水平井开发配套技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索应用水平井挖潜萨北开发区特高含水期厚油层顶部剩余油可行性,围绕水平井轨迹设计、射孔方案优化、产能预测及跟踪调整等开发技术难题,开展水平井开发配套技术攻关。根据研究区块动、静态资料,建立区块的精细地质模型,模型纵向网格精细到沉积单元内部,应用层内岩性精细建模技术,将储层按物性及层内发育位置细分为7种岩性,精细刻画层内非均质性对水平井开发效果的影响,提高了地质模型精度,为水平井轨迹设计提供了可靠依据;根据沉积单元内部隔夹层发育情况,分类合并纵向模型网格,实现模型非均匀粗化,保留0.2米以上隔夹层信息,确保地质模型精度同时,减少模型节点,满足数值模拟运算要求;根据水平井轨迹及射孔层段,将水平井离散为多段进行模拟,精确描述井筒内部流体流动特征;以岩相为约束设置模型纵向传导率,准确描述沉积单元内部流体流动特征;设置流动边界,加密近井模型,提高模型运算速度与精度,发展了水平井数值模拟技术,指导水平井轨迹优选、射孔方案编制、跟踪调整及开发政策的确定。上述技术在北5-8-平53井轨迹设计、射孔层段、射孔方位角及孔密、产能预测、自喷转抽时机等界限确定得到充分应用,投产初期模型产能预测符合率达90.22%,投产后一年产油量预测误差为0.931%,水平井最佳下泵时机为含水率在30%左右时。应用油藏工程方法,建立底水条件下,水平井两相流见水前和见水后产能预测模型,理论生产数据与实际数据符合率达到90.0%左右。按模型预测到综合含水98%时,北5-8-平53井累积产油1.75×10~4吨,最终采收率将达到42.75%。应用上述开发配套技术,水平井自喷条件下,综合含水在10%以下保持一年,下泵后,根据油藏流线模拟结果,对厚油层下部采取长胶筒封堵,加强油层中上部注水,综合含水由58.9%下降到53.9%,基本保持稳定。截止目前水平井累积产液8030吨,累积产油5739吨,取得较好开发效果。该项研究成果将有效指导萨北开发区后续水平井开发,对实现油田控水挖潜和可持续发展目标有重要意义。
In order to explore the feasibility of potentiality finding remaining oil in top area of Sabei development area, a height reservoir and currently in extra high water cut development stage, research of some auxiliary oil and gas field development techniques with horizontal wells were carried out. These key techniques include horizontal well bore tracking design, casing perforation optimization, productivity forecasting and well pattern tracking and modification. Accurate geologic model of this area has been established based on both dynamic and static materials. With the aborative description of geologic model, the model precision in vertical grid reaches sedimentary units. The intrastratal lithologic character fine model building technology was used to characterize the reservoir, and I divide Sabei reservoir zone into seven different lithostratigraphies in terms of reservoir properties and the growing position inner the reservoir. The impact of heterogeneous on development efficiency with horizontal well in Sabei area can be studied with this accuracy geologic model, and provide reliable basis for horizontal well bore tracking design. According to the development level of Sedimentary units’interlayer, the geological model was upscaled based on classifying and merging the vertical grids. The intercalated beds, higher than 0.2 meters, were reserved which not only ensures the accuracy of geological model but also satisfy the requirement for numerous reservoir simulation. The fluids flow performance in well bore was characterized by discreting the horizontal well into several segments by means of horizontal well bore track and shot phasing. The lithofacies were used to restrict the model vertical conductivity, depicting the fluids flow performance inside the sedimentary union and setting the flow boundaries. The girds closed to wells were refined, which increases the speed and accuracy of simulation model. This refined grids system extends numerous reservoir simulation for horizontal wells, guiding horizontal well bore location optimization, casing perforation design, production tracking and operation modification. The above techniques have been widely used in designing well bore tracking, casing perforation, casing direction, casing density, productivity forecasting and transferring artesian flow to pumping time for well Bei 5-8-Ping 53. The agreement between simulation results and production data up to 90.22% during the early stage of development, the prediction error of oil rate is 0.931% after 1 year’s production. When the water cut reaches about 30%, it is the best time for putting on pump. The productivity forecasting models for two phases flow of horizontal well before and after water breakthrough have been established by applying reservoir engineering methods, and the accuracy of simulation is around 90.00%. The cumulative oil production of well Bei-5-8-Ping-53 is 1.75×10~4t and its oil recovery is up to 42.75 when the water cut reaches 98%. The composite water cut keeps below 10% for one year by applying the above horizontal well techniques horizontal well products oil with nature energy. After put on pump, the composite water cut is down from the 58.9% to 53.9% by sealing off the bottom of reservoir with long rubber tube, which based on the results of streamline simulation. Currently, the development effect of well Bei-5-8-Ping-53 is well, with 8030t fluid production and 5739t oil production. The result of my work can give effective guidelines for developing Sabei reservoir during extra high water cut with horizontal well, which is of significant means for oil field water controlling and sustainable development.
引文
[1]Gringaren A C,Ramey H J,Henry J.Unsteady-State Pressure Distributions Created by a Well With a Single Horizontal Fracture,Partial Penetration,or Restricted Entry.SPE 3819,1974.
    [2]Clonts M D, Ramey H J.Pressure Transient Analysis for Wells With Horizontal Drainholes.SPE 15116, 1986.
    [3]Goode P A and Thambynayagam R K M.Pressure Drawdown and Buildup Analysis of Horizontal Wells in Anisotropic Media.SPE 14250,1987.
    [4]Daviau F, Mouronal G, Bourdarot G.Pressure Analysis for Horizontal Wells.SPE 14251, 1988.
    [5]Odeh A S and Babu D K.Transient Flow Behavior of Horizontal Wells: Pressure Drawdown and Buildup Analysis.SPE 18802, 1989.
    [6]Ozkan E,Raghavan R and Joshl S D.Horizontal Well Pressure Analysis.SPE 16378,1989.
    [7]Kuchuk F J,Goode P A,and Wilkinson D J.Pressure transient Behavior of Horizontal Wells with and Without Gas Gap or Aquifer.SPE 17413,1991.
    [8]Ogunsanya B O,Oetama T P,and Lea J F.A Coupled Model for Analyzing Transient Pressure Behavior of Horizental Drainholes.SPE 94331,2005.
    [9]Yoshioka,Zhu,and Hill.A Comprehensive Model of Temperature Behavior in a Horizontal Well.SPE 95656,2005.
    [10]程林松,李春兰,马志远.气藏多分支水平井产能的计算方法.石油学报,1998,19(4):69-72.
    [11]程林松,李春兰,郎兆新.气藏多分支水平井产能的研究.石油学报,1995,16(2):49-55.
    [12]刘慈群.水平井产量公式.石油钻采工艺,V13(1),1991.
    [13]Deutsch and Journel.The application of simulated annealing to stochastic reservoir modeling.SPE Advanced Techology Series,2(2),April 1994.
    [14]熊琦华,陈亮.地质统计学在储层表征中的应用.断块油气田,1997,4(1):21-28.
    [15] Ferreira.Studies of Waterflood Performance Wells.SPE35208,Mar.1996.
    [16]陈元千.水平井产量公式的推导与对比[J].新疆石油地质,2008,29(1): 68-71.
    [17]袁益让.二相渗流数值模拟的一类有限元格式及其理论分析[J].科学通报,1984,4:193-197.
    [18]陈要辉,阎铁,等.油藏斜井三维势分布理论研究[J].石油学报,2003,24(3):90-93.
    [19]周竹眉,郎兆新.水平井油藏数值模拟的有限元方法[J].水动力学研究与进展,1996,11(3):261-270.
    [20]刘振宇;翟云芳.油藏数值模拟的有限元模型[C].第十六届全国水动力学研讨会文集,2002.
    [21]郑洪印.油藏及油井参数对水平井产能影响.中国海上油气(地质),1991(3).
    [22]何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态[J].石油大学学报,1999,14(5):16-25.
    [23] Giger,F.M.Low-Permeability Reservoirs Development Using Horizontal Wells,SPE 16406.
    [24]蔡煜东,姚林声.用人工神经网络建立油田采收率模型.石油地球物理勘探,1994,29(2):166-169.
    [25]胡守仁.人工神经同络原理.北京:气象出版社,1992.
    [26] Joshi,S.D.Augmentation of Well Productivity Using Slant and Horizontal Wells,SPE15375.
    [27]宋付权,刘慈群,张盛宗.低渗透油藏中水平井的产能公式分析[J].大庆石油地质与开发,1999,18(3):33-35.
    [28]范子菲,方宏长.裂缝性油藏水平井稳态解产能公式研究[J].石油勘探与开发,1996,23(3):52-57.
    [29]王德民等.求解水平井和直井联合面积布井产量的等值渗流阻力法.石油勘探与开发,1995,22(3):69-71.
    [30]李廷礼,李春兰,吴英,徐燕东.低渗透油藏压裂水平井产能计算新方法[J].石油大学学报,2006,30(2):48-52.
    [31]廉培庆,同登科,程林松,孙海.垂直压裂水平井非稳态条件下的产能分析[J].中国石油大学学报,2009,33(4):98-102.
    [32]冯国庆,陈浩,张烈辉,等.利用多点地质统计学方法模拟岩相分布[J].西安石油大学学报(自然科学版),2005,20(5):9-11
    [33]汤军,宋树华,徐论勋,等.储层随即建模方法在细分沉积相中的应用[J].天然气地球科学,2001, 1(1):89-92.
    [34]叶继根,齐与峰,郭尚平,等.一种多组分相平衡计算的优化方法[J].石油勘探开发,1995,23(2):84-87.
    [35]吴星宝,李少华,朱水进,等.相控随机建模技术在比均质性研究中的应用[J].断块油气田,2009,3(2):58-60.
    [36]葛家理,宁正福,刘月田等.现代油藏渗流力学原理.北京:石油工业出版社,2001.
    [37]石晓燕. Pertrel软件在精细地质建模中的应用[J].新疆石油地质.2007,28(6):773.
    [38]李彬.鄂尔多斯盆地超低渗透储层地质建模研究[D].北京:中国地质大学(北京),2007.
    [39]穆龙新等.储层精细研究方法.北京:石油工业出版社,2000.
    [40]胡向阳,熊琦华,吴胜和.储层建模方法研究进展.石油大学学报(自然科学版),2001,25(1):110-114.
    [41]张团峰,王家华,景平等.三维储层随机建模与随机模拟技术研究.中国数学地质,1996,(7):15-19.
    [42]何琰,殷军,吴念胜.储层非均质性描述的地质统计学方法[J].西南石油学院学报,2001,23(3):13-15.
    [43]王端平,杨耀忠,龚蔚青,等.沉积微相约束条件下的随机地质建模方法及应用研究[J].科技通报,2004,20(2):121-126.
    [44]李少华,等.沉积微相控制下的储层物性参数建模[J].江汉石油学院学报,2003,25(1):24-29.
    [45]姜香云,王志章,吴胜和.储层三维建模及在油藏描述中的应用研究[J].地球物理学进展,2006,21(3):902-908.
    [46]朱良峰,潘信.地质断层三维构模技术研究[J].岩土力学,2008,29(1):274-278.
    [47]吴胜和,金振奎,黄沧钿等.储层建模[M].北京:石油T业出版社,1999.3-111.
    [48]肖席珍译.水平井流入动态计算公式.国外石油地质,1999,21(3):39-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700