硫铁矿烧渣的微生物脱硫的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫铁矿烧渣是在硫酸生产过程中产生的固体废弃物,它一般含铁30%-50%或更富,并含有一定量的铜、铅、锌等有色金属,金银等贵金属及稀有放射性金属。我国每年要排放数百万乃至千万吨烧渣。长期以来硫铁矿烧渣采用堆填处置,不仅占用了大量耕地,而且浪费了资源,破坏了环境。根据烧渣中组分的性质进行多用途开发,不仅可以解决烧渣带来的污染,减轻环境压力,并且可以弥补资源不足。世界上各主要利用硫铁矿生产硫酸的国家,其硫铁矿烧渣的综合利用率一般较高。据文献报道,日本的烧渣利用率为75-80%,德国将近100%。其主要原因是各发达国家均使用硫磺或含硫45%以上且杂质较少的硫铁矿制酸(前苏联将含硫48%定为标矿,美国定为52%),硫铁矿烧渣含铁量高(如美国、西班牙、塞浦路斯、挪威、芬兰等国其烧渣含铁量一般均在53%-58%),烧渣可直接用于炼铁,基本上无烧渣污染问题。我国将硫铁矿的标矿定为含硫35%,这个标准使硫铁矿烧渣含铁量较低,硫等杂质过高,难以直接炼铁,必须脱硫选铁。
     目前降低含硫量的方法主要是湿法选矿。若硫以可溶性硫酸盐的形式为主,属无效硫,用湿法选矿脱硫效果较明显(约50%)。而当硫化物含量高时可用磁化焙烧—磁选等工艺脱硫。国内已有许多选铁脱硫的研究,但由于选别效率低,选矿成本高,经济效益不明显等因素,限制了烧渣的应用,可见,进一步寻找一种成本低,工艺及操作简单合理,经济效益可观的新途径非常必要。
     本课题拟在对硫铁矿烧渣利用及其现状进行综合考察的基础上,针对传统选矿法脱硫生成炼铁用的铁精矿工艺复杂,脱硫率低,投资费用和运行成本高的缺点,利用X射线等检测方法对硫铁矿烧渣进行了主要成分分析,并进行了S的赋存状态的研究,探讨了利用细菌脱除烧渣中硫元素生成铁精矿的可行性,就矿石粒度、矿浆浓度和细菌浓度等因素对脱硫率的影响进行试验研究,并通过正交实验确定了各自最佳参数,探讨了加快脱硫速率的办法。
     硫铁矿烧渣的微生物脱硫运行成本低,不产生二次污染,工艺简单,既有经济效益和环境效益,又具有重要的现实意义。
Pyrite slag is a kind of solid wastes produced in sulfuric acid production line. In our country millions of tons of pyrite slag were let out every year. For long time the treatments of the pyrite slag was heaping or filling, which not only took up the farmlands, but also wasted the resources.According to the kind of constituent of pyrite slag, people can proceed many useful developments, which can not only solve the pollution of the pyrite slag and alleviative the environmental pressure, but also can make up for the shortage of resource. In the world, many countries thatproduce sulphic acid with pyrite can make use of pyrite slag with a high efficiency. But in our country, because concentration of ferric in pyrite slag is too low, and concentration of sulphur of those is too high, it can not be cast into iron. Consequently, it is necessary to low concentration of sulphur of pyrite slag.
    Currently, the method of removing sulphur is mainly wet mineral process. Because the dissoluble sulphur belong to useless sulphur, it is good for wet mineral process to remove sulphur.However, when the concentration of sulphur is very high, the process of magnetizing reduction is feasible. There are many researchments on increasing ferric and removing sulphur. But these efficiencies are very low, and the expense are very large. That is to say, the economic performance is not obvious. It has limited the application of pyrite slag.therefore, it is necessary for us to look for a kind of lower cost, more simple, more economical and more reasonable technology.
    On the basis of studing the existence of the application of pyrite slag, this thesis made use of many methods including x-ray to investigate the constituent of pyrite slag, and research on existence of sulphur.In addition, It discussed the feasibility of removing sulphur with bacterial in order to produce material of steel,and researched on factors that can have effect on removing sulphur.
引文
[1] 张培梧,葛秋萍.我国硫铁矿烧渣综合利用的研究与实践概况.化工环保,1996,16(3):146-151
    [2] 魏祥松.硫铁矿烧渣特性及综合利用.化工地质,1994.16(3):205-209
    [3] 吴晓斌,邓仕槐.硫铁矿渣中铁提取技术的研究.环境工程,1998.16(4):65-67
    [4] Wang Xuesong.. Characteristics of Pyrite Cinder and its Application. 1999, 17(1): 58-61
    [5] Goksel, AM; Schott, TA.. Recovery of iron from pyrite cinder by the MTU-Pelle Tech process. American Institute of Mining Engineers 113th Annual Meeting, Los Angeles, CA (USA), 26 Feb-1 Mar 84. (World Meeting Number 8410024)
    [6] Lav, Abdullah Hilmi; Sutas, llhan. Use of pyrite cinder as filler in flexible road pavements. TEK DERGI, 1993, vol. 4, no. 1, pp. 631-642
    [7] Dimitrova, M. A Possibility for Obtaining Iron Concentrate From Pyrite Cinder. Verlag Stahleisen, P 1. 2. 1-P 1. 2. 2, 1986.
    [8] F. Mijangos etc.. Pressure Drop Changes During Dissolution of Pyrite Cinder in a Fixed Bed. Powder Technology. 2001, 115 (1): 75-83
    [9] J. Vin. als, M. J. Balart, A. Roca, Inertization of pyrite cinders and co-inertization with electric arc furnace. dusts by pyroconsolidation at solid state. Waste Management22(2002)773-782
    [10] Olsen, SE; Tveit, H. Composite Briquettes of Pyrite Cinder, Silica and Carbon Materials. NMA Nurnberger Messe und Ausstellungsgesellschaft, pp. 73, 74, 1981
    [11] 田永淑.硫铁矿烧渣的综合利用途径.中国资源综合利用,2001:19-20
    [12] 过祖根.浅析硫铁矿烧渣综合利用的方法.钢铁设计,1994(3):31-37
    [13] 刘闯,蒋其胜.论硫铁矿烧渣的再生与利用.安徽地质,2000,10(4):290-293
    [14] 韦德科,崔湘玲.硫铁矿烧渣的利用探讨.化工矿山技术,1997:38-40
    [15] 高志钢,郑吉建.硫铁矿烧渣回收再利用.无机盐工业,1999,31(2):36-37
    [16] 陈永德,刘欣.硫铁矿烧渣的综合利用.大化科技,1996(3):1-5
    [17] 徐晓春,孙雪南.高温浸出微生物的选育探索.稀有金属,2002.5(3):210-213
    [18] 张广积,方兆衍。生物氧化浸出的发展和现状.黄金科学技术,2002.12(6):28-35
    [19] 张在海,王淀佐,邱冠周.细菌浸山的细菌学原理.湿法冶金,2000.9(3):16-21
    
    
    [20] 邱冠周,王军,钟康年等.浸出细菌的育种及工业应用.国外金属矿选矿,1998.6:29-33
    [21] 罗廉明,王军.提高细菌浸出速度的方法研究.矿产保护与利用,1999.8(4):22-26
    [22] 彭容善.黄麦岭硫铁矿渣再生利用技术探析.IM&P化工矿物与加工,2001(8):22-24
    [23] 张勋道,石合力.关于提高烧渣铁品位的试验报告.硫酸工业,1994(4):28-30
    [24] 杨华明,占寿祥.硫铁矿烧渣提纯制铁精矿的试验研究.IM&P化工矿物与加工,2002(3):4-6
    [25] 张晨鼎,姜成瑛.含铜硫铁矿的生物氧化和传质.内蒙古工业大学学报,1992(1):1-5
    [26] Bosecker. K, Leaching of Lateritic Nickel Ores With Heterotrophic Microorganisms, Elsevier Science Publishers, pp. 367-382, 1986
    [27] Valix, M; Tang, JY; Cheung, WH, The effects of mineralogy on the biological leaching of nickel laterite ores, Minerals Engineering (UK), vol. 14, No. 12, pp. 1629-1635, Dec. 2001
    [28] Groudev, SN; Groudeva, VISmall-Scale Feasibility Study of the Biological Leaching of Gold From Ores The Institution of Mining and Metallurgy, pp. 221-227, 1990
    [29] Bernoth. L., Flrtl cll, ster.P Mlnerals&Metallurgal Processing, 2000, 17(2): 105-110
    [30] Brlerle, Brlet-ledrometailurgy. 2001, 59(2-3): 233-23931 IU. S. Patent, 2829964. 1958
    [31] 裘荣庆.微生物冶金的研究和利用现状.微生物学通报,1995,22(3):180-183
    [32] 陈顺万,钟文远.堆浸硫化矿的微生物氧化预处理及应用现状.国外金属矿选矿,2000.2:6-8
    [33] 裘荣庆.微生物在矿物工程上应用的新进展.国外金属矿选矿,99,12:9-12
    [34] DengTL. L I. H etal. Minerals Engneering, 2000, 13(14-15): 1543-1553
    [35] Sato, H. Nalazaa. H, Kudo, Y, Internationality of Mineral Processing, 2000, 59: 17-24
    [36] 汪模辉,谭龙华,王俊.银离子在细菌浸取金属硫化矿中的催化作用.应用化学,1997,145:55-58
    [37] Sando. S. P, Pool. D. L. SchutzeLE., Reports of Investigation on Bureau of 1 Ines. US ApartlO.93 1 11993, pp112 Partfl, No. 9381, 1993, P1-11
    [38] 汪模辉,邓人龙,枣梦友.含砷金矿的磁场强化生物预氧化.应用化学,2000,17(4):362-365
    
    
    [39] C. Pollg,. A need for direct contact with scale surfaces in the bacterial oxidation of In the absence of a chemical Lixivaiant. Biotechoology Letters, 1990.12(7): 515-518
    [40] Ionod. The grooth of bacterial cultures, Ann.Rev. Microbiol., 1949, 3: 371-394
    [41] M. Boon C. Ras. J. J. HelJnen,The ferrous iron oxidation kinetics of thiobacillus ferroxidans, In batch cult-Ures, Appl. Mlcroblol. Biotechnol., 1999, 51: 813-819
    [42] M. Boon, TA. Meeder, The ferrous lron oxidation kinetics of thiobacillus ferrooxldans: continuous cultures, Appl. Microbiol. Biotechnol. 1999, 51: 820-826
    [43] Soum to Nature al. A structured model for thiobacillus ferrooxidans growth on ferrous iron technology and Bio-engneering, 1997, 53(3): 310-318
    [44] S. Liu, R. Branaon, The effects of ferrous iron, dissolved oxygen, and melt solids concentrations on the earth of thiobacillus ferrooxidans, The Canadian Joumal of Chemical Engineering, 1988, 66: 445-551
    [45] 1PBhattacha a, P. Sarkar and R. N. Mukheea, Reaction kinetics model for chalcoPyrlteb, leaching using thiobacillus ferrooxidans, Microbial Technolgy, 1990. 12: 73-876
    [46] H.G.施莱杰编,陆卫平译.普通微生物学.复旦大学出版社,1990,第一版
    [47] 柳建设,邱冠周,王淀佐.硫化矿物细菌浸出机理探讨.湿法冶金,1997,9:1-3
    [48] 胡岳华,康自珍.氧化亚铁硫杆菌的细菌学描述.湿法冶金,1996,12:36-40
    [49] K.A.兰特拉金.硫化矿生物浸出电化学.国外金属矿选矿,1997,2:44-4
    [50] 张英杰,杨显万.硫化矿浸出过程的热力学.贵金属,1998,19(3):2-29
    [51] 邱冠周,王军,钟康年等.银催化铜矿石的细菌浸出.矿冶工程,1998,18:3,22-25
    [52] 兰正学编,化学热力学计算.陕西科学技术出版社,1986,第一版
    [53] JMunoz P. B., Miller J. D., Wadsworth M. E., Reaction mechanism for the acidferrous sulfate leaching of chalcoPte, Metallurgical Transaction B. 1979, 10B(2)149-158
    [54] 浸出技术编委会编.浸出技术.北京:原子能出版社,1994
    [55] 童雄编著.细菌浸出的理论与实践.冶金工业出版社,1997
    [56] 魏德洲著.资源微生物技术.冶金工业出版社,1996
    [57] 何淑琴.国外金属矿选矿.1998,No.2,21-26
    [58] 《化学发展简史》编写组.化学发展简史.科学出版社,1976.56-71
    [59] 孙凤琴,杨佼庸.矿冶,1996,No.1,63
    [60] 刘汉钊.国外金属矿选矿,1957,No.7,10
    [61] 张冬艳,张通.湿法冶金,1996,No.3,23
    
    
    [62] 马德彪.湿法冶金,1996,No.3,15
    [63] 刘大星.采用浸出一萃取一电积技术处理氧化铜矿和低品位铜矿的进展.97铜萃取技术研讨会,1997年5月
    [64] Colmer, A. R...science, 1947, 106, P253-256
    [65] Pesic, B.. Biotechnology and bioengineering, 1989, 33, P428-439.
    [66] Jones, B. I. J. chem. Tech. Biotechnol., 1983, 33B, P241-261
    [67] Suzuki, L.. ApPI. Environ, Microbial, 1989, 55(10), P2588-2591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700