机械活化强化含砷金精矿浸出的工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在总结前人对含砷难浸金矿处理和机械活化强化浸出过程等研究工作的基础上,提出了如何用现代分析测试手段更进一步地研究机械活化强化湿法浸出的机理问题。以广西贵港含砷金精矿和载金矿物—黄铁矿和砷黄铁矿为试验物料,分别在常规的搅拌浸出设备、机械活化设备(搅拌磨、滚筒磨和振动磨样机)中进行试验,并结合扫描电镜和X射线衍射精确分析等手段,主要进行了如下几个方面的研究:
     (1)次氯酸钠一步法浸金的工艺条件研究,找出影响金浸出率的主要因素;
     (2)考察机械活化方法强化液固浸出过程的热力学和动力学;
     (3)寻找不同机械活化方式对难处理金矿浸金的影响和强化效果;
     (4)探讨表面不作喷涂处理能在扫描电镜下测试半导体矿物表面形貌特征的分析方法;
     (5)通过表面形貌特征来研究机械活化强化浸出过程的机理;
     (6)采用X射线衍射物相分析、差热分析和比表面分析等多种测试手段,进一步验证机械活化强化浸出过程和机理。
     通过上述的研究,根据实验结果和理论分析,得到如下主要结论:
     (1)在NaOH-NaClO体系中,Au、As、S可以同时一步浸出,且As、S的浸出的热力学趋势较大,而Au主要以H_2AuO_3~-和HAuO_3~(2-)形式存在,但对应的热力学自发趋势相对较小;浸出过程受化学反应和内扩散的混合控制。
     (2)在NaOH—NaClO浸金体系中机械活化有强化矿物浸出的作用。在次氯酸钠和氢氧化钠的初浓度分别为2.3和1.0mol/L、液固比为10的条件下,在滚筒磨中用φ4mm、含Al_2O_395%的刚玉球作活化介质活化浸出50~60min时,Au浸出率达到峰值,由无活化时的60%增加到85%,提高了40%左右;As和S的浸出率也分别提高了11%和27%。
     (3)伴生矿物被激活、次氯酸钠受热分解损失和金精矿中有机碳的存在是NaOH-NaClO浸金体系中Au浸出率随反应时间的变化呈波峰形态的主要原因,提高次氯酸钠初浓度可消除这种影响。
     (4)改进扫描电镜的分析方法可直观清楚地观察到矿物在机械活化作用后的表面形貌特征。经X射衍射高纯硅内标精确分析、晶胞常数、晶胞体积、晶面间距和无序度计算、差热、密度和比表面积分析,一致证实了在机械活化后
    
    矿物晶体有无定形化物质的存在。在扫描电镜分析中矿物表面出现的絮状物是
    无定形化物质的形象表现。
     (5)在机械活化浸出过程中,矿物获得能量使晶格变形并产生缺陷,表现为
    在矿物晶体上产生高能量高活性的无定形化物质,使反应物的△fC增加,热力
    学自发反应的趋势增大;使矿物与浸出剂的反应改变为无定形化物质与浸出剂
    的反应,由于改变了反应途径,降低了反应过程的活化能,从而使浸出过程得
    以强化。
     (6)机械活化强化浸出过程的效果随活化时间的增加而增加,一般在活化
    60min后即有明显的活化效果。在实验所用的活化设备中,活化效果的大小顺序
    是:搅拌磨>滚筒磨>振动磨样机。高密度材质的磨介质其活化效果较好,而
    磨介质的直径取决于进入反应体系的固体物料的大小。对于反应过程存在可逆
    过程的气液平衡体系,以选用密封体系的滚筒磨所获得的强化浸出效果较好;
    当反应过程为不可逆过程时,选用敞开体系的搅拌磨其强化效果更为显著。对
    次氯酸钠浸金体系,以选用滚筒磨较为合适。
     (7)在搅拌磨中用叻4~、含A】20395%的刚玉球作活化介质活化60min时,
    毒砂的晶胞体积变化、无序度变化和晶面间距的变化分别增大了0.4%、11 .0%和
    0.1%左右,特征放热峰值温度由未活化时的546.4℃下降到5 14.5℃;黄铁矿对
    应的变化分别增大了0.2%、8.0%和0.1%左右,特征放热峰值温度由未活化时的
    414.2℃下降到367.8℃。在相同的活化条件下,毒砂比黄铁矿更易活化。
     此外,本研究解决了半导体矿物在扫描电镜下不作表面喷涂处理的测试问
    题,通过对机械活化强化浸出过程的机理研究,解释了原来需在苛刻条件(高
    温、高压、高浓度)下才能进行的反应,而在机械活化作用下却可以在较缓和
    的条件下进行、某些用常规热力学计算认为是不可能进行的反应,在机械活化
    作用下却能够顺利地自发进行到底、一些在常规条件下进行得较慢的反应而在
    机械活化作用下能够加速进行的原因。该研究结果可应用到各种浸出过程特别
    是浸出条件苛刻、浸出速率较慢的浸出反应、矿物加工和材料工程等领域,因
    而具有较大的实用价值。
On the basis of summarization of the research results on the treatments of arsenic refractory gold ores and the leaching process of mechanical activation enhancing leaching, how to further study on the mechanism of mechanical activation enhancing leaching has been put forward by means of using modern analysis and test apparatus. Following several questions have been researched using Guangxi Guiguang arsenic-bearing gold concentrate and gold-carrying minerals-pyrite and arsenopyrite as test materials in the normal stirring leaching equipment and mechanic activation equipment ( stirring mill, rolling mill and vibrating grinder) respectively with the combination of modern analysis and test means, such as scanning electron microscope(SEM), X-ray diffraction (XRD) accurate analysis and so on:
    (D Researches on the technological conditions of one step leaching gold by sodium hypochlorite for finding the main influencing factors of gold leaching rate;
    (2) Examining thermodynamics and dynamics of enhancing liquid solid leaching process using mechanical activation ways;
    (3) Looking for the effects of different mechanical activation ways on the gold leaching from refractory gold ore and the enhancing effects;
    (4) Exploring the analysis method to test the characteristics of shape and appearance of semiconductor minerals by SEM without coating on the surface;
    (5) Studying the mechanism of mechanical activation enhancing leaching by the characteristics of shape and appearance;
    (6) Further verifying the process and the mechanism of mechanical activation enhancing leaching by the use of various test means including XRD, differential thermal analysis(DTA), specific surface analysis and so on.
    The following main conclusions have .been obtained on the basis of the experimental results and theoretical analysis through above researches:
    ?In the system of NaOH ?NaCIO, Au, As and S can be leached simultaneously by one step, in addition, the leaching thermodynamics trends of As and S are bigger, but Au is mainly existed in the presence of H2AuO3" and HAuO32", the corresponding thermodynamics trend is smaller. The leaching process is
    
    
    mix-controlled model by chemical control and inner diffusion control.
    (D Mechanical activation can enhance the mineral leaching in the leaching gold system of NaOH桸aClO. The leaching rate of Au is up to peak by using 04mm corundum ball with 95% A12O3 as activation medium for 50~60min in the rolling mill when the initial concentration of sodium hypochlorite and sodium hydroxide are 2.3 mol/L and l.Omol/L respectively and liquid-solid ratio is 10, the leaching rate of Au is increased to 85% from 60% without activation, about 40% Au leaching rate is promoted. The leaching rate of As and S also are enhanced by 11% and 27% respectively.
    (3) The activation of accrete minerals, the heating decomposition loss of sodium hypochlorite and the presence of organic carbon in gold concentrate are the main reasons for the change of Au leaching rate with the change of reaction time hi wave peak state in the gold leaching system of NaOH-NaClO, it can clear this influence by increasing initial concentration of sodium hypochlorite.
    (4) The characteristics of shape and appearance of minerals after mechanical activation can be observed clearly and directly with improved SEM analysis way. Through XRD accurate analysis with the internal standard method of high-purified silicon, the calculation of unit cell constant, unit cell volume, interplanar distance and disordered degree, and the analysis of DTA, density and specific surface, the presence of amorphous substance on the mineral crystal after mechanic activation is verified unanimously. Floccule watched on the mineral surface in the analysis of SEM is live embodiment of amorphous substance.
    (5) In the leaching process of mechanical activation, minerals obtain energy and this energy makes crystal lattice distortion and produce defect, this embodiment is to produce high energy and high activity amorphous substance on the mineral crystal, A7G?of reactants is increased
引文
[1] 聂树人,索有瑞.难选冶金矿石浸金[M].北京:地质出版社,1997.
    [2] Ostwald W. Handbuch der allgemcinen chemic[M]. Vedagsanstalt: Leipzig, 1919: 71.
    [3] Peters K. Mechanochemische Reaktionen [J]. Frankfurt., 1962: 78-98.
    [4] 李运姣,李洪桂,刘茂盛,等.浅谈机械活化在湿法冶金中的应用[J].稀有金属与硬质合金,1993,(3):38-42.
    [5] 刘今,龙志奇,巩前明,等.力化学对铝土矿溶出的作用[J].中南工业大学学报,1999,30(3):266-269.
    [6] 李运姣,李洪桂,刘茂盛,等.平果铝土矿机械活化溶出的研究[J].中南矿冶学院学报,1994,25(1):49-54.
    [7] Welham Nicholas J. Effect of extanded milling on minerals [J]. CIM Bulletin, 1997, 90(1007): 64-68.
    [8] Balaz P, Kammel R. Application of attritors in hydrometallurgy of complex sulfide ores [J]. METALL, 1996, 50(5): 345-347.
    [9] Balaz P, Ficeriova J, Sepelak V, et al. Thiourea leaching of sliver from mechanically activated tetrahedrite[J]. Hydrometallurgy, 1996, 43(1-3): 367-377.
    [10] 李洪桂,杨家红,赵中伟,等.黄铜矿的机械活化浸出[J].中南工业大学学报,1998,29(1):28-31.
    [11] 孙培梅,李洪桂,李运姣,等.机械活化碱分解独居石新工艺[J].中南工业大学学报,1998,29(1):36-38.
    [12] 李运姣,李洪桂,孙培梅,等.湿法炼锌浸出渣的处理[J].中南工业大学学报,1996,27(6):671-675.
    [13] 周金云,李洪桂,李运姣.锌浸出渣的选择性酸浸研究[J].广东有色金属学报,1997,7(1):32-36.
    [14] Rossovsky S N. Alkaline leaching of refractory gold arseno-sulphide concentrate [J]. CIM Bulletin, 1993, 86: 971-972.
    [15] 杨华明,邱冠周.细磨氰化浸金新工艺的研究[J].稀有金属,1999,23(1):13-15.
    [16] 孟宇群,吴敏杰,段礼锁.TW塔式磨浸机在处理含砷难浸金精矿中的应用[J].黄金,1999,20(7):40-41.
    [17] 赵中伟.含金硫化矿的机械化学及其浸出工艺研究[D].长沙:中南工业大学,1995.
    [18] 赵中伟.从分形几何学看机械活化对化学反应的加速效应[J].稀有金属与硬质合金,1998,(1):1-4.
    [19] Urakaev F Kh, Boldyrev V V. Mechanism and kinetics of mechanochemical processes in comminuting devices, 1. Theory[J]. Powder Technology, 2000, 107(1): 93-107.
    [20] Boldyrev V V. Mechanochemistry and mechanical activation of solids [J]. Solid State Ionics, 1993, 63-65: 537-543.
    
    
    [21] Chen Y, Hwang T, Marsh M, et al. Study on mechanism of mechanical activation[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 1997, A226-228: 95-98.
    [22] 郭长阁.含砷难浸金矿的处理综述[J].国外金属矿选矿,1995,(3):1-7.
    [23] 王菊香.浅淡含砷金矿提金前的预处理工艺及合理选择[J].冶金矿山设计与建设,1997,29(6):23-26,34.
    [24] 姜涛.提金化学[M].长沙:湖南科学技术出版社,1998.
    [25] Fleming C A. Hydrometellurgy of precious metals recovery [J]. Hydrometallurgy, 1992, 30: 127-162.
    [26] 王力军,刘春谦.难处理金矿石预处理技术综述[J].黄金,2000,21(1):38-45.
    [27] 黄孔宣.国外难浸矿石处理厂知多少[J].国外黄金参考,1993,(7):31-32,封三.
    [28] 张秀华.难选冶金矿石预处理工艺现状[J].湿法冶金,1998,(3):13-18.
    [29] 刘汉钊.难处理金矿石难浸的原因及预处理方法[J].黄金,1997,18(9):44-48.
    [30] 肖松文,曾子高,梁经冬.难浸金矿预处理技术的现状与发展[J].国外金属矿选矿,1996(7):8-11.
    [31] 许鹏秋.难浸金矿石的处理工艺[J].国外黄金参考,1993,(12):5-11.
    [32] 肖松文,梁经冬.难浸金矿焙烧处理的新进展[J].黄金,1993,14(6):27-30.
    [33] 郭保群.难浸贵金属矿石的石灰焙烧[J].国外黄金参考,1993,(12):35-38.
    [34] 李智伟.难浸金矿处理工艺新进展[J].有色金属设计,1998,25(3):10-15,45.
    [35] 刘汉钊,金永铎.富砷炭超微细粒金矿提金工艺探寻[J].国外金属矿选矿,1996,33(3):16-20.
    [36] 刘建军,梁经冬,曾子高等.国内外固化焙烧难浸金矿工艺的现状及我国应用的前景[J].国外金属矿选矿,1997,(2):34-39.
    [37] 肖松文,梁经冬.难浸金矿石加熱石灰焙烧处理工艺研究与发展[J].矿产综合利用,1993,(5):40-43.
    [38] 杨天足,宾万达.含砷难处理金矿预处理研究——(Ⅱ)加石灰焙烧法[J].黄金,1994,15(2):31-35.
    [39] 戴曦,宾万达.难浸金矿加石灰焙烧—氰化浸金工艺方法[J].贵金属,2000,21(1):18-21.
    [40] 黄强.难浸金矿石细菌氧化工艺应用的进展[J].国外黄金参考,2000,(7-8):38-45.
    [41] Ubaldini S, Veglio F, Toro L, et al. Biooxidation of arsenopyrite to improve gold cyanidation: study of some parameters and comparison with grinding [J]. International Journal of Mineral Processing, 1997, 52: 65-80.
    [42] Breed A W, Hansford G S. Studies on the mechanism and kinetics of bioleaching [J]. Minerals Engineering, 1999, 12(4): 383-392.
    [43] Barrett J, Hughes M N. Mechanism of the bacterial oxidation of arsenopyrite-pydte
    
    mixtures: The identification of plant control parameters [J]. Minerals Engineering, 1993, 6(8-10): 969-975.
    [44] 李丽洁.难处理金矿细菌预氧化浸出工艺研究现状及进展[J].矿产保护与利用,1999,(3):41-44.
    [45] 王恩德,杨立.难选金矿石的细菌浸出[J].黄金,1996,17(1):25-28.
    [46] 王金祥.细菌氧化含金锑矿尾渣的试验研究[J].黄金,1996,17(12):40-42.
    [47] 魏以和,钟康年,王军,等.微生物氧化处理崇阳难浸金矿(半连续试验)[J].国外金属矿选矿,1996,(3):21-25.
    [48] 郑存江,张辉,冯明伸,等.难浸含砷金精矿生物预氧化生产实践[J].2000,21(11):31-36.
    [49] Hille S, Raudsepp R. Pressure oxidation performance at Porgera: 1995 to 1997[A]. Sixth Mill Operator's Conference '1997[C], Papua: Publ. Australas. Inst. Min. Metall. 1997: 27-35.
    [50] Demopoulos G P, Papangelakis V G. Acid pressure oxidation of refractory gold mineral carriers [A]. Salter R S, Wyslouzil D M, McDonald G W. Proceedings of the international symposium on gold metallurgy[C]. Pergamon: New York N. Y. 1987, 341-357.
    [51] 黄孔宣.国外难浸金矿石处理工艺述评[J].国外黄金参考,1992,(3):封二,1-10.
    [52] Tumey J R, Smith R J, Janhuen Jr W J. The application of acid pressure oxidation to the McLaughlin refractory ore[A]. Jha M C, Hill S D, Precious Metals'89[C], Warrendale: TMS, 1988, 25-45.
    [53] Weir D R,Berezowsky R M G S.难处理金原料的湿法加压氧化[A].赵捷,乔繁盛.黄金冶金[C].北京:原子能出版社,1988,376-389.
    [54] Carvalho T M, Haines A K, Silva E J Da, et al. Start-up of the sherrit pressure oxidation process at Sao Bento[A]. Proc. Randol Perth Int. Gold conf. [C], Perth: Randol. Golden. Co. 1988: 152-156.
    [55] 中国科学院黄金科技工作领导小组办公室.中国金矿研究新进展(第Ⅰ卷上篇)[M].北京:地震出版社,1994:325-345.
    [56] 周绍銮,孙全庆,张晓泓,等.难处理金矿石的加压浸出技术[J].铀矿冶,1997,16(4):237-244.
    [57] Van Weert G, Fair K J, Schneider J C. Proehem's NITROX process [J]. CIM Bulletin, 1986, 79(895): 84-85.
    [58] Beattie M J V, Ismay A. Applying the redox process to arsenical concentrates[J]. JOM. 1990, 42(1): 31-35.
    [59] Raudsepp R, Peters E, Beattie M J V. Process for recovering gold and silver from refractory ores[P]. US Pat: 4647307, 1987-03-03.
    [60] Demopoulos G P,张兴仁.难选金矿选冶工艺的新进展[J].国外金属矿选矿,1991,(3):
    
    1-9.
    [61] 高兴斋.用过氧化氢氧化分解废矿堆中的氰化物[J].国外黄金参考,1994,(11):26-29.
    [62] 杨天足,陈庆邦,卢宜源,等.含砷难处理金矿预处理研究——(1)重铬酸钠浸出法[J].黄金,1992,13(12):33-37.
    [63] 赵天从,龙炳清,乐颂光.湿法常压催化分解毒砂和黄铁矿的研究[J].黄金,1987,8(2):37-40.
    [64] 夏光祥,韩宝玲,杨寒林,等.自含砷的难冶金矿中回收金银和雌黄的方法[P].中国专利:CN1103669A,1995-06-14.
    [65] 夏光祥,石伟,涂桃枝,等.氨浸法预处理含砷难浸金矿石的应用研究[J].黄金,1996,17(10):28-33.
    [66] 罗家珂.黄金提取与环境保护[J].矿冶,2000,9(1):92-98.
    [67] Groenwald T. The dissolution of gold in acidic Solutions of thiourea[J]. Hydrometallurgy, 1976. 1(3): 277-290.
    [68] 郭观发,胡岳华,邱冠周.硫脲提金理论研究——金溶解动力学[J].黄金 1994,15(9):30-33.
    [69] 胡岳华,郭观发,邱冠周,等.硫脲浸金机理的电化学研究[J].黄金科学技术,1995,3(2):43-48.
    [70] 周红.难浸金矿石的硫脲浸取法[J].冶金分析,1997,17(2):46-47.
    [71] 姜涛,许时,陈荩.硫代硫酸盐提金理论研究——浸金的化学及热力学原理[J].黄金,1992,13(2):31-34.
    [72] Abbrllrree C,张丽霞.用于金湿法冶金的硫代硫酸盐浸出[J].湿法冶金,1996,(3):36-41.
    [73] Zipperian D. Gold and silver extraction by ammoniacal thiosulfate leaching from a rhyolite ore[J]. Hydrometallurgy, 1988, 19(3): 361-375.
    [74] 姜涛,许时,陈荩,等.硫代硫酸盐提金理论研究——金溶解动力学[J].黄金,1992,13(1):35-38.
    [75] 龚乾,胡洁雪,曹昌林.硫酸根存在下硫代硫酸铵溶液浸出硫化金精矿中金的动力学研究[J].中国有色金属学报,1994,4(1):16-20.
    [76] 姜涛,许时,陈荩,等.硫代硫酸盐提金理论研究——金的阳极溶解[J].黄金,1991,12(9):41-45.
    [77] 姜涛,许时,陈荩,等.硫代硫酸盐提金理论研究——阴极过程及浸金机理[J].黄金,1991,12(10):32-37.
    [78] 周国华,李焕然,容庆新.室温下用氨性硫代硫酸盐从含铜金矿中浸出金[J].矿产综合利用,1999,(5):15-18.
    [79] 张一鸣.硫代硫酸钠法提金新工艺工业试验研究[J].新疆有色金属,1994,(4):21-26.
    [80] 姜涛.含铜金矿提金工艺及其理论研究[D].长沙:中南工业大学,1990.
    
    
    [81] Robert S. Shoemaker precions metals [A]. Kudryk D A, Corrigan D A, Liang W W. Mining Extraction and processing [C]. The metallurgical Society of AIME, 1984, 3-10.
    [82] 孙戬.金银冶金[M].北京:冶金工业出版社,1986.
    [83] Yen W T, Pindred R A, Lam M P. Hypochlorite Leaching of Gold Ore [A]. Advances in Gold and Silver Processing [C]. Colorado: Society for Mining, Metallurgy and Exploration. 1990: 67-74.
    [84] Yen W T, Pindred R A. Pressure Oxidation of Refractory Gold Ore with Sodium Hypochlorite[J]. Precious Matals. 1989, (6): 335-343.
    [85] Demopoulos G P,Papangelakis V G.难处理金矿的酸法加压氧化[A].赵捷,乔繁盛.黄金冶金[C].北京:原子能出版社,1988,448-460.
    [86] 方兆珩,谢意琴,马其,等.次氯酸钠溶液浸取细微金矿的研究[J].中国有色金属学报,1994,3(5):9-13.
    [87] 李岭值.氯碱浸金新工艺[J].中国有色金属学报,1996,6(增刊2):223-225.
    [88] 范斌.金的非氰化浸出研究(Ⅰ)[J].湿法冶金,2000,19(2):27-29.
    [89] 周以富,高振敏.次氯酸钠高碱高盐氧化分解贵州某难处理金矿载金硫化矿的研究[J].黄金科学技术,2000,8(3):36-42.
    [90] 王淀佐,毛暗章,邱冠周,等.FeAsS、FeS_2、Au的NaClO-NaOH体系热力学分析与金的一步浸出[J].有色金属,1998,50(1):40-44.
    [91] 毛暗章.高砷硫难处理金精矿浸金新工艺与理论研究[D].长沙:中南工业大学,1997.
    [92] 李德良,黄念东,许中坚,等.无害化一步提取工艺处理含砷难处理金矿的研究[J].稀有金属,2001,25(2):94-97.
    [93] 卢寿慈.粉体加工技术[M].北京:中国轻工业出版社,1999.
    [94] 赵中伟,赵天从,李洪桂.固体机械力化学[J].湖南有色金属,1995,11(2):64-48.
    [95] Heinicke G. Tribochemistry [M]. Berlin: Hanser, 1984.
    [96] 熊仁根,游效曾,董竣修.机械化学及其应用[J].化学通报,1995,(4):7-11
    [97] 李希明,陈家镛.机械化学在资源和材料化工及环保中的应用[J].化工冶金,2000,21(4):443-448.
    [98] Boldyrev V V. Mechanical activation of solids and its application to technology [J]. J. Chim. Phys. Phys. -Chim. Boil., 1986, 83(11~12): 821-829.
    [99] Takahashi H. Effect of dry grinding an kaolin minerals: I. kaolinite [J]. Bull them Soc Jpn, 1959, 32(3): 235-245.
    [100] 章新桥,张东明.NbC粉末的机械合金化合成[J].中国有色金属学报,1995,5(1):87-89.
    [101] 李运姣,孙培梅,刘茂盛,等.白钨精矿的机械活化碱分解[J].中国有色金属学报,1995,5(3):27-29.
    [102] 李洪桂,刘茂盛,戴朝嘉,等.钨矿物原料碱分解的新工艺研究[J].稀有金属,1988,
    
    7(3): 190-194
    [103] Zhang Qiwu, Kasai E, Saito F. Mechanochemical change in gypsum when dry ground with hydrated minerals [J]. Powder Technology, 1996, 87: 67-71.
    [104] Mi G, Saito F, Hanada M. Mechanochemical synthesis ofafwillite by room temperature grinding[J]. Inorganic Mater. 1996, 3(11): 587-591.
    [105] Liao Jiefan, Senna M. Enhanced dehydration and amorphization of Mg(OH)_2 in the oresence of ultrafine SiO_2 under mechnochemical conditions [J]. Thermochimica Acta, 1992, 210: 89-102.
    [106] 英庆缓.水泥熟料机械力化学活化[D].广州:华南理工大学,1988.
    [107] 钟白茜,张少明.粉煤灰的活性与激活措施[J].粉煤灰综合利用,1995,(4):41-43.
    [108] 杨华明,邱冠周.搅拌磨机械化学改性制备复合粉体的研究[J].中南工业大学学报,1997,28(6):536-537.
    [109] 杨华明,邱冠周.搅拌磨机械化学法合成β-TCP粉末[J].化工冶金,1999,20(1):62-65.
    [110] 李冷,曾宪滨.粉碎机械力化学的进展及其在材料开发中的应用[J].武汉工业大学学报,1993,15(1):23-26.
    [111] 李冷,日下英史,中广吉孝.硅灰石的微粉碎与物性研究[J].中国粉体技术,1999,5(4):15-18.
    [112] 孔德玉.机械力化学表面改性叶蜡石填料的性质及应用[J].非金属矿,1998,21(5):19-20,29.
    [113] 杨慧芬,周张健,蒋胜昔,等.伊利石的机械力化学改性研究[J].中国矿业,1998,7(2):62-64.
    [114] Pajakoff S. Mechanochemical reaction Ⅱ[J]. Oesterr Chem. Z, 1985, 86(3): 48-51
    [115] Mendeiovici E, Villalba R, Sagarzazu A. Distinctive Mechanochemical Transformation of Manganosite into Manganite by mortar dry grinding[J]. Materials Research Bulletin, 1994, 29(2): 167-174.
    [116] Wu Z H, Matsuoka M, Lee D Y, et al. Mechanochemistry of lignin Ⅵ Mechanochemical reactions of β-1 lignin model compounds[J]. Moknzaoi Gakkaishi, 1991, 37(2): 164-171.
    [117] 金强,金人海,朱敏,等.摩擦化学的应用与进展[J].化工时刊,1997,11(7):10-13.
    [118] 欧凤,李晓.应用摩擦化学的节能润滑技术[M].北京:中国标准出版社,1991.
    [119] 郑林庆.摩擦学原理[M].北京:高等教育出版社,1994.
    [120] Dong J X, Xin Z M, Zhou C H, et al. Study on organic silicides Used as Friction-Modifier in Lubricating Oil[J]. Lubrication Engineering, 1990, 46(12): 777-782.
    [121] Schaffer G B, Mc Cormick P G. Mechanical Alloging [J]. Meterials Forum, 1992, 16: 91-97.
    
    
    [122] 师昌绪.90年代的新型材料[J].化工进展,1991,(5):12-20.
    [123] Ding J, McCormick P G, Street R. Magnetization Processes in Hig Coercivity SmCo_5 and Sm_2Fe_(17) Nx Prepared by Mechanical Alloying [A]. Proc IUMRS International Conference on Advanced Materials [C]. Tokyo, 1993.
    [124] 徐僖.新技术在高分子材料科学与工程中的应用[J].化工进展,1995,(4):11-13.
    [125] Millet P, Calka A, Williams JS. Formation of Gallium Nitride by a Novel Hot Mechanical Alloying Process[J]. Appl. Phys. Lett, 1993, 63(18): 1-4.
    [126] 陈世琯.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96.
    [127] 黄云峰,王文潜,钱鑫.机械化学及其在矿物加工中的应用[J].金属矿山,1999,(5):17-20.
    [128] 刘友勤,陈莲.对边磨边浸氰化提金工艺的探讨[J].甘肃有色金属,1998,(2):6-8,12.
    [129] Filio J, Sugiyama K, Kasai E, et al. Effect of dry mixed grinding of talc, kaolinite and gibbsite on preparation of cordierite ceramics [J]. Journal of Chem. Eng. Japan, 1993, 26(5): 565-569.
    [130] 李冷.粉碎机械力化学理论及实验方法[J].国外金属矿选矿,1991,(9):36-42.
    [131] 久保辉一郎.—概论[M].东京:东京化学同人,1978.
    [132] Bowden F P, Tabor D. The Friction and Lubrication of Solids [M]. Oxford at the Clarenden Press, 1954.
    [133] 王汝霖.润滑剂摩擦化学[M].北京:中国石化出版社,1994.
    [134] 杨家红,李洪桂,赵中伟,等.矿物机械活化基础理论的研究进展[J].稀有金属与硬质合金,1996,(4):38-42.
    [135] Thiessen P A, Meyer K, Heinicke G. Principles of Tribochemistry[M], Berlin: Akad. Verlag, 1967.
    [136] Schoene R. Increasing the activating of the surface of crystals by bombardment with solid particles[J]. Chem. Ing. Tech., 1969, 41(5-6): 282-288.
    [137] 方全国.高岭土细磨过程机械力化学与助磨剂吸附特性的研究[J].矿冶,1997,6(3):37-41.
    [138] 林海,陈秀枝,松全元,等.煤系煅烧高岭土颗粒湿法超细化过程的机械力化学效应[J].中国矿业,1998,7(5):54-57.
    [139] Otsuka Makoto, Kaneniwa Nobuyoshi. Noncrystallization of chloramphenicol palmitate crystals by grinding and its mechanism[J]. J. Soc. Powder Technology Japan. 1986, 23(2): 63-67.
    [140] Pawlek F. The leaching behavior of bauxite during mechanical-chemical-treament [J]. Light Metals, 1992, (2): 91-95.
    [141] 刘今,巩前明,吴若琼,等.低品位铝土矿预脱硅工艺及动力学研究[J].中南工业
    
    大学学报,1998,29(2):145-148.
    [142] Aglietti E F, Porto Lopez J M, Pereira E. Mechanochemical effects in kaolinite grinding Ⅰ: Textural and physicochemical aspects[J]. International Journal of Mineral Processing, 1986, 16: 125-133.
    [143] 郑水林.超细粉碎原理、工艺设备及应用[M].北京:中国建材工业出版社,1993.
    [144] Berger A, Boldyrev V, Menzheres L. Mechanical activation of β-spodumene[J]. Materials Chemistry and Phycics, 1990, 25(4): 339-350.
    [145] Amer A M. Investigation of the direct hydrometallurgical processing of mechanically activated complex sulphide ore, Akarem area, Egypt[J]. Hydrometallurgy, 1995, 38(3): 225-234.
    [146] Balaz P, Achimovicova M, Bastl Z, et al. Influence of mechanical activation on the alkaline leaching of enargite concentrate[J]. Hydrometallurgy, 2000, 54(2): 205-216.
    [147] Balaz P, Sekula F, Jakabsky S, et al. Application of attrition grinding in alkaline leaching of tetrahedrite[J]. Minerals Engineering, 1995, 8(11): 1299-1308.
    [148] Balaz P. Mechanochemical processing of complex sulphide ores [J]. Materials Science Forun, 1999, 312: 215-220.
    [149] Balaz P, Briancin J, Sepelak V, et al. Non-oxidative leaching of mechanically activated stibnite[J]. Hydrometallurgy, 1992, 31(3): 201-212.
    [150] Maurice D, Hawk J A. Ferric chloride leaching of mechanically activated chaicopyrite [J]. Hydrometallurgy, 1998, 49(1-2): 103-123.
    [151] Maurice D, Hawk J A. Ferric chloride leaching of a mechanically activated pentlandite-chalcopyrite concentrate [J]. Hydrometallurgy, 1999, 52(3): 289-312.
    [152] Balaz P. Influence of solid state properties on ferric chloride leaching of mechanically activated galena[J]. Hydrometallurgy, 1996, 40(3): 359-368.
    [153] Kammel R, Pawlek F, Simon M, et al. Oxidizing leaching of sphalerite under atmospheric pressure[J]. Metall, 1987, 41(2): 158-161.
    [154] Balaz P, Ebert I. Oxidative leaching of mechanically activated sphalerite [J]. Hydrometallurgy, 1991, 27(2): 141-150.
    [155] 赵中伟,赵天从,李洪桂,等.机械活化对硫化锌精矿浸出动力学的影响[J].有色金属,1995,47(2):81-83,107.
    [156] 李希明,陈家镛,Kammel R,等.机械活化对铁酸锌浸取行为的影响[J].有色金属,1991,43(2):44-47.
    [157] 周金云.锌浸出渣的选择性酸浸研究[D].长沙:中南工业大学,1995.
    [158] Todorovsky D, Terziev A, Milanova M. Influence of mechanoactivation on rare earths leaching from Phosphogypsum [J]. Hydrometallurgy, 1997, 45(1-2): 13-19.
    [159] 李军,李洪桂,刘茂盛,等.氢氧化钠与黑钨矿反应动力学研究[J].中南矿冶学院
    
    学报,1985,16(4):128-136.
    [160] 刘茂盛,李洪桂,孙培梅,等.机械活化苏打溶液分解白钨中矿试验研究[J].中南矿冶学院学报,1994,23(3):321-325.
    [161] 李洪桂,刘茂盛,思泽全,等.白钨精矿及黑白钨混合矿碱分解工艺及设备[P].中国专利:CN85100350.8,1985-04-01.
    [162] 陈天鸰.热球磨碱分解高钙黑钨矿及白钨精矿技术在我厂的应用[J].江西冶金,1998,18(3):11-12.
    [163] 赵中伟,李洪桂,刘茂盛,等.柿竹园钨中矿处理方法选择[J].稀有金属与硬质合金,1996,(1):1-3.
    [164] 张贵清,张启修,肖连生,等,处理高钼白钨精矿生产APT的新工艺[J].中国有色金属学报,1998,8(增刊2):472-474
    [165] 孙培梅.李洪桂,李运姣,等.机械活化苛性钠分解柿竹园白钨矿的研究[J].中南工业大学学报,1999,30(3):248-251.
    [166] 李希明,陈家镛,Kammel R.细磨活化对白钨矿浸取行为的影响[J].金属学报,1991,27(6):B371-375.
    [167] 杨华明,邱冠周.搅拌磨机械化学法处理钼渣的新工艺[J].中国钼业,1998,22(3):13-15.
    [168] Zhizhaev A M, Kim A P. Effect of mechanical activation on thermal transformation of pyrite concentrate [J]. Fiziko-Tekhnicheskie Problemy Razrabotki Polezngkh Iskopaemykh, 1992, (3): 96-100.
    [169] Balaz P, Briancin J. Reactivity of mechanicalig activated pyrite[J]. Solid State Ionics, 1993, 63-65: 296-300.
    [170] Balaz P, Balassaova M. Thermal decomposition of mechanically activated arsenopyrite [J]. Journal of Thermal Analysis, 1994, 41(5): 1101-1107.
    [171] Warris C J, McCormick P G. Mechanochemical processing of refractory pyrite [J]. Minerals Engineering, 1997, 10(10): 1119-1125.
    [172] Eymery J P, Ylli F. Study of a mechanochemical transformation in iron pyrite[J]. Journal of Alloys and Compounds, 2000, 298: 306-309.
    [173] 李洪桂,赵中伟,赵天从.机械活化黄铁矿的物理化学性质[J].中南工业大学学报,1995,26(3):349-352.
    [174] 邱冠周,毛暗章,唐谟堂,等.某难处理金精矿浸金新工艺试验研究[J].黄金,1997,18(6):32-35.
    [175] 黄云峰,王文潜,钱鑫.超细磨预处理难浸金矿石的研究[J].黄金,1999,20(3):28-31.
    [176] 闵小波,柴立元,钟海云.浅淡机械球磨在难处理金矿浸出中的应用[J].中国有色金属学报,1998,8(增刊2):587-590.
    
    
    [177] 欧启安,黄方方.广西难处理金精矿提金工艺技术研究的进展[J].广西地质,1999,12(2):71-74.
    [178] Osseo-Assare K, Xue T, Ciminelli V S T. Solution Chemistry of Cyanide Leaching Systems[A]. Kudryk V, Corrigan D A, Liang W W, et al. Precious Metals: Mining, Extraction and Processing[C]. Warrendale: TMS-AIME. 1984, 171-176.
    [179] Ernest Peters. Advances in Mineral Processing[A], Proceedings of a syrup, honoring N. Arbiter on his 75th birthday[C]. New Orleans, P. Somasundaraneds. SME, 1986: 445-462.
    [180] 林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M].北京:科学出版社,1985.
    [181] 中南矿冶学院冶金研究室,氯化冶金[M].北京:冶金工业出版社,1978.
    [182] 钟竹前,梅光贵.化学位图在湿法冶金和废水挣化中的应用[M].长沙:中南工业大学出版社,1986.
    [183] Adamson R J. Gold Metallurgy in South Africa[M]. Johannesbury: Cape and Tranasvaal Printers Ltd, 1973.
    [184] Pourlmix M. Atlas of Electrochemical Equilibria in Aqueous Solution [M]. London: Pergamon Press, 1966.
    [185] 毛暗章,邱冠周,李德良,等.黄铁矿氯酸钠氧化动力学研究[J].中国有色金属学报,1996,6(增刊2):132-135.
    [186] Koslides T, Ciminelli V S T. Pressure oxidation of arsenopyrite in alkaline solution [J]. Hydrometallurgy, 1992, 30: 87-106.
    [187] Scanchez V M, Hiskey J B. Electrochemical behavior of arsenopyrite in alkaline media[J]. Miner. Metal. Process. 1991, (2): 1-6.
    [188] Dunn J G, Fernandez P G. The effect of experimental variables on the multiple peaking phenomenon observed during the oxidation of pyrite[A]: Pap. Presented at the 13th International Precious Metals Conference[C]. Montreal.1987: 5-13.
    [189] Lin H K, Zheng Z M. Electrochemical oxidation of arsenopyrite in chloride solutions[J]. Hydrometallurgy, 1996, 42: 411-424.
    [190] 王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988.
    [191] 杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998:186-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700