980,286: 561-564.
    [75] Hirata T, Nakasugi, and Yoshioka M et al. Groundwater pollution by volatile organochlorines in Japan and related phenomena in the subsurface environment. Water Science & Technology. 1992, Vol25, No. 11, 9-16.
    [76] Horvath, R. S. Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 1972,36:146-155.
    [77] Illangasekare, T. H. , J. L. Ramsey Jr., K. H. Jensen, and M. B. Butts, Experimental study of movement and distribution of dense organic contaminants in heterogeneous aquifer, Journal of contaminant Hydrology. 1995,20:1-25.
    [78] Imhoff, P. T. , P. R. Jaffe, and G. F. Pinder, An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media, Water Resour. Res., 1994, 30 (2) ,307-320.
    [79] Janke, D. , Inn, W. Cometabolic turnover of aniline, phenol, and some of their monochlorinated derivatives by the Rhodococcus mutant strain A M 144. Arch. Microbiol. 1989,152:347-352.
    [80] Janssen, D. B., Grobben, G. , Witholt, B. Toxicity of chlorinated aliphatic hydrocarbons and degradation by methanotrophic consortia. Proc. 4th Eur. Cong. Biotechnol.1987,3: 515-518.
    [81] Jia, C. , K. shing, and Y. C. Yortsos, Advective mass transfer from stationary sources in porous media, Water Resour. Res., 1999, 35(11) , 3239-3251.
    [82] Johnson, R. L , and J. F. Pankow, Dissolution of dense chlorinated solvents into groundwater, 2, Source functions for pools of solvent, Environ. Sci. Tech., 1992, 26(5) :896-901.
    [83] Khachikian, C. , and T. C. Harmon, Nonaqueous phase liquid dissolution in saturated porous media: Current state of knowledge and research needs, Transp. Porous Media, 2000, 38(1/2) :3-28.
    [84] Kindred, J. s., and M. A. Cellia, Contaminant transport and biodegradation, 2, Conceptual model and test simulations, Water Resources Research, 1989, 25(6) :1149-1159.
    [85] Kromann A. and Christensen T. H. Degradability of organic chemicals in a landfill
    
    environment studied by in situ and laboratory leachate reactors[J]. Waste Manage. Res, 1998, 16,437-445.
    [86] Kromann A. , Ludvigsen L. , Albrechtsen H. J. , Christensen T. H. , Ejlertsson J. and Svensson B. H. Degradability of chlorinated aliphatic compounds in methanogenic leachates sampled at eight landfills . Waste Manage.Res. 1998, 16, 54-62.
    [87] Kuhn E P, Zeyer J, Eicher P, et al. Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl. Environ. Microbiol. , 1988,54: 490-496.
    [88] Lee, K. Y. , and C. V. Chrysikopoulos, NAPL pool dissolution in stratified and anisotropic porous formations, J. Environ. Eng., 1998,124:851-862.
    [89] Lesage S. , McBride R. A., Cureton P.M. and Brown S. Fate of organic solvents in landfill leachates under simulated field conditions and in anaerobic microcosms. Waste Manage. Res, 1993, 11, 215-226.
    [90] Lovley D. R, Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers, Journal of Industrial Microbiology & Biotechnology, 1997,18:75-81
    [91] Lovley D. R. , Woodard J. C. and Chapelle F. H., Rapid anaerobic benzene oxidation with a variety of chelated Fe (III) forms, Appl. Envion. Mirobiol. , 1996, 62:288-291
    [92] MacIntvrt,W. G., M Boggs, C. P. Antworth, and T. B. Stauffer, Degradation kinetics of aromatic organic solutes introduced into a heterogeneous aquifer, Water Resour. Res. , 1990, 26(2) :207-222:
    [93] Major D. W., C. L. Mayfield and J. F. Barker, Biotransformation of benzene by denitrification in aquifer sand, Ground Water, 1988, 26:8-14
    [94] Manoli E. and Samara C., Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis, trends in Analytical Chemistry, vol 18, no. 6, 1999
    [95] Mason, A. R. , and B. H. Kueper, Numerical simulation of surfactant-enhanced solubilization of pooled DNAPL, Environ. Sci. Tech. , 1996, 30:3205-32158.
    [96] McCray J E, Ronald W F. Numerical simulation of air sparging for remediation of NAPL contamination. Groundwater, 1997,35(1) :99-110.
    [97] Menzie S. A., Potocki B. B,Santodonato, Environ. Sci. Technol, 1991, vol.25:557
    [98] Mercer, J. W. and R. M. Cohen. AS review of immiscible fluids in the subsurface properties, models, characterization and remediation. Journal of contaminant Hydrology. 1990,6:107-163.
    [99] Michael o. Rivett, David N. Lerner, John W. Lloyd and Lewis clark, Organic contamination of the Birmingham aquifer, U. K. , Journal of Hydrology, 113(1990) 307-323
    
    
    [100] Mohn W. W. and Tie dje J. M. Microbial reductive dehalogenation. Microbiol. Rev, 1992,56, 482-507.
    [101] Mohn W. W. and Tiedje J. M. Microbial reductive dehalogenation . Microbiol. Rev,1992, 56, 482-507.
    [102] National Research Council. Alternatives for ground water cleanup. Washington D C : Academy Press,1994. 315.
    [103] Nelson, M. J. K. , Montgomery, S. O., Mahaffey, W. R., Pritchard, P. H. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Applied and Environmental Microbiology,1987,53: 949-954.
    [104] Nielsen, P. N. , and T. H. Christensen, Variability of biological degradation of aromatic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments, J. Comtam. Hydrol., 1994,15:305-320.
    [105] O' Hannesin S F, Gillham R W. Long-term performance of an in-site "iron wall" for remediation of VOCs. Groundwater, 1997, 36(1) :164-170.
    [106] Oldenhuis, R. , Vink, R. L. J. M. , Janssen, D. B., Witholt, B. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Applied and Environmental Microbiology,1989, 55:2819-2826.
    [107] Oman C. and Hynning P.-A. Identification of organic compounds in municipal landfill leachates. Environ. Pollut. 80:265-271.
    [108] Oman C. and Rosqvist H.. Transport fate of organic compounds with water through landfills[J]. Wat. Res, 1999,33,2247-2254.
    [109] Partick R, Ford E. and J. Quarles, Groundwater contamination in the U. S. A. , University of Pennsylvania Press, 1987
    [110] Partrick R, E Ford, and J Quarles. Groundwater Contamination in the U. S. A. University of Pennsylvania Press, Philadephia, 1987.
    [111] Pearce, A. E. , E. A. Voudrias, and M.P. Whelan, Dissolution of TCE and TCA pools in saturated subsurface systems, J. Environ. Eng., 1994, 120:1191-1206.
    [112] Porta A. A review of European bioremediation paractice. In :Hinchee R E, Olfenbuffel R F eds. On-Site Biorecalmation. Massachusetts USA: Butterworth-Heinemann, 1991, 1-13.
    [113] Poul L. Bjerg, Adam Brun, Per H. Nielsen, and Thomas H. Christensen. Application of a model accounting for kinetic sorption and degradation to in situ microcosm observations on the fate of aromatic hydrocarbons in an aerobic aquifer. Water Resources Rresearch, 1996, 32(6) :1831-1841.
    [114] Powers, s. E. , L. M. Abriola, and W. J. Weber Jr., An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface system: Steady state mass transfer rates, Water Resour. Res. ,
    
    1992,28(10) , 2691-2705.
    [115] Raschc, M. E. , Hyman, M. R. , Arp, D. J. Factors limiting aliphatic chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of ammonia monooxygenase and substrate specificity. Applied and Environmental Microbiology, 1991, 57:2986-2994
    [116] Reinhard M. , Goodman N. L. and Barker J. F. Occurrence and distribution of organic chemicals in two landfill leachate plumes. Envirn. Sci. Technol, 1984, 18, 953-961.
    [117] Rettenberger G. and Stegman R. Trace elements in landfill gas. Proc. Sardinia' 91, Third International Landfill Symposium, Cagliari, Italy, 1991,1623-1633.
    [118] Roberts, p.v., J. E. Schreiner, and G. D. Hopkins. Field study of organic water quality changes during ground water recharge in the Palo aito Baylands. Water Res. 1982, 16: 1025-1035.
    [119] Sale T, David A. Mobile NAPL recovery: conceptual, field, and mathematical consideration. Groundwater, 1997,35(3) :418-426.
    [120] Song H G, Bartha R. Bioremediation potential of terrestrial fuel spills. Applied Environ Microbiol, 1990, 56:652-656.
    [121] Strand, S. E. , Bjelland, M. D., Stensel, H. D. Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methane-oxidizing bacteria. Res. J. hater Pollut. Control. Fed. 1990,62:124-129.
    [122] Taylor S W, Clifford R L, Elizabeth A L. Biofouling of contaminated ground water recovery wells: characterization of microorganisms. Groundwater, 1997, 35(6) : 973-980.
    [123] Timothy M. Vogel and Perry L. McCarty, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions, Appl. Envion. Mirobiol. , 1985,49(5) :10809-1083.
    [124] Tsien, H. C. Brusseau, G. A. , Hanson, R. S. , Wackett, L. P. Degradation of trichloroethylene by Methylosinus trichosporium OB3b. Applied and Environmental Microbiology, 1989,55:2723-2725.
    [125] US Environmental Protection Agency, Criteria for municipal solid waste landfills, summary of data on municipal solid waste leachate characteristics. EPA/530-SW-88-038. US Environmental Protection Agency, Washington, DC. 1990.
    [126] Vannelli, T. , Logan, M. , Arciero, D. M. , Hooper, A. B. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europea. Applied and Environmental Microbiology, 1990, 56:1169-1171.
    
    
    [127] Vesilind P. A., Peirce J. J. and Weiner R. F. Environmental Pollution and Control. Butterworth-Heinemann, boston,MA, 1990.
    [128] Vesilind P. A., Peirce J. J. and Weiner R. F. Environmental Pollution and Control. Butterworth-Heinemann, boston, MA, 1990.
    [129] Weiner J M. and. Lovley D. R, Anaerobic benzene degradation in petrolem-contaminated aquifer sediments after inoculation with a benzene-oxiding enrichment , Appl. Environ. Microbiol. , 1998,64:775-778.
    [130] Weiner J. M. and Lovley D.R. , Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer, Appl. Environ. Microbiol. , 1998,64:1937-1939.
    [131] Wilson J T, McNabb J F, Wilson B H, et al. Biotransformation of selected organic pollutants in ground water. Dev and Microbiol, 1983, 24:225-23.
    [132] Wood, B. D. , C. N. Dawson, J. E. Szecsody, and G. P. Streile, Modeling contaminant transport and biodegradation in a layered porous media system, Water Resources Research, 1994,30(6) :1833-1845.
    [133] Wood, B. D. , T. N. Ginn, and C. N. Dawson, effects of microbial metabolic lag in contaminant transport and biodegradation modeling, Water Resources Research, 1995, 31(3) :553-563.
    [134] Zoller Uri, Groundwater contamination by detergents and polycyclic aromatic hydrocarbons-a global problem of organic contaminants: is the solution locally specific? Wat. Sci. Tech. , 1993, 27(7-8) :187-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700