阻燃纤维素/SiO_2纳米复合纤维的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用湿法纺丝,将硅溶胶分散于粘胶液中,制备阻燃纤维素/SiO_2纳米复合纤维,并研究纳米SiO_2颗粒与纤维素的界面粘结状况,阻燃纤维素/SiO_2纳米复合纤维的纺丝过程、热稳定性、阻燃性以及纤维的各种物理指标。
     对硅溶胶及粘胶的结构特点对纺丝原液稳定性的影响进行了分析,讨论了硅溶胶与纤维素间的作用模式。通过对纺丝原液粘度的分析,结果显示SiO_2的添加量、SiO_2和纤维素间的相互作用力及温度共同决定着纤维素/SiO_2混合液的粘度。并采用FT-IR方法及残炭量的测定,证明纤维素与SiO_2能较好的复合,且SiO_2粒子的加入提高了纳米复合材料的结晶性能。
     通过TEM、SEM观察无机粒子在纤维中的分散情况。结果表明SiO_2在纤维中以纳米级均匀分散。并对阻燃纤维素/SiO_2纳米复合纤维的单纤维力学性质进行了分析。与粘胶纤维相比,添加无机SiO_2纳米粒子的阻燃纤维素/SiO_2纳米复合纤维的断裂强度降低,断裂伸长提高。
     通过粘胶纤维与阻燃纤维素/SiO_2纳米复合纤维的TG/DTG以及DSC分析比较,得出SiO_2的加入增强了纤维素的热稳定性能。阻燃剂SiO_2的加入在一定程度上改变了纤维素的热降解性能,减缓了热降解过程,有利于固相阻燃。利用CONE对阻燃纤维素/SiO_2纳米复合纤维的燃烧过程以及燃烧时热量和烟气的生成量进行了全面的研究。利用PY-GC-MS对粘胶纤维以及阻燃纤维素/SiO_2纳米复合纤维的裂解产物碎片进行研究。并结合利用SEM技术对燃烧残余物的分析,对SiO_2对阻燃纤维素/SiO_2纳米复合纤维的阻燃机理进行探讨。在复合纤维中SiO_2颗粒附近粘附的聚合物分子链具有更高的热稳定性。在高温下阻燃纤维能形成含SiO_2的炭层,在燃烧时起着散热排烟阻挡层的作用。聚硅酸分子能够强烈的催化脱水,并能够增强分子间的交联程度,导致炭化率的提高。
Colloidal silica was mixed with viscose in right proportion and made into flame retardant cellulose/silica nanocomposite fibers by wet spinning. Linking state of the interface between nanopaticals and macromolecules was studied; the structure and the properties of flame retardant cellulose/silica nanocomposite fibers were investigated, including spinning technics, thermal stability, flame retardancy and mechanical properties of fibers. The influence on stability of spinning solution was analyzed by studying the structures of colloidal silica and viscose, and then the structure manner of silica and cellulose was discussed. By analyzing viscosity of spinning solution, we found that: viscosity of spinning solution has relation with silica proportion, interaction of silica and cellulose and temperature of solution. By FT-IR and measuring char contents, a good reaction between cellulose and colloidal silica could be concluded. Crystallization of nanocomposites was increased because of the adding of silica particles.
     By observing the morphology of fibers by TEM and SEM, we found that silica can uniformly disperse into regenerated cellulose in nanometer size, and have a better interface with cellulose. At the same time, we also found that the mechanical properties were greatly changed, compared with viscose fiber.
     Comparing with viscose fiber by TG/DTG and DSC, we could see that the adding of silica reinforced thermal stability of flame retardant cellulose/silica nanocomposite fibers. In a certain extent, the adding of silica particles changed the thermal pyrolysis and reduced thermal degradation behaviors. We have an extensively research with burning process and its production of heat and smoke of flame retardant cellulose/silica nanocomposite fibers by CONE. The pyrolysis fragments of viscose and flame retardant cellulose/silica nanocomposite fibers were studied by PY-GC-MS. The residua were also studied by SEM. Then we discussed the flame retardant mechanism of SiO_2. The macromolecular chains around silica particles have a high thermal stability. In high temperature, the flame retardant cellulose/silica nanocomposite fibers can form tightly silica char layer, the layer has a function of releasing heat and obstruct. Polysilicic acid can strongly catalyze dehydrate of cellulose, and build up intermoleculars' joinning degree. So the degree of charring can be improved.
引文
1.宗小燕,贺江平.纺织品的阻燃综述.2006,28(10):15-17.
    2.欧育湘,韩廷解.发展阻燃材料,防火灾于未然.新材料产业,2006,10.
    3. Hoerold S, Wanzke W, Scharf D. Global Fire Safety Issues Industries and Products. Proceedings of the FRCA 1999 Spring International Conference. 1999, 129-153.
    4. Schacker O, Wanzke W, Scharf D. A New Century of FR Compounding. Proceedings of the FRCA 2002 Full Conference, 2002, 101-111.
    5. Gilman J W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science, 1999, 15 (122): 31-49.
    6. Tang T, Chen X C, Meng X Y, et al. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angewandte Chemie (International Edition in English), 2005, 44 (10): 1517-1520.
    7. Zheng X X, Wilkie C A. Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polymer Degradation and Stability, 2003, 81(3): 539-550.
    8. Tang Y, Hu Y, Li B G, et al. Polypropylene/montmorillonite nanocomposites and intumescent flame-retardant montmorillonite synergism in polypropylene nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42 (23): 6163-6173.
    9. Song L, Hu Y, Tang Y, et al. Study on the properties of flame retardant polyurethane/organoclay nanocomposite. Polymer Degradation and Stability, 2005, 87(1): 111-116.
    10.杨之礼.纤维素化学,北京:轻工业出版社,1961.
    11. H P Fink, P Weigel, H J Purz. Ganster structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci., 2001, 26: 1473-1524.
    12. F. Loescher, T. Ruckstuhl, S. Seeger, Ultrathin cellulose-based layers for detection of single antigen molecules. Adv. Mater., 1998, 10: 1005-1009.
    13.唐爱民,梁文芷.纤维素的功能化.高分子通报,2000,4:1-9.
    14. Saka S, Takanashi K. Cellulose triacetate prepared from low-grade hardwood dissolving pulp and its insoluble residues in acetylation mediums. J. Appl. Polym. Sci, 1998, 67(2): 289-297.
    15. Barkalow D G, Rowell R M, Young R A. A new approach for the production of cellulose acetate: Acetylation of mechanical pulp with subsequent isolation of cellulose acetate by differential solubility. J. Appl. Polym. Sci., 1989, 37(4): 1009-1018.
    16. Ibrahim A A, Nada A M A, Hagemann V, et al. Preparation of dissolving pulp sugar cane bagasse, and its acetylation under homogeneous solution condition. Holzforschung, 1996, 50(3): 221~225.
    17. Koichi S, Shoji Y, Norio I, et al. Jpn Kokai Tokkyo Koho Jp0940, 701, 1997.
    18. Pron A, et al. Highly conductive composites of polyaniline with plasticized cellulose acetate. Synth. Met., 1997, 84(1-3): 89-90.
    19. Borsa J, Racz I. Studies on the structural aspects of carboxymethylcellulose of low degree of substitution. Cellul. Chem. Technol., 1995, 29(6): 657-663.
    20. Ishikuro T, Inoul S, Meshitsuka G, et al. Preparation of sulfoalkyl derivatives of cellulose and other polysaccharides and assay of their anti-HIV activity. Sen'i Gakkaishi, 1995, 51(12): 571-579.
    21.M.Yonemura.日本公开特许,JP02,78:113.
    22. S. R. Shukla, G. V. Gopala Rao, and A. R. Athalye. Ultraviolet-radiation-induced graft copolymerization of styrene and acrylonitrile onto cotton cellulose. J. Appl. Poly. Sci., 1992, 45: 1341.
    23. D. L. Vander Hart, R. St. John Manley, and J. D. Barnes. Blends of Cellulose with Either Poly (acrylo-nitrile) or Poly (4-vinylpyridine). Macromolecules. 1994, 27: 2826-2836.
    24. M. Hasegawa, A. Isogai, F. Onabe, M. Usuda, and R. H. Atalla. Dissolving state of cellulose and chitosan in trifluoroacetic acid. J. Appl. Polym. Sci., 1992, 45(11): 1857-1863.
    25. Klenm D, Heinze T, Philipp B, et al. New approaches to advanced polymers by selective cellulose functionalization. Acta Polymer, 1997, 48(8): 277-297.
    26.杨之礼等.纤维素与粘胶纤维.纺织工业出版社,1981.
    27.刘宗义.发展阻燃粘胶纤维是必然趋势.人造纤维,1996,1:14-15.
    28.程博闻.粘胶纤维的阻燃改性.人造纤维,1998,4:1-5.
    29.周翠荣,董奎勇,杨萍.阻燃粘胶纤维及其研究现状.2004,4:22-26,29.
    30.全风玉,纪全,夏延致等.阻燃粘胶纤维的研究及其进展.纺织学报,2004,25(1):121-123.
    31.杨娜,徐晓楠.我国溴系阻燃剂生产结构、发展新动向.消防技术与产品信息,2004,4:56.
    32.欧育湘等.阻燃高分子材料.北京:国防工业出版社,2001.
    33. Demir H, Balkose D, Ulku S. Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene composites. Polymer Degradation and Stability, 2006, 91(5): 1079.
    34. Demir H, Arkis E, Balkose D, et al. Synergistic effect of natural zeolites on flame retardant additives. Polymer Degradation and Stability, 2005, 89(3): 478.
    35. Du L C, Qu B J, Xu Z J. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite. Polymer Degradation and Stability, 2006, 91(5): 995.
    36. Mohamed O A, Abdel-Mohdy F A. Preparation of flame-retardant leather pretreated with pyrovatex CP. J. Appl. Polym. Sci., 2006, 99(5): 2039.
    37. Xu J Z, Jiao Y H, et al. Zinc hydroxystannate-or zinc stannate-coated calcium carbonate as flame retardant for semirigid poly(vinyl chloride). J. Fire Sci., 2006, 24(2): 105.
    38. Howell B A, W u H. Thermal degradation of 2, 4, 6-tri (bromo) (x) aniline-1, 3, 5- triazines. Thermal Analysis and Calorimetry, 2006, 83(1): 79.
    39. Li Q, Jiang P K, Wei P. Synthesis, characteristic and application of new flame retardant containing phosphorus, nitrogen and silicon. Polym. Eng. Sci., 2006, 46(3): 344.
    40. Hong C, et al. Tensile and flammability properties of polypropylene based RTPO/clay nanocomposites for cable insulating material. J. Appl. Polym. Sci., 2005, 97(6): 2375.
    41. Berta M, Lindsay C, Pans G, et al. Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polymer Degradation and Stability, 2006, 91(5): 1179.
    42.张可达,徐冬梅,王平.微胶囊化方法.功能高分子学报,2001,14:474.
    43. Wadnava J. Microcapsule Processing and Technology. Minnesota: 3M company Staint Paul, 1979, 27-37.
    44.陶晓杰,杨怀玉,沈长斌.微胶囊技术的研究进展及其在缓蚀剂中的应用.腐蚀科学与防护技术,2002,14(6):329-330.
    45.周盾白,贾德民,黄险波.辐射交联改善聚合物阻燃性能的研究进展辐射研究与辐射工艺学报,2006,24(2):72-76.
    46.刘渊,贾润礼,柳学义.聚乙烯用阻燃剂及其复配体系的研究进展.高分子通报,2006,12:78-83.
    47.张军,纪奎江,夏延致.聚合物燃烧与阻燃技术.化学工业出版社,2005.
    48.骆介禹,骆希明.纤维素基质材料阻燃技术.化学工业出版社,2003.
    49.欧育湘.实用阻燃技术.化学工业出版社,2002.
    50.上海纺织科学研究院,南平化学纤维厂.阻燃粘胶纤维及阻燃剂STI-27中试研究.人造纤维,1990.4.
    51.新乡化纤开发出新型高性能阻燃粘胶纤维.中国石油和化工,2005,9.
    52. United States Patent 6130327.
    53.徐鹏.纶腈(Lenzing)阻燃粘胶纤维的性能及用途.中国个体防护装备,2001:222-224.
    54. United States Patent 4062687.
    55. United States Patent 4148782.
    56.金乃伯.新型阻燃纤维Visfl—一种混合粘胶纤维.纺织导报,1998,5:12.
    57. United States Patent 5471752.
    58. United States Patent 4332601.
    59.刘越(译).粘胶/硅酸混纺纤维的阻燃机理研究.人造纤维,1995,3:38-40.
    60. United States Patent 3865604.
    61. United States Patent 3947276.
    62. United States Patent 4981515.
    63. United States Patent 6130327.
    64. United States Patent 4830764.
    65. United States Patent 6087423.
    66. United States Patent 3583938.
    67. United States Patent 4193805.
    68.朱平,隋淑英,安平林.对纺织材料阻燃性能测试方法的评述.染整技术,1997,6:37-38
    69.李曦,孙江勤,张超灿.溶胶凝胶法制备有机无机纳米级功能材料.湖北化工,2000,3:5-7.
    70.任杰,刘艳.聚合物基有机无机纳米复合材料研究及应用前景.材料导报,2003,17(2):58-62.
    71.许云祥.硅溶胶的胶团结构和干燥胶凝过程.特种铸造及有色合金,2004,2:52-54.
    72.李巧玲.硅溶胶的酸碱度对其稳定性的影响.湖南化工,1998,28(6):36-37.
    73. Fuji Spinning Co. Ltd., Rayon Staplen Fibers with high Friction coeficient, JP8090, 1980, 9: 622.
    74. Guodong Chen, Shuxue Zhou, etc. Effects of surface properties of colloidal silica particles on redispersibility and properties of acrylic-based polyurethane/silica composites. Journal of Colloid and Interface Science, 2005, 281: 339-350.
    75. Ying-Ling Liu, Chih-Yuan Hsu, etc. Preparation and thermal properties of epoxy-silica nanocomposites from nanoscale colloidal silica. Polymer, 2003, 44: 5159-5167.
    76. Yang-Yen Yu, Ching-Yi Chen, etc. Synthesis and characterization of organic-inorganic hybrid thin films from poly (acrylic) and monodispersed colloidal silica. Polymer, 44 (2003) 593-601.
    77.李云龙,林松柏,吴宏,肖春妹.改性羧甲基纤维素/SiO_2杂化材料结构与性能.华侨大学学报(自然科学版),2004,25(3):266-269.
    78. Sónia Sequeira, Dmitry V. Evtuguin, Ines Portugal, Ana P. Esculcas. Synthesis and characterisation of cellulose/silica hybrids obtained by heteropoly acid catalysed sol-gel process. Materials Science and Engineering, 2007, 27: 172-179.
    79.卢红斌,杨玉良 填充聚合物的熔体流变学.高分子通报.2001(6):18-26.
    80.高殿才.粘胶纤维成形过程稳定性的探讨.人造纤维,2005 35(2):4-9.
    81.何曼君,陈维孝,董西侠.高分子物理,上海:复旦大学出版社,2001.
    82. F. Carrillo, X. Colom, etc. Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. European Polymer Journal, 2004, 40(9): 2229-2234.
    83.于伟东,储才元.纺织物理.上海:东华大学出版社,2002.
    84.雷振坤,亢一澜,王怀文.单纤维细丝微力学性能实验研究.实验力学,2005,20(1):72-77
    85. Kasemura T, Takahashi S, Nishisara K, Komatu C. Surface modification of epoxy resin with telechelic silicone. Polymer, 1993, 34: 3416-3420.
    86.贾修伟.纳米阻燃材料.北京:化学工业出版社,2005.
    87.王永强,牛正发.含硅阻燃剂的新进展.塑料工业,2003,31(2):9-12.
    88. S Al-Malacka A, Golovoy C A Wilkie. Chemistry and Technology of Polymer Additives. Oxford Makden-MA: Blackwell Science, 1999.
    89.张利利,刘安华,邵剑,曾幸荣.磷/硅复配体系阻燃环氧树脂的协同效应.塑料工业,2006,34(11):46-49.
    90.张俐娜,薛奇,莫志深.高分子物理近代研究方法.武汉大学出版社,2003.
    91. Halido C J. Fire Materials. 1978, 2: 141.
    92. M. J. Antal, J r., H. L. Friedmant, F. E. Rogers. Kinetics of Cellulose Pyrolysis in Nitrogen and Steam, Combustion Science and Technology, 1980, 21: 141-152.
    93. Allan. W. Bradbury, Yoshio. Sakai, Fred. Shafizadeh. A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci., 1979, 23: 3271-3280.
    94. D. S. Scot, J. Piskorz, M. A. Bergougnou, R. Graham, R. P. Overend. The role of temperature in the fast pyrolysis of cellulose and wood. Ind. Eng. Chem. 1988, 27: 8-15.
    95. Chun. W. C. R, M. Kelbon. Modelling and experimental verification of physical and chemicak processes during pyrolysis of a large biomass particle. Fuel, 1985, 64: 1505-1513.
    96. A. G. Liden, F. Berruti. A Kinetic model for the production of liquids from the flash pyrolysis of biomass. Chem. Eng. Comm., 1988, 65: 207-221.
    97.廖艳芬.纤维素热裂解机理试验研究.博士论文.浙江大学,2003.
    98. M. Lanzetta, C. D. Blasi. An experimental investigation of heat-transfer limitation in the flash pyrolysis of cellulose. Ind. Eng. Chem. Res., 1997, 35: 1263-1268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700