低品位黄铜矿细菌浸出机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从细菌浸出的热力学、电化学、细菌学原理讨论了黄铜矿细菌浸出的机理,并在银离子存在下,细菌(主要是氧化亚铁硫杆菌)浸出时热力学上的可行性。且从电化学位分析了银离子催化细菌浸出黄铜矿的机理。
     研究中发现彭州铜矿矿石成份是黄铜矿—石英—黄铁矿体系,从电化学上分析它是一种非常难浸的铜矿,在只用细菌而不加金属离子催化时,浸出25天后其浸出率只有扣4~9%。它的浸出率低的原因有两个方面:一是从电化学上来看,石英阻碍了黄铜矿与黄铁矿之间接触,因此不利于电化学反应;二是矿石中铁的含量高,在溶液中细菌将黄铁矿中铁转化成三价铁之后,三价铁抑制铜的浸出。将金属银离子加入到浸出体系中,最优条件下浸出25天后其浸出率提高到81%,银离子能提高黄铜矿中铜的浸出率。添加银离子之后,银离子迅速地与硫结合生成硫化银,三价铁离子不断地将硫化银转化为银离子的过程中,也减少了溶液中三价铁离子对细菌浸出过程中黄铜矿对铜的抑制。从电化学来看,Ag_2S在硫化物中电位最正,它可以与黄铜矿等硫化物组成原电池,电动势较大,硫化银的溶解度比很多硫化物要小得多,银离子取代黄铜矿中的金属离子,在矿粒表面生成硫化银与被浸硫化物组成大量的微小原电池,从而促进黄铜矿中铜的浸出。
     在细菌浸出黄铜矿时,细菌主要是直接浸蚀矿物,可以用细菌直接浸出机理建立的数学模型来预测黄铜矿的浸出率。在有银离子参与的细菌浸出黄铜矿体系时,银离子主要是先取代黄铜矿中的金属离子,铜离子被不断地浸出,可以用细菌间接浸出机理建立的核收缩模型来预测黄铜矿的浸出率。
This thesis discussed the bioleaching mechanism for chalcopyrite from the aspects of thermodynamics .electrochemistry and bacteriology. The bacteria strain used in this study is thiobacillus ferrooxidans. In the presence of Ag ion, the feasibility of bacterial leaching of chalcopyrite in thermodynamics also be debated. Meanwhile, the mechanism and principle of Ag ion catalyzing bacterial leaching of chalcopyrite are analyzed.
    The Pengzhou copper ore located in Sichuang Province is composed of chalcopyrite-quartz-pyrite. It is difficult to leaching from electrochemistry. The leaching rate is only 4-9% after 25 days leaching when there is only bacteria and without silver ions. The reasons of lower leaching rate locate in two sides: one is that the quartz impede the contact between chalcopyrite and pyrite from the electrochemistry view. So it is disadvantage to reaction by electrochemistry. On the other side, there is too higher iron ions concentration in the copper ores, and the ferric ions restrain the leaching of copper when the bacteria transform the ferrous ions into ferric ions. Under the optimized conditions, the leaching rate of copper significantly increases to 81% after 25 days leaching with Ag ions catalyzing. Therefore the Ag ions can remarkably improve the bioleaching rate of copper in chalcopyrite. When the Ag ions are added to the leaching system, it rapidly combine with sulfuric ores and form precipitated silver sulfide. During the ferric ion ceaselessly transform the silver sulfides into Ag ions, which reduce the ferric ions restraining to copper leaching. In the view of electrochemistry, the silver sulfide voltage is the highest positive in many kinds of sulfides. It can form a million of micro-cell with chalcopyrite, and the solubility of sulfuric silver is lower than other sulfides. Ag ions substitute the metallic ion in the chalcopyrite. So the many of tiny cells composed of silver sulfide with sulfides are produced on the surface of the copper ore, which promote the process of leaching of chalcopyrite.
    While the bacteria leaching chalcopyrite, the bacteria chiefly corrode the ore surface by direct adsorption, the mathematic model produced by bacterial direct leaching mechanism can well predict the bioleaching rate of chalcopyrite. In the presence of the Ag ions, it can circularly substitute metallic ions of chalcopyrite, the copper ions are produced continuously. So the Ag ions catalyzing bacterial leaching kinetic models produced by bacterial indirect leaching mechanism can well predict the rate of copper hi chalcopyrite.
引文
[1]Bemoth. L..Firth I..McAllister.P.. et.al., Minerals & Metallurgal Processing, 2000,17(2):105~110
    [2]Bricrley.J.A.. Brierley. C.L.. Hydrometallurgy,2001,59(2-3):233~239
    [3]U.S.Patent,2829964.1958
    [4]裘荣庆,微生物冶金的研究和应用现状,微生物学通报,1995,22(3):180~183
    [5]陈顺方,钟文远,难浸硫化金矿的微生物氧化预处理及应用现状,国外金属矿选矿,2000.2:6~8
    [6]刘汉钊,张永奎,微生物在矿物工程上应用的新进展,国外金属矿选矿,1999.12:9~12
    [7]Deng.T.L..Liao.M.X..Wang.M.H..et al..Minerals Engineering, 2000, 13(14-15):1543~1553
    [8]Sato,H.,Nalazawa.H.,Kudo,Y.,International J of Mineral Processing, 2000, 59:17~24
    [9]汪模辉,谭龙华,王俊,金属离子在细菌浸取金属硫化矿中的催化作用,应用化学,1997,14(5):55~58
    [10]Sandoval. S.P.. Pool.D.k.. Schultze. L.E., Reports of Investigation on Bureau of Mines.USA,Part Ⅰ.No.9311.1993.pp1-12:Part Ⅱ,No.9381,1993,pp1-11
    [11]汪模辉,邓天龙,廖梦霞,含砷金矿的磁场强化生物预氧化,应用化学,2000.17(4):362~365
    [12]C.Poligiani et.al.. A need for direct contact with particale surfaces in the bacterial oxidation of in the absence of a chemical Lixivaiant. Biotechnology Letters. 1990.12(7):515~518
    [13]Monod. The growth of bacterial cultures, Ann. Rev. Microbiol., 1949, 3:371~394
    [14]M.Boon. C.Ras.J.J.Heijnen.The ferrous iron oxidation kinetics of thiobacillus ferrooxidans in batch cultures. Appl. Microbiol. Biotechnol., 1999,51:813~819;
    [15]M.Boon,T.A.Meeder. The ferrous iron oxidation kinetics of thiobacillus ferrooxidans in continuous cultures, Appl. Microbiol. Biotechnol. 1999, 51: 820~826:
    [16]Soumito Nagpal. A structured model for thiobacillus ferrooxidans growth on ferrous iron. Biotechnology and Bioengineering,1997,53(3):310~318;
    [17]M.S.kiu,R.M.R.Branion,The effects of ferrous iron,dissolved oxygen,and inert solids concentrations on the growth of thiobacillus ferrooxidans,The Canadian Journal of Chemical Engineering,1988,66:445~451;
    [18]P.Bhattacharya, P.Sarkar and R.N. Mukherjea, Reaction kinetics model for chalcopyrite bioleaching using thiobacillus ferrooxidans, Enzyme Micro. Technol.,1990.12:873~876
    [19]B.W. Madsen. M.E. Wadsworth.R.D. Groves, Application of a mixed kinetics model to the leaching of low grade copper sulfide ores, Transactions Society of Mining Engineers, AIME,1975,258:69~74
    
    
    [20]M.A.Blancarte-Zurita,et.al., Particle size effects in the microbiological leaching of sulfide concentrates by thiobacillus ferrooxidans, Biotechnology and Bioengineering, 1986, Ⅹ Ⅹ Ⅷ, 751~755
    [21]G.Roy Chaudhury,L.B.Sukla,R.P. Das, Kinetics of Bio-chemical Leaching of sphalerite concentrate,Metallurgical Transactions B,1985,16B:667~670
    [22]H.Sohn and M.E. Wadsworth,Rate processes of extractive metallurgy, Plenum Press, London, 1979:141~143
    [23]G.Roy Chaudhury and R.P. Das,Bacterial Leaching—Complex sulphides of copper, lead and zinc, International Journal of Mineral Processing, 1987,21:57~64
    [24]F.Habashi, Principles of extractive metallurgy, Plenum Press, London, 1969:111~164
    [25]F.K.Crundwell, Mathematical modelling of batch and continuous bacterial leaching, The Chemical Engineering Journal,1994,54:207~220;
    [26]Satoru Asia, Yasuhiro Konishi and Katuya Yoshdia, Kinetic model for batch bacterial dissolution of pyrite particles by thiobacillus ferrooxidans,Chemical Engineering Science,1992,47(1):133~139;
    [27]D.A.Holtum,难处理硫化金矿的细菌堆浸,湿法冶金,1995(3):56~64
    [28]常志东,张晨鼎,王红旺等,氧化亚铁硫杆菌对硫铁矿和含铜硫铁矿浸矿动力学研究,湿法冶金,1997,9(3):4~8
    [29]闵小波,柴立元,钟海云等,氧化亚铁硫杆菌生长动力学参数,中国有色金属学报,2000,10(3):440~443
    [30]童雄,微生物浸矿的理论与实践,冶金工业出版社,1997,北京
    [31]Comustin et. al., Biotechnology and Bioengineering 1992,39:1121~1127
    [32]Gaidarjiev S. et al.,In:11 th Inter. Min. proc. Cong.,1975
    [33]H.G.施莱杰编,陆卫平等译,普通微生物学,复旦大学出版社,1990,第一版
    [34]柳建设,邱冠周,王淀佐,硫化矿物细菌浸出机理探讨,湿法冶金,1997,9,1~3
    [35]胡岳华,康自珍,氧化亚铁硫杆菌的细菌学描述,湿法冶金,1996,12:36~40;
    [36]K.A.兰特拉金,硫化矿生物浸出电化学,国外金属矿选矿,1997,2:44~54
    [37]张英杰,杨显万,硫化矿浸出过程的热力学,贵金属,1998,19(3):26~29
    [38]邱冠周,王军,钟康年等,银催化铜矿石的细菌浸出,矿冶工程,1998,18:3,22~25
    [39]兰正学编,化学热力学计算,陕西科学技术出版社,1986,第一版
    [40]Munoz P. B., Miller J. D., Wadsworth M. E., Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite, Metallurgical Transaction B. 1979, 10B(2) 149~158
    [41]浸矿技术编委会编,浸矿技术,北京:原子能出版社,1994
    
    
    [42]岩石矿物分析编写组,岩石矿物分析,北京:1991
    [43]蒋汉瀛,湿法冶金过程物理化学,冶金工业出版社,1984
    [44]周群英,高廷耀编,环境工程微生物学,北京:高等教育出版社,2000
    [45]K.A. Third, Hydrometallurgy,2000,57(2):225-233
    [46]薛光著,银的分析化学,北京:科学出版社,1998
    [47]张维庆,魏德洲,沈俊,氧化亚铁硫杆菌对黄铜矿的氧化作用,矿冶工程,1999,19(3):30~33
    [48]Ballester A., A study of the mechanism of silver-catalysed bioleaching of chalcopyrite in separation process in hydrometallurgy, Ed by Davies G.A., Ellis Horwood Public London, 1987,99~110
    [49]Coto O., Ballester A., Blazquez M.L.,Gonzale F., Bioleaching of a Cuban copper concentrate in the presence of silver, Biorecovery,1993,2:121~140
    [50]北京师范大学,华中师范大学,南京师范大学无机化学教研室合编,无机化学,下册,第二版,北京:高等教育出版社,1986
    [51]黄胜涛编,固体X射线学(一),北京:高等教育出版社,1985
    [52]Braun,R.L.,Lewis,A.E.,Wadsworth,M.E., In: Solution Mining Symp., AIME, New York,.Y., 1975, 295~323
    [53]Miguel N.Herrera, Jacques V.Wiertz Paulina Ruiz,Heinz J.Neuburg, et.al. A phenomenological model of the bioleaching of complex sulfide ores,Hydrometallurgy,1989,22:193~206;
    [54]Heinz J. Neuburg, Jorge A.Castillo, Miguel N. Herrera, et. al., A model for the bacterial leaching of copper sulfide ores in pilot-scale columns, International Journal of Mineral Processing, 1991,31,247~264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700