用户名: 密码: 验证码:
含水介质水敏感性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
咸淡水过渡带是一个从高盐度咸水到低矿化地下水的狭长带。咸淡水过渡带含水介质水敏性的存在具有双重意义:第一,对于咸水入侵地区,这一性质会使得含水介质的渗透性发生不利于地下咸水恢复的变化,由于含水介质渗透性的大幅度下降,单纯的注入淡水来驱替咸水变得极为困难;第二,由于水敏性的存在,使得防止咸水入侵有了新的方法和思路。因此,对咸淡水界面含水介质水敏性的研究具有重要理论意义和应用价值。
     本研究在现场调查的基础上,分别采集青岛石老人海水、大沽河河水、海水入侵区的含水介质,通过大量的室内柱状试验和批量试验,弄清含水介质在不同水化学和水动力条件下颗粒释放、运移和沉积的动力学过程,掌握含水层水化学变化、颗粒释放、运移、沉积和渗透性变化的内在有机联系,为咸水入侵的定量评价和防治提供科学的依据。研究结果表明:
     (1)流体流动速率越大,水动力也越大,细微颗粒就越容易发生运移。在相同水动力条件下,水动力作用对渗透性的影响与溶液的离子强度有关,溶液离子强度越高,越不容易引起颗粒释放。批量试验为了防止水动力释放而确定的振荡频率不能超过150次/min,土柱试验中确定的临界进水流速为21 mL/min。
     (2)批量试验中将振荡频率设置在150次/min,得到影响颗粒释放的临界盐浓度为0.06±0.005 mol/L;在土柱试验中保持进水流速为1.5 mL/min,得到颗粒释放的临界盐浓度在0.06 mol/L附近。两者所得结果基本吻合。释放出的颗粒主要由伊利石、高岭石和绿泥石等非膨胀性的粘土矿物组成。
     (3)批量试验和土柱试验证明在强酸性条件下,颗粒释放时间短,释放累积量少;而在强碱性条件下,颗粒释放时间长,颗粒释放累积量最多;中性条件下颗粒释放时间和颗粒释放累积量值居中,这说明在相同水动力条件下,高pH值时的颗粒释放倾向要远远大于低pH值时的情况。虽然在地下水环境中pH值的变化范围是6-8,可调范围不大,但是根据试验所得碱性环境能够增强颗粒释放的结果,我们可以在地下水pH值允许范围内适当提高pH值,使含水介质中颗粒释放达到最大量,以此提高含水层的水敏性,降低咸淡水界面上含水介质的渗透性,以获得理想的天然或人工地下防渗带,防止咸水入侵的发生。
The saline-freshwater interface is a transition zone from saline water to freshwater. The existence of the water sensitivity at the interface has double significances: firstly, water sensitivity makes the restoration of the permeability of the porous media difficult due to simply injecting fresh water to flush saline water. Secondly, the existence of water sensitivity presents new methods to prevent saline water intrusion. Therefore, it has significant meaning and applied value to study the water sensitivity of the porous media at the saline-freshwater interface.
     Based on the geohydrological investigation in the fields, seawater, freshwater and sand samples from the saline water intrusion zone were taken to conduct the batch experiments and column experiments. The aims of these experiments were to discuss the dynamics of particle detachment, migration and redeposition under different water hydraulic and chemical conditions at saline-freshwater interface, learn the relationship between the permeability change and the migration and redeposition of the detached particles, supply the scientific dependence for the assessment and prevention of the saline water intrusion. The results show:
     (1) The faster the fluid velocity, the bigger the effect of the hydraulic is. Thus the fines can easily migrate. Under the same hydraulic conditions, the effect of hydraulic on permeability is related to the critical ionic strength of the solution. The higher the critical ionic strength, the more difficult the fines are released. In the batch experiment, the shaking frequency was not beyond 150 times/min in order to prevent hydrodynamiclly induced particles. In the column experiment the critical influent velocity was 21 mL/min.
     (2) In the batch experiment when the shading frequency was set in the 150 times/min, the critical salinity concentration caused the particles
引文
[1] 尹泽生,林文盘,扬晓军. 海水入侵研究的现状与问题[J].地理研究,1991,10(3):78-85
    [2] 郭占荣,黄奕普.海水入侵问题研究综述[J].水文,2003,23(3):10-15
    [3] Haubold,Reiner G. Approximation for steady interface beneath a well pumping fresh water overlying salt water[J].Ground water,1975,13(3):254-259
    [4] Anderson M P, Berkebile C A. Evidence of salt-water intrusion in southeast in southeastern long island.Ground Water, 1976,14(5):315-319
    [5] Bear J ,Kapuler I. Numerical solution for the movement of an interface in a layered coastal aquifer. Journal of Hydrology, 1981, 50 (1-3): 273-298
    [6] 蔡祖煌,马凤山.海水入侵的基本理论及其在入侵发展预测中的应用.中国地质灾害与防治学报,1996,7(3):1-9
    [7] 陈鸿汉,王新民,张永祥等.潍河下游地区海咸水入侵动态三维数值模拟分析.地学前缘,2000,7:297-304
    [8] Rushton K R. Differing positions of saline interfaces in aquifers and observation bore holes. Journal of Hydrology, 1980 ,48(1-2): 185-189
    [9] 薛 禹 群 , 吴 吉 春 , 谢 春 红 等 . 莱 州 湾 沿 岸 海 水 入 侵 与 咸 水 入 侵 研 究 . 科 学 通报,1997,42(22):2360-2368
    [10] 樊丽芳,陈植华.深圳滨海地带海水入侵判定界限值的确定.勘察科学技术,2004,(2):16-20
    [11] Nadler,Arie, Magaritz et al. Kinetics of chemical processes in a carbonate aquifer: a case study of water-rock interaction in the aquifer of western and central galilee(Israel).Journal of Hydrology, 1980,(1-2): 39-56
    [12] Gomis-Yagues V, boluda-Botella N, Ruiz-Bevia F. Gypusum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion. Journal of Hydrology, 2000,228(1): 48-55
    [13] 吴吉春,薛禹群等.海水入侵过程中水-岩间阳离子交换.水文地质工程地质,1996(3):18-19
    [14] 邱汉学,刘贯群. 海水入侵区地下水化学成分的形成作用.工程勘察, 1999,(1):43-47
    [15] L C Goldenberg, M Magaritz. Experimental investigation on irreversible changes of hydraulic conductivity on the seawater-freshwater interface in coastal aquifer[J].Water Resources Research ,1983,19(1): 77-85
    [16] K C Khialar, H S Fogler. Migrations of fines in porous media[M]. The Netherlands:Kluwer Academic publishers,1998.pp:1-8
    [17] Khilar K C, H S Fogler. The existence of a critical salt concentration for particle release[J] .Journal of Colloid and Interface Science ,1984, 101(1):214-224
    [18] 康毅力,罗平亚.粘土矿物对砂岩储层损害的影响-回顾与展望[J].钻井液与完井液,2000,17(5):36-40
    [19] K C Khilar, H S Fogler.Migration of fines in porous media. Dor-drecht, Boston, London:Kluwer Academic Publishers:1998,Chapter 1,3,9
    [20] Quirk J P, Schofield R K. The effect of electrolyte concentration on soil permeability.J. Soil Sci. 1955,6:163-178
    [21] Rowel D L, Payne D, Ahmed H. The effects of the concentration and movement of solutions on the swelling and dispersion .J. Soil Sci. 1969,20(1):176-188
    [22] Hardcastle J H, Mitchel J K. Electrolyte concentration permeability relationships in sodium –illite silt mixtures. Clays Clay Minerals, 1974,22:143.
    [23] Kolakowski J E, Matijevic E. Particle adhesion and removal in model systems,Part 1-Monodispersed chromium hydroxide on glass. J. Chem. Soc. Faraday Trans, 1979,I 75(8): 65-78
    [24] Kia S F,Fogler H S,Reed M G. Effects of pH on colloidally induced fines migration.J Colloid Int Sci 1987,118(1):158-168
    [25] Khilar K C,Vaudya R N,Fogler H S.Colloidally-induced fines release in porous media.J Petro Eng Sci 1990,4:213-221
    [26] Mohan K K. Water sensitivity of porous media containing swelling clays,Ph.D.thesis, The University of Michigan,1996
    [27] Vaidya R N,Fogler H S. Formation damage due to colloidally induced fined migration. Colloids Surfaces,1990,50:215-229
    [28] Quirk J P,R K Schofield. The effects of electrolyte concentration on soil permeability,J. Soil Sci.,1966,20(1):163-178
    [29] Jones J R. Influence of chemical composition of water on clay blocking of permeability, J.Pet.Technol.,1964:441-446
    [30] Kia S F,H S Fogler,M G Reed. Effects of salt composition on clay release in Berea sandstone,SPE Production Engin.,1987B:277-283
    [31] Kartic C, Khialar, H S Fogler [M]. Migrations of fines in porous media. The Netherlands: Kluwer Academic publishers,1998, pp:63-71
    [32] Mukul M, Sharma. Factors Controlling the Hydrodynamic Detachment of Particles from Surfaces. Journal of Colloid Interface Science,1991,149(1):121-134
    [33]O’neill M E. A sphere in contact with a plane wall in a slow linear shear flow.J. Chem.Engin.Sci,1968,23:1293-1297
    [34] Cleaver J W, B Yates. Machanism of detachment of colloidal particles from a flat substrates in a turbulent flow. J.Colloid interface Sci.,1973,44(3):464-474
    [35] Das S K,R S Schether ,M M Sharma, The role of surface roughness and contact deformation on the hydrodymnamic detachment of particles from surface,J. colloid Interface Sci,1994,164:63-77
    [36] Arulanadan K,E Gillogley ,R Tulley. Development of quantitative methods to predic critical shear and rate of erosion of natural undisturbed cohesive soils. Technical Report GL-80-5, USCOE Waterways,Exp.Stn., Vickshurg ,Miss,1980
    [37] Gruesbeck C, R E Collins. Entrainment and deposition of fine particles in porous media. Soc.Pet.Engin.J.,1982:847-856
    [38] César M, Cerda. Mobilization of Kaolinite Fines in Porous Media. Colloid Surfaces, 1987,27:219-241
    [39] Mukul,M Sharma et.al. Factors Controlling the Hydrodynamic Detachment of Particles from Surfaces. Journal of Colloid Interface Science.1991,149(1):121-134
    [40] Sherard J L,R S Decker, N l Ryker.Piping of earth dams of dispersive clays,Proc. ASCE Specialty Conf. On Earth and Earth Supported Structures, 1972,1(1),589-626
    [41] Aruoanandan K,B B Perry. Erosion in relation to filter design criteria in earth dams.J.Geotech.Engin.Div.,ASCE,1983,109(5):682-698
    [42] Khilar K C,H S Fogler, D H Gray. A model for piping and plugging in earthen structures.J. Geotech.Engin.Div.,ASCE, 1985,117(7):833-846
    [43] Frenkel H,J O Goertzen, J D Rjoades. Effects of Soil Type and Content, Exchangeable Sodium Percentage and Electrolyte Concentration on Clay Dispersion and Soil Hydraulic Conductivity. Soil Science Society of America Journal 1978,42:32-39
    [44] 肖振华,万洪富等. 灌溉水质对土壤水力性质和物理性质的影响.土壤学报,1998,3(3):359-366 [45 郑西来,钱会, 多孔介质中弥散度测定. 西安工程学院学报, 1998(4):51-56
    [46] 郑西来,李永乐,林国庆. 土壤对可溶性油的吸附作用及其影响因素分析. 地球科学,2003(5).
    [47] Zheng Xilai, Bingchen Wang, Yuying Li. Studies of Degradation Kinetics of Petroleum Contaminants in Soil-water Systems. Geologica Sinica . 2004 (3).
    [48] Pupisky H, Shainberg I. Salt Effects on the Hydraulic Conductivity of a Sandy Soil. Soil Science Society of America Journal 43,429-433
    [49] Ryan.J N, M Elimelich. Review: Colloid Mobilization and Transport in Groundwater. Colloids and Surface A ,1996,107:1-56
    [50] Goldenberg L C, Magaritz. Changes in hydraulic conductivity of lab sand-clay mixtures caused by a seawater-freshwater interface. Journal of Hydrology. 1984,70:283-297
    [51] Goldenberg L C. Decrease of Hydraulic Conductivity in Sand at the Interface Between Seawater and Dilute Clay Suspensions. Journal of Hydrology, 1985, 78:183-199.
    [52] Mehnert E, A A Jennings. The effect of salinity-dependent hydraulic conductivity on seawater intrusion[J]. Journal of Hydrology,1995,80:329-336.
    [53] Ryan J N ,M Elimelich. Review: Colloid Mobilization and Transport in Groundwater. Colloids and Surface A 1996,107:1-56
    [54] Bunn A R et al .Mobilization of Natural Colloids from an Iron Oxide Coated Sand Aquifer: Effect of pHand Ionic Strength. Environment Science and Technology. 2002,36:314-322
    [55] Khilar K C, H S Fogler. Water Sensitivity of Berea Sandstone. Ph.D. dissertation, University of Michigan, Ann Arbor. USA. 1981,MI, 112
    [56] Milligan. et al. Some Scale Model Tests to Investigate the Use of Reinforcement to Improve the Performance of Fill on Soft Soil. Quarterly Journal of Engineering Geology, Vol. 15, 1982(3):209-215
    [57] Ryan , Gschwend. Effects of Ionic and Flow Rate on Colloidal release: Relating Kinetics to Interface Potential Energy, Colloid Interface Sci. 1994,164:21-34
    [58] Harvey. Microorganisms as Tracers in Groundwater Injection and Recovery Experiments: A Review. FEMS Microbio. Rev.1997,20:461-472
    [59] Harvey. Laboratory Investigations on the Role of Sediment Surface and Groundwater Chemistry in Transport of Bacteria through a Contaminated Sandy Aquifer. Environmental Science and Technology, 1992, 26 (7):1410-1417
    [60]Bunn, A R et al .Mobilization of Natural Colloids from an Iron Oxide Coated Sand Aquifer: Effect of pHand Ionic Strength. Environment Science and Technology. 2002,36:314-322
    [61] Zhuang Ya-Feng. Flow Injection Determination of Palavering Based on Its Sensitizing Effect on the Chemiluminescence’s Reaction of Permanganate-sulfite. Analytical and Bioanalytical Chemistry, 2003,375(2):281-286
    [62] Ryan.J N et al. Effect of Solution Chemistry on Clay Colloid Release From an Iron Oxide-coated Aquifer Sand. Environmental Science and Technology,1994, 28 (9):1717-1726
    [63] Roy S B. et al. Colloid Release and Transport Processes in Natural and Mogel Porous Media, Colloids and Surfaces. 1996,107:245-262
    [64] Grolimund. et al. Transport of in situ Mobilized Colloidal Particles in Packed Soil Columns. Environmental Science and Technology. 1998,32(22):3562-3569
    [65] McDowell-Boyer L M, J R Hunt, N Sitar. Particle transport through porous media. Water Resour. RES. 1986, 22 :1901-1921.
    [66] McCarthy J F, J M Zachara. Subsurface transport of contaminants:bingding to mobile and immobile phases in groundwater aquifers.Environ,Sci.Technol.,1989,23:496-504.
    [67] Ryan,J N, M Elimelech. Colloid mobilization and transport in groundwater.Colloids Surf.A.1996,107:1-56.
    [68] Kretzschmar R, M Borkovec, D Grolimund et al. Mobile subsurface colloids and their role in contaminant transport.Adv.Agron.1999,66:121-193.
    [69] Sen,T K, Khilar K C. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media[J]. Advances in colloids and Interface Science .2005:1-95
    [70] 俞旭,江超华.现代海洋沉积矿物及其 X 射线衍射研究.北京:科学出版社,1984.
    [71] 梁成钢,苏海全.膨润土 CEC 测试方法的研究.阴山学刊·自然科学版,1995,13(1):21-25
    [72] 汪伟英,唐周怀,吕迎红等.储层岩石水敏性影响因素研究.江汉石油学院学报,2001,23(6):49-50
    [73] 吴志均,唐红君.影响水敏盐度评价试验结果的几个因素.钻井液与完井液,1999,16(1):6-8
    [74] 黄康乐.多孔介质水动力弥散尺度效应研究——现状与展望. 水文地质工程地质,1991(3):29-30+35
    [75] 郑西来.地下水系统石油污染机理及其应用研究.西安工程学院博士学位论文,1997.
    [76] 李俊亭主编,地下水流数值模拟.北京:地质出版社,1989
    [77] 郑西来.土壤中油—水驱机理研究.环境学报,1999(3)
    [78] 李佩成著.地下水非稳定流的解析法.北京:科学出版社,1990
    [79] 王秉忱等编著.地下水污染与地下水水质模拟方法.北京:北京师范大学出版社.
    [80] 郑西来,杨喜成,荆静.《地下水系统石油污染研究》.西安地图出版社,1998
    [81] 王文科著.地下水有限分析数值模拟的理论与方法.陕西:陕西科学技术出版社,1996
    [82] 林学钰等编著. 地下水水量水质模拟及管理程序集.长春:吉林科学技术出版社,1988.
    [83] 郑西来等. 多孔介质中溶质的弥散度测定.西安工程学院学院学报,1998(3)
    [84] 王秉忱,陈曦主编.地下水水质模型.辽宁:辽宁科学技术出版社,1985
    [85] 郑西来,刘孝义.地下水中石油污染物运移的耦和模型及其应用研究.工程勘察,1999(1)
    [86] 郑西来,邱汉学.沈抚灌区石油污染土壤恢复方案的数值模拟.地球科学,2000(2)
    [87] 陈友媛,郑西来.大庆油田轻质油泄漏对地下水污染研究.地学前缘,2001,8(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700